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Abstract

An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-

observing satellite missions equipped with imaging spectroradiometers. This data stream will open 

up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation 

properties. The processing requirements for such large data streams require reliable retrieval 

techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the 

aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art 

retrieval methods that have been applied in experimental imaging spectroscopy studies inferring 

all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) 

parametric regression, including vegetation indices, shape indices and spectral transformations; (2) 

nonparametric regression, including linear and nonlinear machine learning regression algorithms; 
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(3) physically based, including inversion of radiative transfer models (RTMs) using numerical 

optimization and look-up table approaches; and (4) hybrid regression methods, which combine 

RTM simulations with machine learning regression methods. For each of these categories, an 

overview of widely applied methods with application to mapping vegetation properties is given. In 

view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing 

with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties 

and acceptable retrieval processing speed are other important aspects in view of operational 

processing. Recommendations towards new-generation spectroscopy-based processing chains for 

operational production of biophysical variables are given.

Keywords
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1 Introduction

Quantitative vegetation variable extraction is fundamental to assess the dynamic response 

of vegetation to changing environmental conditions. Earth observation sensors in the 

optical domain enable the spatiotemporally explicit retrieval of plant biophysical variables. 

This data stream has never been so rich as is foreseen with the new-generation imaging 

spectrometer missions. The forthcoming EnMAP (Guanter et al. 2015), HyspIRI (Lee et 

al. 2015), PRISMA (Labate et al. 2009) and FLEX (Drusch et al. 2017) satellite missions 

will produce large spectroscopic data streams for land monitoring, which will soon become 

available to a diverse user community. This upcoming vast data stream will not only be 

standardized (e.g., atmospherically corrected), but will also require reliable and efficient 

retrieval processing techniques that are accurate, robust and fast.

Since the advent of optical remote sensing science, a variety of retrieval methods for 

vegetation attribute extraction emerged. Most of these methods have been applied to the 

data of traditional multispectral sensors (Verrelst et al. 2015), but increasingly they are also 

applied within imaging spectroscopy studies. This review provides a summary of recently 

developed methodologies to infer per-pixel biophysical variables from imaging spectroscopy 

data, covering the visible, near-infrared (NIR) and shortwave infrared spectral regions. 

Essentially, quantification of surface biophysical variables from spectral data always relies 

on a model, enabling the interpretation of spectral observations and their translation into 

a surface biophysical variable. Biophysical variable retrievals, as traditionally described in 

the terrestrial remote sensing literature, are grouped into two categories: (1) the statistical 

(or variable-driven) category and (2) the physical (or radiometric data-driven) category 

(Baret and Buis 2008). Over the last decade, however, both methodological categories 

expanded into subcategories and combinations thereof. Exemplary is the increasing number 

of elements of both categories which have been integrated into hybrid approaches. This 

methodological expansion, therefore, demands for a more systematic categorization. From 

an optical remote sensing point of view, and in line with an earlier, more general review 
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paper (Verrelst et al. 2015), retrieval methods can be classified in the following four 

methodological categories:

1. Parametric regression methods Parametric methods assume an explicit 

relationship between spectral observations and a specific biophysical variable. 

Thus, explicit parameterized expressions are built; they are usually based on 

some physical knowledge of absorption and scattering properties and statistical 

relationship between the variable and the spectral response. Typically, a band 

arithmetic formulation is defined (e.g., a spectral index) and then linked to the 

variable of interest based on a fitting function.

2. Nonparametric regression methods Nonparametric methods directly define 

regression functions according to information from the given spectral data and 

associated variable, i.e. they are data-driven methods. Hence, in contrast to 

parametric regression methods, a non-explicit choice is to be made on spectral 

band relationships, transformation(s) or fitting function. Nonparametric methods 

can further be split into linear or nonlinear regression methods.

3. Physically based model inversion methods Physically based algorithms are 

applications of physical laws establishing photon interaction cause–effect 

relationships. Model variables are inferred based on specific knowledge, 

typically obtained with radiative transfer functions.

4. Hybrid regression methods A hybrid-method combines elements of 

nonparametric statistics and physically based methods. Hybrid models rely on 

the generic properties of physically based methods combined with the flexibility 

and computational efficiency of nonparametric nonlinear regression methods.

These categories provide a theoretical framework to organize the myriad of retrieval 

methods, as well to overview the diversity of published imaging spectroscopy applications 

based on these methods. However, a few remarks must be considered. One should be aware 

that the boundaries of these categories are not always clearly defined; for instance, spectral 

indices are also often used as input into nonparametric methods. Another important aspect 

is that the majority of the methods reviewed here is not exclusively designed for retrieval of 

biophysical variables. This especially holds for the statistical methods, whereby a regression 

model is used to link spectral data with a biophysical variable. In optical remote sensing 

science, these methods are commonly applied to map any feasible continuous variable, as 

well in the domains of snow, water or soil properties [see Matthews (2011), Mulder et al. 

(2011) and Dietz et al. (2012) for reviews]. Nevertheless, to keep this review comprehensive, 

it is limited to retrieval methods with applications in the domain of vegetation properties 

mapping. On the other hand, even within these boundaries each of the above methodological 

categories continues to be expanded with all kinds of spectroscopic data processing 

applications (e.g., Gewali et al. 2018). The drivers behind this methodological expansion 

can be found in the: (1) the interminable increase in computational power, (2) the increasing 

availability and democratizing of spectroscopic data, and (3) the steady progress in imaging 

spectroscopy sensor technology, which produces each time more sensitive sensors. This 

progress in imaging spectroscopy technology enables us to infer each time more subtle 

and highly dynamic vegetation properties from spectral data. For instance, the forthcoming 
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FLEX mission aims to deliver a portfolio of dynamic plant stress and productivity variables 

based on, among others, the exploitation of sun-induced chlorophyll fluorescence emitted 

by terrestrial vegetation (Drusch et al. 2017). Hence, this underlines the fact that the list 

of biophysical variables that can be extracted from imaging spectroscopy is not closed, but 

instead continues to grow with ongoing progress in spectrometer technology. Consequently, 

biophysical variables are in this review paper defined as any vegetation property that can be 

quantified, i.e. any pigments, chemical constituents, structural variables, but also variables 

related to plant photosynthesis, productivity or diseases. Altogether, the drivers behind 

methodological expansion are not mutually exclusive, but they strengthen each other, which 

leads to a rapid progress in the development of advanced retrieval methods that goes hand 

in hand with improved capabilities to quantify a broad diversity of biophysical variables. As 

will be demonstrated throughout this review, these trends are resulting in an unprecedented 

richness of imaging spectroscopy mapping applications.

Regardless of the methodology used or the targeted application, the principal characteristic 

of spectroscopic data lies in their dense information content embedded in a few hundred 

spectrally narrow bands. Although such a spectrally dense data source proved to be 

beneficial for the majority of targeted mapping applications, a key challenge for many 

retrieval methods is how to deal with spectral multicollinearity, i.e. band redundancy. 

Special attention, therefore, will be devoted to address common spectroscopic data 

processing challenges, and solutions will be given how to overcome them. Finally, 

while imaging spectrometers are so far mostly applied in an experimental context, the 

developments towards operational systems have manifestly taken off and undoubtedly will 

lead to new directions and possibilities of Earth observation. In view of getting prepared 

for these upcoming global spectroscopic data streams, we will close this review with 

recommendations about the possibilities of integrating promising retrieval approaches into 

operational schemes.

2 Parametric Regression Methods

Parametric regression methods have long been the most popular method to quantify 

biophysical variables in optical remote sensing, and the field of imaging spectroscopy is no 

exception to that. This simplest way of developing a regression model explicitly determines 

parameterized expressions relating a limited number of spectral bands with a biophysical 

variable of interest. The empirical models rely on a selection of bands with high sensitivity 

towards the variable of interest, typically in combination with subtle spectral features 

to reduce undesired effects, related to variations of, for instance, other leaf or canopy 

properties, background soil reflectance, solar illumination and sensor viewing geometry and 

atmospheric composition (e.g., Verrelst et al. 2008, 2010). In the following overview, we 

present common parametric regression methods, which are based on (1) vegetation indices, 

(2) shape indices and (3) spectral transformations (Fig. 1).

2.1 Discrete Spectral Band Approaches: Vegetation Indices

Parametric regression models based on vegetation indices (VIs) are by far the oldest 

and largest group of variable estimation approaches. VIs are defined to enhance spectral 
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features sensitive to a vegetation property, while reducing disturbances by combining some 

spectral bands into a VI (Clevers 2014; Glenn et al. 2008). The main advantage of VIs is 

their intrinsic simplicity. VI-based methods found their origin in the first applications of 

broadband sensor satellites. During the pioneering years of optical remote sensing, only a 

small set of spectral bands were available and computational power was limited. It led to a 

long tradition of the development of simple two bands, or at most three to four band indices 

that continues until today (e.g., Kira et al. 2016). New possibilities have opened with the 

advent of imaging spectrometers. Optimized narrowband information extraction algorithms 

were developed based on adaptations of established index formulations, such as simple ratio 

and normalized difference [see reviews by Clevers (2014), Glenn et al. (2008), Xue and 

Su (2017)]. On the other hand, the possibilities to develop spectral indices based on a few 

band combinations grew exponentially, and that demanded more systematic band evaluation 

methods.

A popular solution involves correlating all possible band combinations according to 

established index formulations. For two-band index formulations, such as simple ratio or 

normalized difference, this approach leads to 2D correlation matrices, which enables to 

visually identify optimal band combinations (e.g., Atzberger et al. 2010; Maire et al. 2004, 

2008; Mariotto et al. 2013; Rivera et al. 2014; Thenkabail et al. 2000). Subsequently, 

given all possible combinations permit to select a ‘best-performing index’. Nevertheless, 

while being mathematically simple, this method is not only tedious—especially when 

evaluating all possible combinations of more than two bands—but also keeps on being 

restricted to formulations that make use of a few bands only, with at most using three 

or four bands. Thus, although the approach is systematic, it continues to underexploit 

the comprehensive information content hidden in the contiguous spectral data. Moreover, 

when applying this technique in mapping applications making use of imaging spectroscopy, 

identical best-performing spectral band combinations for the same biophysical variable have 

rarely been reported. This suggests that optimized narrowband VIs are strongly case specific 

and seem to lack generic capacity (Gonsamo 2011; Heiskanen et al. 2013; Mariotto et al. 

2013).

More fundamentally, it remains dubious whether relying on transformed data originating 

from a few discrete bands fully captures the complexity of real-world observation conditions 

as has been observed by a spectroradiometer. Reducing full-spectrum datasets into simple 

indices formulations intrinsically leads to remaining spectral information left unexploited. 

Accordingly, the following two aspects should be considered to ensure optimized use of VIs 

in a spectroscopic context: (1) Band selection. Spectral indices are mathematical functions 

based on discrete bands, or at best a subset of full spectral information. Thus, the question 

arises: how do we assess with high enough accuracy whether the most sensitive spectral 

bands—with respect to biophysical variable retrieval—have been selected? (2) Formulation. 

Enhancing spectral information according to a mathematical transformation should lead to 

an optimal sensitivity of the spectral signal with respect to the variable of interest. While 

established formulations such as the simple ratio or normalized difference are commonly 

used, here the question arises again: how can we be sure whether these linear formulations 

are the most powerful ones with respect to biophysical variable retrieval? These two 

questions are almost impossible to resolve considering the unlimited possibilities of band 

Verrelst et al. Page 5

Surv Geophys. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



selections together with designing index formulations. Consequently, given their inherent 

constraints, it can be concluded that VI-based regression models exploit spectroscopic data 

suboptimally.

2.2 Parametric Approaches Based on Spectral Shapes and Spectral Transformations

Because none of the above few band index methods take full advantage of 

spectroscopic datasets, alternative methods were pursued with the advent of hyperspectral 

spectroradiometers that allow us to exploit specific absorption regions of the reflectance 

spectrum. It led to the development of so-called shape indices and spectral transformation 

methods. Shape indices, listed below, extract shape-related information from contiguous 

spectral signatures for a specific spectral region that is then correlated with a biophysical 

variable. These types of parametric methods are therefore exclusively applicable to 

spectroscopic data. The following categories can be identified:

– Red-edge position (REP) calculations. Mathematically, the REP inflection point 

is the position of a wavelength defined as the maximum of the first derivative 

reflectance between the red and NIR regions, i.e. between 670 and 780 nm 

(Kanke et al. 2016). The red-edge position is known to be sensitive to multiple 

biophysical variable variations, both chlorophyll pigments (Delegido et al. 2011) 

and structural variables, for instance the leaf area index (LAI) (Delegido et 

al. 2013). Therefore, REP-related methods are typically used to derive canopy 

chlorophyll content, being the product of LAI and leaf chlorophyll content 

(Clevers and Kooistra 2012; Li et al. 2017). Many mathematical approaches 

have been proposed to exploit this region as a sensitive indicator, including: 

(1) high-order curve fitting (Broge and Leblanc 2001; Clevers et al. 2004; (2) 

inverted Gaussian models (Cho and Skidmore 2006; Cho et al. 2008; Miller et 

al. 1990; (3) linear interpolation and extrapolation methods (Cho et al. 2008; 

Tian et al. 2011; 4) Lagrangian interpolation (Dawson et al. 1998; Pu et al. 

2003; (5) rational function application (Baranoski and Rokne 2005); and, more 

recently, (6) a wavelet-based technique (Li et al. 2017).

– Derivative-based indices. Although several of the above-described methods 

make use of derivatives, e.g., linear extrapolation (Cho and Skidmore 2006) 

and Lagrangian technique (Dawson et al. 1998), the calculation of a derivative 

does not have to be restricted to the red edge. The derivative of any spectral 

region can be calculated and transformed into an index (Elvidge and Chen 

1995; Penuelas et al. 1994; Sims and Gamon 2002; Zarco-Tejada et al. 2002). 

A systematic comparison of first derivative-based indices and conventional 

indices was performed by Maire et al. (2004) using the leaf optical model 

PROSPECT. Interestingly, the authors concluded that derivative-based indices 

are not necessarily better than conventional and properly elaborated indices.

– Integration-based indices. Alternatively, some authors proposed to calculate 

finite integrals of specific spectral regions, typically covering a part of the 

visible and the red-edge region for LAI or chlorophyll content estimations, into a 

(normalized) index (Broge and Leblanc 2001; Delegido et al. 2010; Malenovský 

et al. 2006, 2015; Mutanga et al. 2005; Oppelt and Mauser 2004). Likewise, 
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in a recent study of Pasqualotto et al. (2018) this method exploited the water 

absorption spectral regions to quantify canopy water content. In these studies, 

integration-based indices were demonstrated to perform superior to classical 

vegetation indices, as they exploit more optimally absorption regions embedded 

in spectroscopic data than indices relying on a reflectance intensity of few 

individual bands (Kováč et al. 2013). It can be expected that with the upcoming 

free availability of imaging spectroscopy data more methods of this kind of that 

explicitly exploit absorption features related to foliar constituents and pigments 

will emerge.

– Continuum removal. Whereas the above techniques focus on one or more 

specific spectral regions, continuum removal is a spectral transformation that 

can be applied over the full spectrum. This technique normalizes reflectance 

spectra, allowing comparison of individual absorption features with a common 

baseline (Clark and Roush 1984). The continuum removal transformation 

enhances and standardizes the specific absorption features related to vegetation 

properties. Continuum removal can be considered as a standard spectroscopic 

data processing technique and has found its way into various image processing 

software packages. Spectroscopic examples of applications include mapping of 

chlorophyll (Broge and Leblanc 2001; Malenovský et al. 2013, 2017), numerous 

studies on mapping nitrogen content (Huang et al. 2004; Mitchell et al. 2012; 

Mutanga and Kumar 2007; Mutanga and Skidmore 2004; Schlerf et al. 2010; 

Yao et al. 2015), foliar water condition (Stimson et al. 2005), plant stress 

(Sanches et al. 2014) and grassland biomass (Buchhorn et al. 2013; Cho et 

al. 2007).

– Wavelet transform. Wavelet analysis has been increasingly used to extract 

information from spectral data, e.g., related to vegetation properties (Rivard et 

al. 2008). Processing of reflectance spectra with wavelets can be performed as 

discrete or continuous (CWT) transforms. CWT outputs are directly comparable 

to the original spectrum and are simple to interpret. In this case, the original 

spectrum is represented by a set of spectra from small (narrow bandwidth 

absorption feature and noise) to larger scales (broad features, continuum). By 

selecting small-scale spectra (i.e. discarding the smallest scale, which contains 

white noise and high scales related to the continuum), the absorption features of 

the components are enhanced, preserving the spectral information of the original 

data (Scafutto et al. 2016). Based on the type of wavelet transform, specific 

bands sensitive to the targeted variable are then selected (Bao et al. 2017). 

CWT is often compared in spectroscopic studies against spectral indices and 

was found to be capable of delivering stronger correlations, e.g., in the detection 

of wheat aphid pests (Luo et al. 2013), LAI estimation (Huang et al. 2014), 

nitrogen content and chlorophyll content estimation (He et al. 2015; Kalacska 

et al. 2015; Luo et al. 2013) and in amplifying spectral separability of alpine 

wetland grass species (Bao et al. 2017).

Altogether, correlations based on shape indices and spectral transformations are undoubtedly 

more sophisticated normalization approaches than traditional spectral indices for exploiting 
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the spectral information embedded in spectroscopic data. Moreover, their relatively simple 

mathematical formulation ensures fast processing. It thus seems logical that these spectral 

transformation methods became standard spectroscopy image processing techniques. 

However, these methods alone provide nothing more than spectral transformations and 

enhancements. When aiming to estimate a biophysical variable, a fitting function—typically 

a linear least squares fitting, but also exponential, power and polynomial— is still required. 

Yet it remains questionable whether the selected fitting function is the most suitable 

one. Moreover, since parametric approaches are based on relatively simple mathematical 

definitions—as opposed to more advanced methods—no associated uncertainty intervals 

are provided. Although their strengths lie in their straightforward use and fast processing, 

with the absence of a per-pixel uncertainty estimate, the performance quality of parametric 

regression methods as a mapping method is hard to judge. Given the surface diversity 

captured in a single airborne or spaceborne image, and despite a standard validation exercise 

for a number of pixels, it still remains unknown how the retrieval quality evolves throughout 

a complete image. The absence of a quality indicator is, therefore, in our view the main 

reason why parametric regression methods (Fig. 2) are not recommendable for operational 

quantification of biophysical variables.

3 Nonparametric Regression Methods

Contrary to parametric methods, nonparametric methods optimize the regression algorithm 

by means of an inherent learning phase based on training data. Essentially, the 

nonparametric model develops weights (coefficients) adjusted to minimize the estimation 

error of the variables extracted. This means that no explicit parametrization is required, 

which practically simplifies the model development, but more expert knowledge to 

understand and execute these models may be required. Another important advantage of 

nonparametric methods is the possibility of training with the full-spectrum information. 

Hence, an explicit selection of spectral bands or transformations is in principle not required. 

A flexible model is able to combine different data structure features in a nonlinear 

manner to conform requirements; however, model definition with a too flexible capacity 

may incur the problem of overfitting the training dataset. To avoid this pitfall, model 

weights are defined by jointly minimizing the training set approximation error while 

limiting the model complexity. In view of processing spectroscopic data, a more prevalent 

problem lies in the so-called curse of dimensionality (Hughes phenomenon) (Hughes 1968). 

Adjacent, contiguous bands carry highly intercorrelated information, which may result in 

redundant data and possible noise and potentially suboptimal regression performances. As 

discussed further on, band selection or dimensionality reduction methods that transform the 

spectral data to lower-dimensional space, while containing the vast majority of the original 

information, can overcome this problem (Fig. 3).

3.1 Linear Nonparametric Methods

Nonparametric regression algorithms that apply linear transformations are attractive because 

of their fast performance. These methods became standard methods in chemometric and 

in image processing software packages. Multivariable linear regression methods can cope 

with spectroscopic data and typically rely on the estimation of co-variances. When moving 
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towards spectroscopic data, however, this can become problematic when input data quantity 

is limited with respect to the dimensionality of the dataset. To alleviate collinearity, often 

linear nonparametric methods are applied in combination with a dimensionality reduction 

step. Some methods are even intrinsically based on this principle, i.e. principal component 

regression (PCR) (Wold et al. 1987) and partial least squares regression (PLSR) (Geladi and 

Kowalski 1986). Common linear nonparametric regression approaches are provided in Table 

1, and imaging spectroscopy applications are discussed below.

On the application side, stepwise multiple linear regression (SMLR) is a classical 

multivariable regression algorithm commonly applied in chemometrics (Atzberger et al. 

2010). To evaluate its predictive power, SMLR has been often compared with alternative 

regression techniques such as PLSR and some studies concluded that PLSR yielded better 

results when estimating LAI (Darvishzadeh et al. 2008) and canopy chlorophyll content 

(Atzberger et al. 2010). Also Ramoelo et al. (2011) compared both regression algorithms 

to estimate foliar nitrogen and phosphorus in combination with continuum removal using 

field spectrometry. By estimating canopy nitrogen, Miphokasap et al. (2012) demonstrated 

that the model developed by SMLR led to a higher correlation coefficient and lower 

errors than model applications based on narrowband VIs. This suggests that nonparametric 

(full-spectrum) models tend to be more powerful than parametric models. Likewise, Yi et 

al. (2014) compared SMLR with PLSR and spectral indices for carotenoid estimation in 

cotton and concluded that best estimations were obtained with PLSR. Likewise, SMLR was 

compared with PLSR and (nonlinear) machine learning regression algorithms for estimating 

leaf nitrogen content (Yao et al. 2015). Because of their enhanced flexibility, it may not be a 

surprise that the nonlinear methods outperformed SMLR and PLSR. This was also observed 

by various similar studies, as will be addressed in Sect. 3.2.

PCR seems to be more effective in the conversion of spectroscopic data into the estimation 

of vegetation properties, because the PCA-based dimensionality reduction method is 

embedded in the method in combination with a linear regression function. Hence, by 

converting the spectral data to a lower-dimensional space automatically overcomes the band 

redundancy problem. This method has been improved with PLSR, where the projections 

are optimized in view of the regression. It is, therefore, not a surprise that only few 

spectroscopic studies examined the predictive power of PCR. Those studies compared 

PCR against PLSR or against VIs (Atzberger et al. 2010; Fu et al. 2012; Marshall and 

Thenka-bail 2014; Rivera Caicedo et al. 2014; Wang et al. 2017b). Although PCR generally 

out-performed VIs in explaining variability of a vegetation attribute, in all cases PLSR or 

any other nonparametric method overran PCR.

PLSR found its way into a broad diversity of imaging spectroscopy applications, especially 

in the mapping of biochemicals, pigments and vegetation density properties. For instance, 

PLSR was used in several spectroscopic studies applied to estimate foliage nitrogen content 

(Coops et al. 2003; Hansen and Schjoerring 2003; Huang et al. 2004). Also Gianelle and Fb 

(2007) used PLSR to derive grassland phytomass and its total (percentage) nitrogen content 

from spectroscopic data. Similarly, Cho et al. (2007) and Im et al. (2009) applied PLSR to 

estimate a diversity of grass and crop biophysical variables (LAI, stem biomass and leaf 

nutrient concentrations), and Ye et al. (2007) applied PLSR for yield prediction purposes. 
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Beyond individual vegetation attributes, PLSR was recently used to predict landscape-scale 

fluxes of net ecosystem exchange (NEE) and gross primary productivity (GPP) across 

multiple timescales (Matthes et al. 2015), and also for the estimation of floristic composition 

of grassland ecosystems (Harris et al. 2015; Neumann et al. 2016; Roth et al. 2015). At the 

same time, thanks to its PLS-vectors, PLSR is also increasingly applied for band sensitivity 

analysis of spectroscopic datasets in view of the targeted application (e.g., Feilhauer et al. 

2015; Kiala et al. 2016; Kira et al. 2016; Li et al. 2014a; Neumann et al. 2016). Various 

experimental studies demonstrated the superior predictive power of PLSR as opposed to VIs 

for the prediction of multiple vegetation properties, including above-ground biomass, LAI, 

leaf pigments (chlorophyll, carotenoids), GPP and NEE fluxes, leaf rust disease detection 

and nutrients concentration (nitrogen and phosphorus concentrations) (Capolupo et al. 2015; 

Dreccer et al. 2014; Foster et al. 2017; Hansen and Schjoerring 2003; Matthes et al. 2015; 

Wang et al. 2017a; Yue et al. 2017). However, when compared against machine learning 

methods, then PLSR no longer appeared to be top performing (Ashourloo et al. 2016; Kiala 

et al. 2016; Wang et al. 2015; Yao et al. 2015). As will be addressed in Sect. 3.2, this is due 

to the nonlinear transformation conducted in machine learning methods.

Other linear nonparametric regression methods, such as ridge regression (RR) and LASSO, 

hardly made it into applications for vegetation properties mapping. Yet a few spectroscopic 

examples are worth mentioning. For instance, Addink et al. (2007) used RR to map LAI 

and biomass, and more recently Bratsch et al. (2017) applied LASSO to estimate above-

ground biomass quantities among different plant tissue type categories in Alaska. In another 

biomass estimation study, both RR and LASSO were compared against PLSR (Lazaridis 

et al. 2010) and also random forests (Zandler et al. 2015). Interestingly, RR and LASSO 

appeared to be top performing. One may, therefore, wonder why these techniques have 

not been applied more often. On the other hand, these linear methods are increasingly 

replaced by their nonlinear counterparts. For instance, RR has been replaced by kernel ridge 

regression (KRR) (Suykens and Vandewalle 1999), and also PLSR has been redesigned 

into a kernel version, i.e. the KPLSR, which proved to be more powerful than PLSR for 

chlorophyll concentration estimation (Arenas-García and Camps-Valls 2008). The family of 

kernel methods is addressed in Sect. 3.2. That none of these linear nonparametric methods 

(Fig. 4) deliver uncertainty estimates is another drawback. Similar as in case of parametric 

regression, without uncertainty estimates it remains questionable whether these methods can 

deliver consistent mapping quality throughout a complete image, or are applicable to other 

images in space and time.

3.2 Nonlinear Nonparametric Methods

When advancing beyond linear transformation techniques, a diversity of nonlinear non-

parametric methods has been developed during last few decades. These methods, also 

referred to as machine learning regression algorithms, apply nonlinear transformations. An 

important methodological advantage is their capability to capture nonlinear relationships of 

image features without explicitly knowing the underlying data distribution. Hence, they are 

developed without assuming a particular probability density distribution, which is the reason 

why they work well with all kinds of data types. Machine learning methods also offer the 

possibility to incorporate a prior knowledge and the flexibility to include different data types 
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into the analysis. In principle, they are perfectly suited to process spectroscopic data. In 

the following sections, examples of the families of (1) decision trees, (2) artificial neural 

networks and (3) kernel-based regression are explained.

3.2.1 Decision Trees—Decision tree algorithms use a branching method to illustrate 

every possible outcome of a decision (Table 2). They are more frequently applied in 

classification than in regression. Only a few decision tree feasibility studies dealing with 

imaging spectroscopy data are presented in the scientific literature (e.g., Im et al. 2009) most 

likely because boosted and bagging trees hardly found their way to regression applications. 

They might be considered as obsolete with the improvements introduced into random forest 

(RF), which is essentially a specific type of bagging trees. RF builds an ensemble of 

individual decision trees working with different subsets of features (bands) and eventually 

different training data points both selected randomly, from which a final prediction is made 

using particular combination schemes. RF can handle a large number of training samples, 

does not suffer from overfitting and is robust to outliers and noise (Belgiu and Drăguţ 2016), 

which makes it an attractive method for spectroscopic mapping applications. RF has recently 

been made available in various software packages and proved to be a competent regression 

algorithm. It therefore comes as no surprise that RF gained rapid popularity in imaging 

spectroscopy mapping of a diverse range of vegetation attributes, including biomass (Adam 

et al. 2014; Vaglio Laurin et al. 2014), canopy nitrogen (Li et al. 2014) and as indicator 

of plant species composition (Feilhauer et al. 2017). Some of these studies have compared 

RF with support vector regression (SVR) or neural networks, but no strong preference 

towards one or the other method was found, which suggests that all three methods are 

competitive (Han et al. 2016; Pullanagari et al. 2016). However, just like other machine 

learning regression methods, RF can face difficulties coping with the collinearity of the 

spectroscopic data (Rivera-Caicedo et al. 2017). To overcome this problem, RF is often used 

in combination with sensitive bands or simple transformations in the form of VIs that are 

known to be sensitive to the targeted vegetation property (Adam et al. 2014; Han et al. 

2016; Liang et al. 2016). Alternatively, RF is inherently able to identify sensitive spectral 

bands, and selection of only those sensitive bands can subsequently improve the regression 

model (Balzarolo et al. 2015; Feilhauer et al. 2015). Whether applying a band selection 

method is the most successful strategy, however, remains an open question. Rather than 

seeking for optimized individual bands, a more elegant solution may lie in firstly applying 

dimensionality reduction method and then inputting the features of the lower-dimensional 

space (i.e. components) into the decision tree (Rivera-Caicedo et al. 2017).

3.2.2 Artificial Neural Networks—Artificial neural network (ANN) methods are listed 

in Table 3. Since the early 1990s, feed-forward and back-propagation ANNs thrived in 

all kinds of mapping applications, including vegetation properties mapping (Francl and 

Panigrahi 1997; Kimes et al. 1998; Paruelo and Tomasel 1997). Their strengths lie in 

their adaptability that can lead to excellent performances. The superiority of ANNs in 

vegetation properties mapping compared to parametric models (e.g., those based on VIs) 

has been demonstrated repeatedly in experimental studies (Kalacska et al. 2015; Malenovský 

et al. 2013; Uno et al. 2005; Wang et al. 2013). Examples of successful spectroscopic 

applications include the estimation of foliage nitrogen concentrations (Huang et al. 2004) 
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and LAI (Jensen et al. 2012; Neinavaz et al. 2016). In both cited studies, ANN outperformed 

other linear nonparametric models (e.g., PLSR). Alternative powerful structures involve 

RBFANNs, BRANNs and RANNs (for explanation, see Table 3). Although these advanced 

ANNs have been primarily used for classification applications, only recently they were 

explored to map vegetation properties from spectroscopic data (Chen et al. 2015; Feng et al. 

2016; Pôças et al. 2017; Wang et al. 2013). Some of these studies mention the superiority 

of these advanced ANN designs as compared to standard ANN designs or other machine 

learning approaches in estimating vegetation properties (Du et al. 2016; Li et al. 2017; Pham 

et al. 2017).

Applying ANNs to spectroscopic data, nonetheless, can be quite challenging due to 

the multicollinearity. Feeding many bands into an ANN requires a complex design and 

consequently a long training time. Just as with decision trees, a popular approach is 

applying a band selection or the calculation of several sensitive VIs or shape indices such 

as red-edge position that are then entered either individually or as a combination into the 

ANN. Various of these band selection studies investigated combinations of VIs that led to 

the best prediction models (Chen et al. 2015; Feng et al. 2016; Jia et al. 2013; Liang et 

al. 2015; Mutanga and Kumar 2007; Pôças et al. 2017; Schlerf and Atzberger 2006). As 

discussed before, it remains questionable whether the selected indices preserve a maximum 

amount of useful information. On the contrary, when compressing the spectral data using 

dimensionality reduction methods into a lower-dimensional space, then it is ensured that a 

maximum amount of spectral information is preserved. This approach was applied, e.g., to 

assess corn yield (Uno et al. 2005) and phosphorus and nitrogen concentrations (Knox et al. 

2011).

It is therefore not surprising that a study comparing PCA vs. indices inputted into ANNs 

concluded that the PCA-ANN design outperformed VI-ANN designs (Liu and Pan 2017). 

Moreover, given that only linear transformations are applied in PCA, it may even be that 

more adaptive dimensionality reduction methods yield superior accuracies when combined 

with ANN, e.g., partial least squares (PLS), or in the field of nonlinear kernel-based 

dimensionality reduction methods, e.g., kernel PCA (KPCA) or kernel PLS (KPLS). To 

ascertain this hypothesis, PCA was compared against 10 alternative dimensionality reduction 

methods in combination with ANN to carry out LAI estimation. As expected, various 

alternative dimensionality reduction methods outperformed PCA in developing accurate 

models (e.g., PLS, KPLS, KPCA) (Rivera-Caicedo et al. 2017).

3.2.3 Kernel-Based Machine Learning Regression Methods—Kernel-based 

regression methods solve nonlinear regression problems by transferring the data to a 

higher-dimensional space by a kernel function (Table 4). The flexibility offered by kernel 

methods allows us to transform almost any linear algorithm that can be expressed in terms 

of dot products, while still using only linear algebra operations. Kernel methods provide 

a consistent theoretical framework for developing nonlinear techniques and have useful 

properties when dealing with a low number of (potentially high-dimensional) training 

samples, and outliers and noise in the data (Gómez-Chova et al. 2011; Tuia et al. 2018). 

Given these attractive properties, kernel-based regression methods seem perfectly suited to 

extract nonlinear information related to vegetation properties from imaging spectroscopy 
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data. Developed in the mid-1990s, among the most popular kernel-based method for 

classification purposes involves SVM. Its regression version (SVR) gained popularity for 

the retrieval of continuous vegetation attributes from imaging spectroscopy data in the last 

decade. Examples include plant height, leaf nitrogen content and leaf chlorophyll content 

(Karimi et al. 2008; Yang et al. 2011). A multi-output version of SVR was presented by 

Tuia et al. (2011), with LAI, leaf chlorophyll content and fractional vegetation content being 

simultaneously estimated. Recently, SVR was used for processing spectroscopic images of 

sub-decimetre spatial resolution as acquired by low-altitude unmanned aircraft system to 

infer Antarctic moss vigour (Malenovský et al. 2017). Yet just as with the other advanced 

regression methods, SVR faces the same difficulties of coping with multicollinearity. 

Therefore, SVR has been commonly applied in combination with specific spectral subsets or 

VIs (Lin et al. 2013; Marabel and Alvarez-Taboada 2013), or with wavelet transforms (He et 

al. 2015). To deal with spectroscopic band redundancy, an advantage of SVR is that it allows 

band selection (analogous as PLSR and RF), which in principle allows the development 

of more optimized models (Feilhauer et al. 2015). On the other hand, it is likely that the 

combination with dimensionality reduction methods will lead to more powerful models 

(Rivera-Caicedo et al. 2017). To assess its predictive power, various spectroscopic studies 

compared SVR against similar methods such as SMLR or PLSR, although some band 

selection method appeared to be essential (Kiala et al. 2016; Wang et al. 2015; Yao et al. 

2015). Conversely, when comparing SVR against other machine learning methods such as 

RF or GPR, then SVR no longer excelled (Pullanagari et al. 2016).

Kernel ridge regression (KRR) emerged as one of the promising upcoming kernel-based 

regression methods, although only a few spectroscopic studies have used it. For instance, 

Wang et al. (2011) compared KRR with linear nonparametric methods (multiple linear 

regression and PLSR) for LAI estimation. The authors concluded that KRR yielded the 

most accurate estimates. Also Peng et al. (2011) used KRR for the detection of chlorophyll 

content. Apart from these two studies, the spectroscopy vegetation community may not 

yet be familiar with this method. Solely Rivera Caicedo et al. (2014) had compared KRR 

against other machine learning algorithms applied to CHRIS (62 bands) and HyMap (125 

bands) spectroscopic data for LAI mapping. In that study, KRR not only proved to be a very 

competitive regression algorithm, but also proved to be extremely fast. This is due to its 

relatively simple design that requires only one hyperparameter to be tuned. Because of its 

simplicity, another advantage is that KRR is capable of dealing with collinearity; the method 

can cope with thousands of contiguous bands. In fact, in the dimensionality reduction 

comparison study tested with simulated (2100 bands) and HyMap data (Rivera-Caicedo et 

al. 2017), KRR was the only regression method where dimensionality reduction methods did 

not lead to improvements as compared to using all bands. In conclusion, KRR emerged as an 

attractive regression method due to its competitive performance, fast processing and ease of 

dealing with spectroscopic data.

From all machine learning regression algorithms, probably the most exciting one is Gaussian 

process regression (GPR). Contrary to other methods, the training phase in GPR takes 

place in a Bayesian framework, leading to probabilistic outputs (Camps-Valls et al. 2016; 

Rasmussen and Williams 2006). GPR applied to spectroscopic data started only recently, 

e.g., for airborne HyMap mapping of leaf chlorophyll content (Verrelst et al. 2013a), and 
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for spaceborne CHRIS mapping of leaf chlorophyll content, LAI and fractional vegetation 

content (Verrelst et al. 2012a). Of interest is that along with these maps also maps 

of associated uncertainties (prediction intervals) were provided. Also with an Airborne 

Hyperspectral Scanner, Roelofsen et al. (2014) applied GPR to map salinity, moisture and 

nutrient concentrations that in turn were used as inputs for plant association mapping. 

In the Rivera Caicedo et al. (2014) comparison paper, GPR outperformed the majority 

of other tested machine learning methods for the prediction of leaf chlorophyll content 

and LAI from various spectroscopic datasets. Similarly, Ashourloo et al. (2016) concluded 

that GPR yielded most accurate leaf rust disease detection as compared to VIs, PLSR 

and SVR. However, GPR is no exception in suffering from radiometric collinearity when 

many bands are included, and related spectroscopic studies demonstrated that results can 

be further improved by combining GPR with band selection (Verrelst et al. 2016b) or 

with dimensionality reduction methods (Rivera-Caicedo et al. 2017). At the same time, 

alternative GPR versions continue to be developed within the machine learning community. 

For instance, Lazaro-Gredilla et al. (2014) refined the GPR method by proposing a 

non-standard variable approximation allowing for accurate inferences in signal-dependent 

noise scenarios. The so-called variational heteroscedastic GPR (VHGPR) appears to be an 

excellent alternative for standard GPR, which was demonstrated on a CHRIS dataset where 

VHGPR outperformed GPR in leaf chlorophyll content estimation. Schematic illustrations 

of popular nonlinear nonparametric methods are shown in Fig. 5.

4 Physically Based Model Inversion Methods

Physically based model inversion is based on physical laws establishing cause-effect 

relationships. Inferences on model variables are based on generally accepted knowledge 

embedded in radiative transfer models (RTMs). RTMs are deterministic models that describe 

absorption and multiple scattering, and some of them even describe the microwave region, 

thermal emission or sun-induced chlorophyll fluorescence emitted by vegetation (e.g., see 

Table 5). A diversity of canopy RTMs have been developed over the last three decades with 

varying degrees of complexity. Gradual increase in RTMs accuracy, yet in complexity too, 

has diversified RTMs from simple turbid medium RTMs to advanced Monte Carlo RTMs 

that allow for explicit 3D representations of complex canopy architectures (e.g., see the 

RAMI exercises (Pinty et al. 2001, 2004; Widlowski et al. 2007, 2011, 2015) for a thorough 

comparison). This evolution has resulted in an increase in the computational requirements 

to run the model, which bears implications towards practical applications. From a 

computational point of view, RTMs can be categorized as either (1) economically invertible 
(or computationally cheap) or (2) non-economically invertible models (or computationally 

expensive). These terms refer to the model complexity and associated run-time constraining 

the mathematical inversion of such models. Economically invertible models are models 

with relatively few input parameters and fast processing that enables fast calculations and 

consequently fast model inversion or rendering of simulated scenes. A well-known example 

of this category includes the widely used leaf RTM PROSPECT (Feret et al. 2008) coupled 

with the canopy RTM SAIL (Verhoef 1984a) [combined named as PROSAIL (Jacquemoud 

et al. 2009a)].
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Non-economically invertible RTMs refer to advanced, computationally expensive RTMs, 

often with a large number of input variables and sophisticated computational and 

mathematical modelling. These types of RTMs enable the generation of complex or detailed 

scenes, but at the expense of a significant computational load. In short, the following 

families of RTMs can be considered as non-economically invertible: (1) Monte Carlo ray-

tracing models [e.g., Raytran (Govaerts and Verstraete 1998)], FLIGHT (North 1996) and 

librat (Lewis 1999)); (2) voxel-based models [e.g., DART (Gastellu-Etchegorry et al. 1996)]; 

and (3) advanced integrated vegetation and atmospheric transfer models [e.g., SCOPE (Tol 

et al. 2009) and MODTRAN (Berk et al. 2006)]. Descriptions of advanced canopy RTM 

models and their latest developments are provided in Table 5. Although these advanced 

RTMs serve perfectly as virtual laboratories for fundamental research on light–vegetation 

interactions, they are in general less suitable for retrieval applications, because of either a 

large number of input variables or a long processing time. Nevertheless, as outlined below, 

some experimental studies demonstrated that they can as well be applied into inversion 

schemes, e.g., based on look-up tables and in hybrid strategies.

Regardless of their complexity, they all deliver spectroscopic outputs, typically at 1 nm 

resolution. Hence, RTM outputs can fit perfectly into inversion schemes of imaging 

spectroscopy data, while at the same time the simulated data can be resampled to reassemble 

the band settings of multispectral sensors. Because inversion strategies are usually based 

on spectral fitting (i.e. only radiometric information is used), the drawback of collinearity 

complicating regression is not an issue here; however, removal of noisy bands is still a 

standard and much-needed preprocessing step to enable adequate spectral fitting. Another 

point to be mentioned is that inversion scheme can only retrieve the RTM input variables. 

Hence, using this strategy implies that only RTM state variables can be mapped. Yet 

because the RTM input variables drive the canopy absorbance and scattering mechanisms, 

the resulting output maps are considered to be physically sound (Knyazikhin et al. 2013; 

Myneni et al. 1995) (Fig. 6).

Given that in principle only a coupled leaf-canopy RTM and an inversion routine are 

required for the retrieval of RTM state variables, the approach is generic and generally 

applicable. Nevertheless, these approaches are not straightforward. First, an RTM has to 

be selected, whereby a trade-off between the realism and inversion possibility of the RTM 

has to be made. As discussed above, typically, complex models are more realistic, but they 

have many variables and consequently challenging to invert, whereas simpler models may 

be less realistic but easier to invert. Secondly, according to the Hadamard postulates, RTMs 

are invertible only when an inversion solution is unique and dependent—in a continuous 

mode—on the variables to be extracted. Unfortunately, this boundary condition is often 

not met. The inversion of canopy RTMs is frequently underdetermined and ill-posed. The 

number of unknowns can be much larger than the number of independent observations. 

This makes physically based retrievals of vegetation properties a challenging task. Several 

strategies have been proposed to cope with the underdetermined problem of optimizing the 

inversion process, including (1) iterative numerical optimization methods, (2) look-up table 
(LUT)-based inversion (see Fig. 7 for illustrations), or (3) hybrid approaches in which LUTs 

are generated as input for machine learning approaches (see Sect. 5). Below we briefly 
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review some common RTM inversion techniques in view of converting spectroscopic data 

into maps of RTM leaf and canopy input variables.

Numerical optimization. Iterative optimization is a classical technique to invert RTMs in 

image processing (Botha et al. 2007; Jacquemoud et al. 1995; Zarco-Tejada et al. 2001). 

The optimization is minimizing a cost function, which estimates the difference between 

measured and estimated variables by successive input variable iteration. Optimization 

algorithms are computationally demanding and hence potentially time-consuming depending 

on the complexity of the RTM and the numbers of image pixels to be processed. 

However, with the ongoing increase in computational power and open-source availability 

of optimization libraries, a renaissance of numerical approaches is emerging. Examples of 

numerical inversion against spectroscopic data include: PROSPECT inversion to retrieve 

leaf chlorophyll content (Zhang and Wang 2015), retrieval of leaf biochemistry against 

an improved version of PROSPECT (COSINE) (Jay et al. 2016), and PROSAIL leaf and 

canopy variables (Bayat et al. 2016; Tol et al. 2016). Despite a gain in computational power, 

numerical inversion algorithms applied to images are still time-consuming given the many 

per-pixel iterations and a high number of pixels involved. Hence, in its current form this 

method stays restricted to computationally fast RTMs in merely experimental settings.

Look-up table (LUT) strategies are based on the generation of simulated spectral reflectance 

scenarios for a high number of plausible combinations of variable value ranges. As such, 

the inversion problem is reduced to the identification of the modelled reflectance set 

that resembles most closely the measured one. This process is based on querying the 

LUT and applying a cost function. A cost function minimizes the summed differences 

between simulated and measured reflectances for all wavelengths. The main advantage of 

LUT-based inversion routines over numerical optimization is their computational speed, 

since the computationally most demanding part of the inversion procedure is completed 

before the inversion itself (Dorigo et al. 2007). Consequently, LUT-based inversion methods 

are typically used as a preferred solution in RTM inversion studies. The classical LUT-based 

inversion approach is based on a RMSE cost function, which continues to be applied until 

today. This approach proved to be especially successful for chlorophyll (Kempeneers et al. 

2008; Omari et al. 2013; Zhang et al. 2008) and LAI mapping. For instance, by using LUT-

based inversion routines imaging spectroscopy data have been processed for the mapping 

of forest LAI (Banskota et al. 2013, 2015), grassland LAI (Atzberger et al. 2015) and LAI 

over agricultural crops based on UAVs (Duan et al. 2014). To further mitigate the ill-posed 

problem and optimize the robustness of the LUT-based inversion routines, a diversity of 

regularization strategies have been explored in inversion applications against spectroscopic 

data:

– The use of prior knowledge to constrain model variables in the development 

of a LUT (Baret and Buis 2008; Darvishzadeh et al. 2008; Koetz et al. 

2005). Prior knowledge typically involves information on the feasible variable 

ranges for involved vegetation types (Dorigo et al. 2009; Verrelst et al. 2012c). 

Prior information together with prior distributions is also increasingly applied 

into a Bayesian context, whereby the inverted values are generated based on 

likelihoods (Laurent et al. 2013, 2014; Shiklomanov et al. 2016). The advantage 
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of a Bayesian framework is its capability to quantify an inversion uncertainty 

around an inversion variable.

– Selection of cost function. The inverse problem of a nonlinear RTM is based 

on the minimization of a cost function concurrently measuring the discrepancy 

between (i) observed and simulated reflectance, and (ii) variables to estimate 

and the associated prior information (Jacquemoud et al. 2009b). To avoid 

solutions reaching fixed boundaries, a modified cost function in the LUT search 

that takes uncertainty of provided prior information into account is sometimes 

used, e.g., by means of the above-mentioned Bayesian approach. Alternatively, 

Leonenko et al. (2013) proposed and evaluated over 60 different cost functions 

dealing with different error distributions. Some more spectroscopic studies have 

evaluated among others the role of cost function (Danner et al. 2017; Locherer et 

al. 2015) in LUT-based inversion. Although the classical RMSE is a robust cost 

function, sometimes improvements can be gained with alternative cost functions, 

e.g., when the LUTs are non-normal distributed.

– The use of multiple best solutions in the inversion (mean or median), as opposed 

to a single best solution (Banskota et al. 2015; Kattenborn et al. 2017; Koetz et 

al. 2005; Locherer et al. 2015).

– The addition of artificial noise (additive or inverse multiplicative white noise) 

to account for uncertainties linked to measurements and models (Danner et al. 

2017; Koetz et al. 2005; Locherer et al. 2015).

– Several spectroscopic studies reported that the relationship between measured 

and estimated variable perceptibly improves when only specific (sensitive) 

spectral ranges are selected for model inversion (Darvishzadeh et al. 2012; 

Meroni et al. 2004; Schlerf et al. 2005). To account for noise in the observations, 

other spectroscopic studies instead manipulated the observed spectra by 

applying a smoothing filter (Arellano et al. 2017) or wavelet transforms (Ali 

et al. 2016; Banskota et al. 2013; Kattenborn et al. 2017). Spectral selection and 

spectral polishing methods can be applied at the same time in order to enhance 

the resemblance with the usually more spectrally smooth simulated spectra.

Because of taking sun–target–sensor geometry into account, the use of RTM-based methods 

has been demonstrated to improve robustness to solar and view angle effects, compared 

to index-based methods (Kempeneers et al. 2008). Another advantage of RTM inversion 

routines is that uncertainties are provided as spectral residuals (Rivera et al. 2013) or 

standard deviations, when mapping multiple solution means (Verrelst et al. 2014). Yet the 

main drawback lies in its computational burden resulting from too many per-pixel iterations. 

Although LUT-inversion approaches may speed up the inversion process as opposed to 

numerical inversion, these inversion routines are still computationally expensive due to 

the iterative calls of LUT entries on a per-pixel basis. Consequently, despite attempts to 

optimize inversion algorithms in order to save up computational time for solving inverse 

radiative transfer problems (Favennec et al. 2016; Gastellu-Etchegorry et al. 2003), in terms 

of processing speed the RTM inversion routines still run behind statistical methods.
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5 Hybrid Regression Methods

Having discussed the more fundamental categories of retrieval methods, this section 

addresses hybrid regression methods. Hybrid methods combine the generalization level 

of physically based methods with the flexibility and computational efficiency of advanced 

machine learning methods. This approach replaces the ground data needed for training 

of the parametric or nonparametric models by RTM input variables, which makes it 

computationally efficient. It is important to note that the hybrid approach does not alleviate 

the main issues of RTMs, notably that they only include existing knowledge and concepts. 

Similarly as in the case of LUT-based inversion, RTM simulations build a LUT representing 

a broad set of canopy realizations and the hybrid approach uses all available data stored in 

LUT to train a machine learning regression model (Fig. 8).

The awareness in the mid-1990s that ANNs are excellent algorithms to deal with large 

datasets led to the introduction of hybrid methods based on ANNs trained with generically 

applicable RTM-generated data. It led to operational retrieval algorithms for datastreams 

acquired by multispectral and superspectral sensors [see Verrelst et al. (2015)]. Although 

this approach is less straightforward in the context of imaging spectroscopy, because of 

the challenge of collinearity, some recent efforts have been undertaken in exploring this 

research direction. Noteworthy is the work of Vohland et al. (2010) comparing a numerically 

optimized ANN with a LUT-based inversion using PROSAIL RTM simulations. Prediction 

accuracies generally decreased in the following sequence: numerical optimization > LUT > 

ANN. This would indicate that an ANN may not always be the best choice for inversion 

applications. However, no dimensionality reduction method was applied, which suggests that 

the regression model suffered from band collinearity effects. Also Fei et al. (2012) compared 

a PROSAIL-ANN hybrid approach with a PCA approach. The authors concluded that a 

PCA transformation into a regression function can mitigate the known reflectance saturation 

effect of dense canopies to some extent. This PROSAIL-ANN strategy was revisited by 

Rivera-Caicedo et al. (2017) with alternative dimensionality reduction methods. Although 

PCA improved accuracies as opposed of using all bands, substantially more improvements 

were achieved when converting the spectra into components by means canonical correlation 

analysis (CCA) or orthonormalized PLS (OPLS).

Likewise, inputs from more advanced RTMs were explored to develop specialized hybrid 

structures. In Malenovský et al. (2013), an ANN was trained based on PROSPECT-DART 

simulations that explicitly took 3D canopy structures into account to estimate forest leaf 

chlorophyll content from hyperspectral airborne AISA data. In this approach, the DART 

simulations went first through a continuum removal transformation. Alternatively, some 

studies have attempted to move away from ANN models by exploring hybrid structures on 

the basis of kernel-based machine learning regression algorithms, particularly the popular 

SVR. For instance, leaf chlorophyll content was estimated based on a PROSAIL-SVR model 

and applied to imaging spectroscopy (Preidl and Doktor 2011). An analogous concept was 

applied for a SVR that was trained by PROSPECT-DART simulations in combination with 

continuum removal transformations, with the purpose of quantifying forest biochemical and 

structural properties (Homolová and Janoutová 2016). Similarly, Doktor et al. (2014) used a 

PROSAIL dataset to train a random forest (RF) model to predict LAI and leaf chlorophyll 

Verrelst et al. Page 18

Surv Geophys. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



content, and Liang et al. (2016) compared PROSAIL-based hybrid models with SVR and 

RF for leaf and canopy chlorophyll content estimation from CHRIS data. Finally, Rivera-

Caicedo et al. (2017) analysed ensembles of regression algorithms with dimensionality 

reduction methods to consolidate the most ideal PROSAIL-based (2101 bands) hybrid 

regression model. This study concluded that compressing PROSAIL data into CCA or OPLS 

components led to highest accuracies when trained with a GPR model. Altogether, although 

these studies have only been developed in experimental settings—similar as the operational 

multispectral hybrid algorithms (e.g., Bacour et al. 2006; Baret et al. 2013)—the hybrid 

structures can be perfectly implemented into global mapping schemes. When combined with 

a dimensionality reduction method to suppress collinearity, hybrid methods have a great 

potential to advance towards operational spectroscopy-based processing schemes.

6 Discussion

The mapping of spatially continuous biophysical variables from imaging spectroscopy data 

is a progressively expanding field of research and development thanks to advances in 

spectrometer technology and in specialized methods interpreting the acquired spectral data. 

As a follow-up of an earlier, more general review on retrieval methods applicable to optical 

remote sensing (Verrelst et al. 2015), here a summary on retrieval methods specifically 

applied to spectroscopic data has been compiled. Four categories have been summarized: 

(1) parametric, (2) nonparametric, (3) RTM inversion and (4) hybrid methods. The first two 

categories are statistical methods commonly used with experimental (field) data, whereas the 

latter two rely on RTM simulations. A schematic flowchart of the main retrieval methods 

and their hierarchy is provided in Fig. 9.

While pros and cons of each of these methodological categories have been earlier discussed 

(Verrelst et al. 2015), here we discuss these categories from the perspective of forthcoming 

routinely acquired and standardized (e.g., atmospherically corrected) imaging spectroscopy 

data streams. First of all, the choice of a method bears implications, not only on the 

retrievability and processing time of mappable vegetation properties, but also on the purpose 

of the retrieval. Parametric and nonparametric methods rely on ground data for training, 

which obviously need to be available in order to apply these methods. If they are available, 

they are the ‘shortest’ way to the variables of interest, because especially the nonparametric 

methods do no impose any limitation on the relationship between the spectrum and the 

variable of interest. In contrast, RTMs describe radiative transfer processes, i.e. they use 

existing knowledge (as materialized in the models) rather than ground measured data. 

Retrieval from an RTM through inversion is most useful if one is more interested in 

the underlying radiative transfer processes (scattering, sun and shade foliage fractions, 

light distribution within vegetation canopies, relationships between canopy structure and 

photosynthesis), rather than in merely extracting a specific variable. However, strategies 

relying on RTM simulations are inherently limited by the input variables of the RTM and, as 

discussed in Sect. 4, ancillary data and regularization methods may be required to optimize 

their inversions.

Statistical approaches, on the other hand, possess the flexibility to relate reflectance 

data with any measured biophysical variable—state variable or not. As demonstrated 
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in Sects. 2 and 3, this can be any quantifiable attribute, typically in the domains of 

leaf biochemical constituents (e.g., nitrogen, phosphorus), pigments (e.g., chlorophyll, 

carotenoids, xanthophylls) or higher-level structural variables (e.g., above-ground biomass, 

grain yield). The strength of the correlation with validation data typically determines the 

validity and transferability of the statistical model. While this ‘seeking for best correlations’ 

can be criticized, because of the absence of a physical basis (Knyazikhin et al. 2013), 

statistical approaches are becoming increasingly powerful to extract biochemical variables 

through complex and often indirect relationships. Particularly, machine learning models are 

powerful in extracting information from subtle variations in spectroscopic data through 

adaptive, nonlinear relationships. The advantage of these statistical models is that not 

only variable-specific absorption features can be used for information extraction, but also 

secondary relationships with variables related to other absorption features that co-vary with 

the variable of interest can be exploited (Ollinger 2011; Verrelst et al. 2012b). Since high 

accuracies are often obtained with these methods, they are gaining popularity, not only 

for quantification of a diversity of vegetation properties, but also in mapping of floristic 

composition (Feilhauer et al. 2017; Harris et al. 2015; Neumann et al. 2016; Roth et al. 

2015).

Regardless of the nature of retrieval method, in view of mapping larger areas, and 

especially in an operational and global context, what matters is the possibility to provide 

associated information on the retrieval quality. The characterization of uncertainty is a 

fundamental requirement for postulating correct scientific conclusions from results and 

for assimilating results into statistical or mechanistic higher-level models (Cressie et al. 

2009). As addressed in Sect. 2, parametric regression methods, i.e. spectral transformation 

methods in combination with a fitting function, do not provide uncertainty estimates, 

which undermine their applicability to other images in space and time. Subsequently, 

while valid when locally calibrated and validated, parametric methods are of little use in 

an operational context. With regard to inversion routines, uncertainties can be provided 

as spectral residuals (Rivera et al. 2013) or standard deviations when mapping multiple 

solution means (Verrelst et al. 2014). Lately, inversion approaches were proposed in a 

Bayesian framework (Shiklomanov et al. 2016), whereby uncertainties are delivered along 

with the retrievals. In the case of traditional statistical models, uncertainty estimation has 

been a complex exercise. Statistical models developed within a Bayesian framework, such 

as GPR, provide uncertainties together with the predictions (Verrelst et al. 2013b; Camps-

Valls et al. 2016), which indicate the probability interval of an estimation relative to the 

samples used during the training phase. These uncertainties can be used to evaluate GPR 

model transferability. For example, by mapping the uncertainties Verrelst et al. (2013b) 

demonstrated that a locally developed regression model can be successfully transported 

to other images in space and time for the large majority of pixels (i.e. the uncertainty 

maps were not systematically worse). Similarly, uncertainties can inform about the model 

performance. It was demonstrated that dimensionality reduction methods applied in GPR 

models for LAI mapping not only largely speed up the processing, but they also led to lower 

perpixel uncertainties as opposed to mapping using all bands (Rivera-Caicedo et al. 2017). 

In conclusion, in the view of an operational processing need, just as important as the variable 

retrieval itself is the provision of an associated uncertainty estimate. Uncertainty estimates 
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allow evaluating the method’s per-pixel performance and consequently allow evaluating 

the method’s capability to process routinely acquired imaging data. They thus provide a 

measure of the retrieval fidelity, which can be used to identify and mask out the highly 

uncertain and non-reliable results.

Another important aspect for operational production of vegetation properties from typically 

bulky imaging spectroscopy data streams implies computational speed. Generally, the 

lower the complexity of a model, the faster it will be able to produce maps. This highly 

favors the application of parametric regression approaches since they consist of only few 

transformations and equations. Also nonparametric regression algorithms, once trained, can 

be applied to process an image almost instantaneously. Training of machine learning models 

is frequently related to the tuning of several free variables with costly cross-validation 

approaches. These scale poorly with the number of samples (such as in kernel machines) or 

with the data dimensions (such as in ANNs). Although a trained ANN converts an image 

into a map quasi-instantly, kernel-based methods require more processing time, because the 

similarity between each test pixel in the image and those used to train the model has to 

be estimated. Training can be computationally costly, especially when using a big training 

dataset, e.g., as in hybrid strategies. A solution to shorten training time could be in size 

reduction of the training data in a way that maximal relevant information is preserved. 

This can be achieved by means of dimensionality reduction methods in the spectral domain 

(Rivera-Caicedo et al. 2017), or by means of intelligent sampling in the sampling domain, 

e.g., through active learning (Verrelst et al. 2016a).

Considerably longer run-time is expected in the case of inversion routines. Since RTMs 

take some time to generate simulations, especially for computationally expensive models, 

and also the evaluation takes place on a per-pixel basis, the iterative inversion routines 

are computationally expensive leading to relatively slow mapping speeds. In an attempt to 

accelerate their mapping speed, it has been proposed to approximate the functioning of the 

original RTM by means of statistical learning called emulation (Gómez-Dans et al. 2016; 

Rivera et al. 2015). Initial experiments to emulate leaf, canopy and atmospheric RTMs 

demonstrated that emulators can successfully generate spectral output from a limited set 

of input variable almost instantly, thereby preserving sufficient accuracy as compared to 

the original RTM (Verrelst et al. 2016c, 2017). Although an emulator reproduces RTM 

simulations instantly, application of a per-pixel spectral fitting requires many repetitions, 

which implies that these methods still do not reach the speed of statistical methods.

All in all, having the purpose of advancing towards operational imaging spectroscopy data 

processing in mind, i.e. reaching globally applicable, accurate and fast estimates, we end up 

with the following recommendations:

– To enable model transferability to routinely acquired images, retrieval methods 

must provide associated per-pixel uncertainties as a quality indicator whether the 

model can perform adequately in another space and time.

– Regarding the computational speed, e.g., in case of repetitive image processing, 

statistical (i.e. regression) methods are multiple times faster than physically 
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based methods, capable of processing full images in the order of minutes or even 

seconds.

– In the case of regression methods (experimental or hybrid), multicollinearity of 

spectroscopic data complicates the development of powerful models. Physically 

based methods using spectral fitting do not suffer from this problem.

– To mitigate the problem of multicollinearity in regression methods, either band 

selection or dimensionality reduction methods can be applied before entering 

the regression. Although band selection is a common practice, more powerful 

regression models can probably be obtained when using a dimensionality 

reduction method.

7 Conclusions

With forthcoming imaging spectrometer satellite missions, an unprecedented stream of 

datasets on the terrestrial biosphere will become available. This will require powerful 

processing techniques enabling quantification of vegetation variables in an operational and 

global setting. Four categories of retrieval methods have been discussed in this review 

paper: (1) parametric regression; (2) nonparametric regression; (3) physically based RTM 

inversion; and, (4) hybrid methods. For each of these categories, various methodological 

approaches are increasingly applied to imaging spectroscopy data. This literature review 

synthesized the current state of the art in the field of spectroscopy-based vegetation 

properties mapping.

Although parametric methods, such as shape indices or spectral transformation, deal 

well with extracting relevant information embedded in spectroscopic data, their lack of 

uncertainty estimates makes them unsuitable for operational use. Higher accuracies can be 

reached with nonlinear nonparametric methods, especially those in the field of machine 

learning that generate probabilistic outputs, e.g., Gaussian process regression. However, 

an additional step to mitigate their spectral multicollinearity is deemed necessary. A 

popular strategy in this respect is selecting a set of vegetation indices or applying spectral 

transformation before training the machine learning algorithm. It nevertheless remains 

questionable whether such band selection approaches fully capture all relevant information. 

Instead, dimensionality reduction methods that enable compressing the large majority of 

spectral variability into a few components tend to lead to more accurate predictions.

On the other hand, the inversion of physically based RTMs against spectroscopic data is 

generally applicable and physically sound, but optimizing their inversion strategies is more 

challenging compared to the regression methods. RTM-based inversion is computationally 

demanding, and ancillary information is usually required as an input or to regulate the 

inversion algorithm. Hybrid regression methods, based on the coupling of an RTM with 

a machine learning regression algorithm, overcome the problem of processing speed. 

Particularly, Bayesian kernel-based hybrid strategies possess promising features, as they 

combine speed, flexibility and the provision of uncertainty estimates. Their accuracies and 

processing speed can be further improved in combination with dimensionality reduction. 

Altogether, and in the interest of operational spectroscopy-based mapping of vegetation 
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properties, we recommend to further explore the feasibility and implementation of hybrid 

strategies into the next-generation data processing chains.
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Figure 1. 
Principles of parametric regression. Left: red, green, blue (RGB) subset of a hyperspectral 

HyMap image (125 bands) over Barrax agricultural site (Spain). Right: illustrative map of 

a vegetation property (leaf area index (LAI), m2/m2) as obtained by a two-band normalized 

difference index and linear regression. The model was validated with a squared correlation 

coefficient, R2 of 0.89 (RMSE: 0.63; NRMSE 10.1%). It took 0.2 s to produce the map 

using ARTMO’s SI toolbox (Rivera et al. 2014). No uncertainty estimates are provided
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Figure 2. 
Schematic illustrations of parametric regression methods: spectral indices (a), red-edge 

position (REP) calculation (b), derivative-based indices (c), integral-based indices (d), 

continuum removal (e) and wavelet transform (f). Note that a fitting function is still required 

to convert transformations towards a biophysical variable
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Figure 3. 
Principles of nonparametric regression. Left: red, green, blue (RGB) subset of a 

hyperspectral HyMap image (125 bands) over Barrax agricultural site (Spain). Right: 

illustrative map of a vegetation property (leaf area index (LAI), m2/m2) as obtained by 

PROSAIL with Gaussian processes regression (GPR). The model was validated with a 

squared correlation coefficient, R2 of 0.94 (RMSE: 0.39; NRMSE: 6.3%). It took 5.7 s to 

produce the map using ARTMO’s MLRA toolbox (Rivera Caicedo et al. 2014). With GPR 

also uncertainty estimates are provided (not shown)
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Figure 4. 
Schematic illustrations of principal component (PC) (a), partial least squares (PLS) (b), 

ridge regression and LASSO (c). PC and PLS are combined with a linear regression model
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Figure 5. 
Schematic illustrations of random forest (RF) (a), neural network (NN) (b), support vector 

regression (SVR) (c) and Gaussian processes regression (GPR) (d)
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Figure 6. 
Principles of radiative transfer model (RTM) inversion. Left: RGB subset of a hyperspectral 

HyMap image (125 bands) over Barrax agricultural site (Spain). Right: illustrative map 

of a vegetation property (LAI, m2/m2) as obtained by RMSE inversion against a 100,000 

PROSAIL LUT (5% noise added, mean of 5% multiple solutions). The model was validated 

with a R2 of 0.44 (RMSE: 1.85; NRMSE: 31.9%). A systematic underestimation occurred, 

which in principle implies that the RTM simulated LUT needs to be better parameterized. It 

took 2315 s to produce the map using ARTMO’s LUT-based inversion toolbox (Rivera et al. 

2013). Also uncertainty estimates are provided, e.g., in the form of residuals (not shown)
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Figure 7. 
Illustrations of numerical inversion (a) and LUT-based inversion (b). A HyMaP spectrum 

was inverted against PROSAIL. In the case of LUT-inversion, overview statistics of 5% best 

multiple solutions are shown
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Figure 8. 
Principles of hybrid regression. Left: RGB subset of a hyperspectral HyMap image (125 

bands) over Barrax agricultural site (Spain). Right: illustrative map of a vegetation property 

(LAI, m2/m2) as obtained by PROSAIL with Gaussian processes regression (GPR) and 15% 

white noise added. The model was validated with a R2 of 0.88 (RMSE: 0.70; NRMSE: 

10.1%). It took 6.3 seconds to produce the map using ARTMO’s MLRA toolbox (Rivera 

Caicedo et al. 2014). With GPR also uncertainty estimates are provided (not shown). 

Because of not being trained with bare soil spectra, LAI over the non-irrigated parcels is 

over-estimated
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Figure 9. Schematic overview of the main retrieval methods
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Table 5
Advanced canopy RTMs commonly used in imaging spectroscopy applications

RTM Description

SCOPE(Soil–
Canopy–
Observation of 
Photosynthesis 
and Energy 
fluxes)

SCOPE (Tol et al. 2009) is a soil–vegetation–atmosphere (SVAT) scheme that includes RTMs along with a 
micrometeorological model for simulating turbulent heat exchange, and a plant physiological model for photosynthesis 
(Tol et al. 2014). The radiative transfer scheme is based on SAIL (Verhoef 1984b, 1985), extended with a similar radiative 
transfer for emitted radiation. The emitted radiation includes chlorophyll fluorescence and thermal radiation. Leaf radiative 
transfer is calculated with Fluspect (Vilfan et al. 2016) which also includes emitted fluorescence radiation. SCOPE is 
intended as tool to scale processes from leaf to canopy, and to analyse the effects of light scattering. Recent developments 
include vertical heterogeneity (Yang et al. 2017) and the zeaxanthin–violaxanthin pigment cycles

Discrete 
Anisotropic 
Radiative 
Transfer (DART)

DART model is being developed since 1992 as a physically based 3D computer programme (Gastellu-Etchegorry et al. 
1996), which simulates radiative budget and remote sensing (airborne and spaceborne) optical image data of natural 
and urban landscapes for any wavelengths from the ultraviolet to the thermal infrared part of the electromagnetic 
spectrum (Gastellu-Etchegorry et al. 1999; Guillevic et al. 2003). It computes and provides bottom and top of the 
atmosphere spectral quantities (i.e. irradiance, exitance and radiance) that are transformed into reflectance or brightness 
temperature depending on the user DART mode preferences (Gastellu-Etchegorry et al. 2004). Simulated scenes may 
include the atmosphere, topography and any natural or anthropogenic objects at any geographical location (Grau and 
Gastellu-Etchegorry 2013). The latest DART optical development includes also the specular reflectance and the light 
polarization (Gastellu-Etchegorry et al. 2015). Apart of passive remote sensing data, it also simulates active terrestrial 
and air-/spaceborne light detection and ranging (LiDAR) discrete return, full waveform, multi-pulse and photon counting 
measurements (Gastellu-Etchegorry et al. 2016; Yin et al. 2016). In case of vegetation, it can also simulate radiative 
transfer of the solar-induced chlorophyll fluorescence for any virtual 3D Earth scene numerically and as images (Gastellu-
Etchegorry et al. 2017)

Librat Librat is a 3D Monte Carlo ray-tracing radiative transfer model developed as a library interface to the original ararat 
(Advanced RAdiometric RAy Tracer) model. The first version of ARARAT was published in 1992 (Lewis and Muller 
1993) as part of the Botanical Plant Modelling System (BPMS) (Lewis 1999; Lewis and Muller 1990). Subsequently, 
the sampling scheme was improved as reported in Saich et al. (2002), and the codes developed into a library in recent 
years. Librat reads a 3D description of (canopy/soil/topographic) geometry, along with associated information on material 
scattering properties. The main function in the library then is that a ray is launched from some origin in 3D space, in a 
specified direction, and the code returns all information about the associated scattering paths and interactions, separated as 
direct and diffuse components. This core functionality, along with a set of associated sensor models but integrating paths, 
fired into some volume. It allows for a wide range of radiative transfer calculations, including time-resolved/lidar, splitting 
of the radiometric information per scattering order as well as straightforward reflectance/transmittance calculations (e.g., 
Disney et al. 2006; Hancock et al. 2012)

FLIGHT FLIGHT (Barton and North 2001; North 1996) is a Monte Carlo ray-tracing model designed to rapidly simulate light 
interaction with 3D vegetation canopies at high spectral resolution, and produce reflectance spectra for both forward 
simulation and for use in inversion (Leonenko et al. 2013). Foliage is represented by structural properties of leaf area, leaf 
angle distribution, crown dimensions and fractional cover, and the optical properties of leaves, branch, shoot and ground 
components. The model represents multiple scattering and absorption of light within the canopy and with the ground 
surface. It has been developed to model 3D canopy photosynthesis (Alton et al. 2007), to simulate waveform and photon 
counting lidar (Montesano et al. 2015; North et al. 2010) and emitted fluorescence radiation (Hernández-Clemente et al. 
2017). Structural data may be specified as a statistical distribution, derived from field measurements (Morton et al. 2014) or 
by direct inversion from LiDAR data (Bye et al. 2017)
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