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Abstract

Green fractional vegetation cover (fc) is an important phenotypic factor in the fields of agriculture, 

forestry, and ecology. Spatially explicit monitoring of fc via relative vegetation abundance (RA) 

algorithms, especially those based on scaled maximum/minimum vegetation index (VI) values, 

has been widely investigated in remote sensing research. Although many studies have explored 

the effectiveness of RA algorithms over the past 30 years, a literature review summarizing the 

corresponding theoretical background, issues, current state-of-the-art techniques, challenges, and 

prospects has not yet been published. The overall objective of the present study was to accomplish 

a comprehensive and systematic review of RA algorithms considering these factors based on the 

scientific papers published from January 1990 to November 2019. This review revealed that the 

key issues related to RA algorithms is the determination of the appropriate normalized difference 

vegetation index (NDVI) values of the full vegetation cover and bare soil (denoted hereafter 

by NDVI∞ and NDVIS, respectively). The existing methods used to correct for these issues 

were investigated, and their advantages and disadvantages are discussed in depth. In literature 
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trends, we found that the number of reported studies in which RA algorithms were used has 

increased consistently over time, and that most authors tend to utilize the linear NDVI model, 

rather than other models in the RA algorithm family. We also found that RA algorithms have been 

utilized to analyze the images with spatial resolutions ranging from the sub-meter to kilometer, 

most commonly, using images of 30-m spatial resolution. Finally, current challenges and forward-

looking insights in remote estimation of fc using RA algorithms are discussed to guide future 

research and directions.

Keywords

Vegetation fractional cover; Remote sensing; Normalized difference vegetation index; Review; 
Spectral unmixing

1 Introduction

Green fractional vegetation cover (fc), which describes a vertical projection of the areal 

proportion of a landscape occupied by green vegetation (Deardorff, 1978), is an essential 

phenotypic factor used to characterize the spatial pattern of vegetation types. The synoptic 

quantification of fc plays a pivotal role in monitoring vegetation growth status and crop 

yields (Allen and Pereira, 2009; de la Casa et al., 2018), understanding Earth system 

processes (e.g., climate change, energy exchanges, and biogeochemical cycles) (Foley et al., 

2000; Li et al., 2005; Wang et al., 2012; Wei et al., 2018), and elucidating relationships 

between human activities and the environment (e.g., deforestation, land degradation, 

desertification, and landscape reconstruction) (Jiang et al., 2017; Tong et al., 2016; Xin 

et al., 2008).

In the last few decades, by virtue of the huge volume of data obtained from remote sensors 

and the innovations in computing and image analysis technologies, the value of remote 

sensing image processing for retrieving fc over long time periods and large geographic 

extents (e.g., on a regional to global scale) has been proven repeatedly (Ge et al., 2018; 

Jing et al., 2011; Zeng et al., 2003). Methods for deriving fc based on remotely sensed 

data can be generally categorized into six groups (Guan et al., 2012; Jia et al., 2013): 

(i) relative vegetation abundance (RA) algorithms scaled by maximum and minimum 

vegetation index values (Gutman and Ignatov, 1997; Wittich and Hansing, 1995); (ii) 

spectral mixture analysis (SMA) algorithms (Roberts et al., 1998; Settle and Drake, 1993); 

(iii) spectral-based supervised classification algorithms (Friedl et al., 2002; Okin et al., 

2013); (iv) physically-based models (e.g., multi-angle geometric-optical models) (Chopping 

et al., 2008; Xiao et al., 2016); (v) machine learning algorithms (Stojanova et al., 2010; 

Verrelst et al., 2012); and (vi) other approaches.

Among these methods, RA algorithms provide the simplest fc-estimation approach (Mu et 

al., 2018) and include the following types: the semi-empirical NDVI model (Choudhury 

et al., 1994), linear NDVI model (Qi et al., 2000), NDVI mixture model (Wittich, 1997), 

and quadratic NDVI model (Carlson and Ripley, 1997), as well as analogous versions of 

linear and quadratic models based on vegetation indices apart from NDVI (Cho et al., 

2014; Johnson et al., 2012). RA algorithms were first proposed in the 1990s to characterize 
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land surface interactions remotely (Choudhury et al., 1994; Gillies et al., 1997; Price, 

1990;Valor and Caselles, 1996). Gutman and Ignatov (1998) were the first to attempt to 

identify the relationship between the satellite-derived scaled NDVI (NDVI°, defined as again 

normalized NDVI) and fc over the global scale. Since then, because of their convenience and 

ease of interpretation, RA algorithms have received considerable attention in macroscopic 

monitoring of regional and global fc, and associated land surface parameters, such as the 

leaf area index (LAI); impervious surface (IS) cover; soil moisture content (M); land 

surface emissivity (LSE); surface radiant temperature (Ts); evapotranspiration (ET); and 

surface energy fluxes (SEF). The results of literature searches in the Web of Science Core 

Collection database indicate that a large amount of the related literature has documented 

the performance of RA algorithms for specific study areas/data sources/applications since 

the 1990s, with approximately 35% of the relevant studies on fc using RA algorithms (see 

Section4). Nonetheless, throughout the history of its development, this topic has rarely 

been reviewed systematically. Given the increased demand for understanding the effects of 

environmental changes (e.g. land-use change and climate change) on the vegetation cover at 

regional to global scales and the growing number of publications related to RA algorithms 

in recent years, a systematic review of the background, issues, current status, challenges, and 

perspectives of RA algorithms is undoubtedly required.

The purpose of the present review is to provide a comprehensive overview of the scientific 

literature related to RA algorithms, to discuss the key issues identified therein, to offer 

possible prospects and insights for further research and directions. The specific objectives of 

this review are fourfold:

(1) To elucidate the basic theory, assumptions, and issues related to the use of RA 

algorithms (Section 2);

(2) To discuss the published approaches for addressing the identified issues (Section 

3);

(3) To review the status quo and trends in development of RA algorithms and 

evaluate the advantages and disadvantages of different RA algorithms by 

investigating the selected literature (Section 4);

(4) To identify key issues that need to be considered further and priorities for the 

future research (Section 5).

To focus on these goals, we divided the selected literature on RA algorithms into two groups 

(Fig. 1): methodological issues and indirect applications. Methodological issues include 

the methodological origin and improvement of RA algorithms and the application of RA 

algorithms in the field of estimating fc based on remotely derived data. Indirect applications 

are those in which fc estimates are used as an intermediate variable for the derivation of 

other land surface parameters.

2 Background and issues

RA algorithms are a set of linear or non-linear functional relationships between a scaled VI 

(usually the NDVI) and fc. They are used to estimate the green fractional vegetation cover or 
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the factional cover of photosynthetic vegetation based on the assumption that a pixel consists 

of a mixture of only two elements: green vegetation and soil. The theoretical basis of RA 

algorithms lies in the Beer–Lambert law and linear spectral mixture analysis (LSMA).

2.1 Semi-empirical NDVI model

A number of field observations conducted in dense, homogeneous crop canopies indicated 

that NDVI variations approached a saturation level asymptotically with an increase in LAI 

values, which could be approximately fitted to an exponential function of LAI (Asrar et al., 

1984; Best and Harlan, 1985; Hatfield et al., 1984; Wiegand et al.,1990). This relationship 

could be expressed by the modified Beer–Lambert law as a general equation, given below, 

which has been validated by simulations (Baret and Guyot, 1991) and field experiments 

(Choudhury et al., 1994):

V I = V I∞ + V Is − V I∞ × e−KV I × LAI
(1)

where VI∞ is the asymptotic value of the VI, when LAI tends toward infinity (usually full 

vegetation cover, i.e., fc = 1), VIs represents the value of the vegetation index for bare soil 

(i.e., fc= 0), and KVI is the extinction coefficient driven by leaf optical properties (e.g., leaf 

angle distribution), the direction of the sun, and the viewing angle. It is likely that KVI will 

lie in the range 0.8–1.3, when the VI is set to be NDVI for leaf inclinations between 30° and 

70° (Baret and Guyot, 1991).

The fractional vegetation cover can be calculated according to:

fc = 1 − P0(0) (2)

where P0(0) is the probability of a canopy gap fraction at 0° zenith angle, which can be 

described as a simple exponential function of LAI (Nilson, 1971):

P0(0) = e−KP × LAI
(3)

where KP is the attenuation factor analogous to KVI depending on the canopy architecture.

Hence, as a result of mathematical manipulation with Eqs. (1), (2), and (3) to eliminate LAI, 

the semi-empirical relationship between fc and the NDVI can be derived as follows (Baret et 

al., 1995; Wittich, 1997):

fc = 1 − NDV I − NDV I∞
NDV Is − NDV I∞

Kp/KV I
(4)

According to Baret et al. (1995), the Kp/KVI equals to 0.6175 for the NDVI.

2.2 Linear NDVI model and NDVI mixture model

LSMA is the simplest and most common spectral unmixing approach. It is based on the 

underlying physical assumption that the amount of photon multiple scattering between 
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macroscopic materials is insignificant. LSMA describes a measured signal at each ground 

resolution element (i.e., pixel) as a linear combination of constituent spectral signatures 

representing the spectral characteristics of pure land-cover types (so-called endmembers) 

weighted according to their subpixel fractional cover (i.e. abundances) (Adams et al., 1986):

r = ∑
i = 1

n
fi × ri + ε (5)

where r is the mixed pixel signal, fi is the fractional cover of endmember i, and ri is the 

spectral signal of endmember i. Here, n is the total number of endmembers, and ε is the 

model residual error term.

If only two endmembers (green vegetation and bare soil) are considered, then, following 

the idea of Deardorff (1978), LSMA could be directly applied to retrieve fc from the NDVI 

value of a mixed pixel. As a result, we can yield the highly-simplified formulation for the 

approximation of fc (i.e., the linear NDVI model), which is also commonly referred to as the 

pixel dichotomy model, dimidiate pixel model, or two-endmember model (Qi et al., 2000; 

Wittich and Hansing, 1995):

fc = NDV I − NDV Is
NDV I∞ − NDV Is

(6)

which can be rewritten as:

fc = a × NDV I + b

with a = 1
NDV I∞ − NDV Is

, b = − NDV IS
NDV I∞ − NDV IS

.
(7)

The procedure described above was also further generalized into mosaic-pixel models 

involving variable, dense, and non-dense vegetation models by Gutman and Ignatov (1998) 

under the notion that the same NDVI value may be obtained from different subpixel 

structures with respect to vertical densities. The variable vegetation model is based on 

heterogeneous vegetation canopies having variable vertical densities, because more than one 

vegetation type may exist within a pixel, especially in a coarse resolution image. However, 

the extraction of information about multiple vegetation endmembers at the subpixel level 

based on LSMA is difficult. The latter two models (i.e., dense and non-dense vegetation) 

underscore homogeneous vegetation canopies with intra-class variations in vertical density. 

The root cause of the differences between mosaic-pixel models, however, is still an issue 

related to accurate derivation of the NDVI value of the vegetated part of the pixel. Therefore, 

in this paper, we discuss this inherent problem by only considering the linear NDVI model.

Likewise, LSMA can also be applied to the reflectance terms (i.e., red and near-infrared 

(NIR) bands) in the NDVI equation:

ρi, pixel = fc × ρi, ∞ + 1 − fc × ρi, s (8)
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where ρi,pixel, ρi,∞, and ρi,s are the pixel spectral reflectance, asymptotic spectral reflectance 

of vegetation, and bare soil spectral reflectance in the i band, respectively, and i is the red 

or NIR band. Then, by substituting the NDVI equation for Eq. (8), a non-linear relationship 

between NDVI and fc can be obtained (Verstraete and Pinty, 1991;Wittich, 1997):

fc = NDV I − NDV Is
NDV I∞ − NDV Is + (1 − a) × NDV I − NDV I∞

with a = ρr, ∞ + ρNIR, ∞
ρr, S + ρNIR, s

, (9)

where pr,∞ and pNIR,í are the asymptotic spectral reflectance of vegetation at red and NIR 

wavelength, respectively. Here, pr,s and pNIR,s are the bare soil spectral reflectance at the red 

and NIR wavelength, respectively. For brevity, Eq. (9) is termed the NDVI mixture model. 

It should be noted that, although the linear NDVI model and the NDVI mixture could both 

be applied based on LSMA, Eqs. (6) and (9) are evidently not equivalent because of the 

poor performance of the NDVI in terms of the associative property (Price, 1990; Valor and 

Caselles, 1996). However, according to Wittich and Hansing (1995), these discrepancies 

between the two models are minor in the data range of 0.18 ≤ NDVI ≤ 0.69.

2.3 Quadratic NDVI model

Based on experimental observations, Gillies and Carlson (1995) obtained the consistent 

relationship between NDVI° and fc (i.e., the quadratic NDVI model), which was further 

confirmed in another study (Carlson and Ripley, 1997). This relationship is defined as 

follows:

fc = NDV I∘ 2 = NDV I − NDV Is
NDV I∞ − NDV Is

2
(10)

Notably, the NDVI in this quadratic model is rarely substituted for other vegetation indices, 

as Eq. (10) is valid specifically for the NDVI.

2.4 Issues related to the RA algorithms

In RA algorithms, both the NDVI∞ and NDVIs parameters need to be known a priori. 

NDVI∞, however, is known to vary depending on the plant species and phenological cycle, 

while NDVIs varies by soil type. Furthermore, the NDVI is also not always an optimal VI 

for fc retrieval because of inherent characteristics such as its saturation problem in high 

density canopies and sensitivity to scale, background, and atmospheric variances.

Therefore, the major hurdle in the quantitative retrieval of fc is to develop the way how 

to determine the NDVI∞ and NDVIs thresholds, and how to compensate for the inherent 

limitations of NDVI. Furthermore, the assumption that a pixel consists only of green 

vegetation and bare soil ignores the non-photosynthetic vegetation (NPV), e.g., aboveground 

dead biomass, litter, and wood, which might introduce several uncertainties influencing fc 

estimates. Therefore, the way to mitigate the NPV effect is also one of the main issues 

affecting the inversion accuracy of RA algorithms. As the NPV effect is essentially caused 
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by this assumption, only the former issue has been continuously investigated in the past 

three decades.

3 Methods for correcting issues

3.1 Methods for determining the values of NDVI∞ and NDVIs

The published approaches for determining the values of NDVI∞ and NDVIs can, in general, 

be divided into two categories: traditional approaches that assign a priori fixed value for the 

entire remotely sensed image and improved methods in which both values vary according to 

geographical factors, e.g., species and soil types (the reference values are listed in Table 1). 

The former includes:

(1) Identification of pure vegetation (or bare soil) pixels through field observations 

(e.g., global positioning system (GPS) coordinates at locations with full 

vegetation cover and pure bare soil (Wang and Qi, 2008) and field-measured 

pure vegetation/soil spectral data (Zhou et al., 2009)) or higher spatial resolution 

images (Imukova et al., 2015; Jiao et al., 2014);

(2) Direct analysis of remotely sensed images to obtain the accumulative maximum 

and minimum NDVI values in the area under investigation (Ge et al., 2008; 

Gutman and Ignatov, 1998; Wang et al.,2014);

(3) Application of end-member extraction approaches (e.g., pixel purity index (PPI) 

method and two-dimensional feature space plots) (Jia et al., 2017; Wang et al., 

2014);

(4) Estimation of NDVI∞ via inversion modeling of the relationship between the 

remotely derived NDVI and in situ f measurements (Kuang et al., 2015; Xiao 

and Moody, 2005);

(5) Adoption of theoretically fixed values from the radiative transfer model (Liu et 

al., 2008).

However, variations in the spectral properties of vegetation (or soil) at the subpixel level are 

related not only to the plant species (or soil type), but also to the health of the vegetation 

and the leaf water content (or soil organic matter, soil moisture content, and soil surface 

roughness). As shown in Fig. 2, NDVI∞ values identified in the literature vary among 

different vegetation types, and significant differences are observed even within the same 

vegetation type. The global NDVI∞ values proposed by Gutman and Ignatov (1998) and 

Jiang et al. (2010) are generally lower than those ones obtained from a specific plant type. 

Similarly to NDVI∞, NDVIs varies over geographic regions because of changes in the 

chemical and physical attributes of soil, including organic matter content, grazed size, clay 

mineralogy, and water content from surface to undersurface even for the same scene in 

the image. The use of invariant NDVI∞ and NDVIs values is questionable, particularly for 

studies conducted over a large geographic area. Therefore, improved methods have been 

designed to compensate for these disadvantages using auxiliary data (e.g., land cover maps 

(Broxton et al., 2014; Vegas Galdos et al., 2012; Zeng et al., 2000; Zeng et al., 2003) 

and soil databases (Ding et al., 2016b; Montandon and Small, 2008; Wuet al., 2014)) or 

Gao et al. Page 7

ISPRS J Photogramm Remote Sens. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



data yielded by spatial interpolation techniques used in geographic information system 

(GIS) (Johnson et al., 2012) or multiangle observations (Mu et al., 2018; Song et al., 

2017) to make both thresholds more compatible with the local vegetation/soil conditions. 

In the present study, we aim to bring the characteristics, advantages, and limitations of 

these improved methods to the attention of the remote sensing community by means of the 

following descriptions and in depth discussion.

3.1.1 Evolvement of approaches to determine NDVI∞—Zeng et al. (2000) 

developed a method to calculate the NDVI value for each land-cover category corresponding 

to 100% green vegetation cover (i.e., NDVIc∞). In their study, the annual maximum NDVI 

value (NDVIp,max) for a given pixel was calculated and used as a substitute for the pixel 

NDVI in the numerator of Eq. (6). Furthermore, a histogram of NDVIp,max for each land-

cover type was used to determine NDVIc,∞, which was used as a proxy for NDVI∞ in the 

denominator of Eq. (6). The annual maximum green vegetation fraction for a given pixel 

(fc) was eventually quantified with a global invariant NDVIs value of 0.05, according to the 

following formula:

fc′ = NDV Ip, max − NDV Is
NDV Ic, ∞ − NDV Is

(11)

Although this method has been well-documented (Miller et al., 2006; Refslund et al., 

2014; Scheftic et al., 2014; Vegas Galdos et al.,2012), several issues related to its use 

should be discussed further. First, there is a possibility of temporal or spatial mismatch 

between the remotely sensed data and the published land cover products, particularly, in 

areas that have undergone rapid land use/land cover (LULC) changes. For example, the 

land cover in the South China Karst region was previously predominately shrubs and trees; 

however, it has been gradually converted to bare soil owing to the increased exploitation of 

natural resources during the last half-century. Recently, however, there has been a significant 

increase in the vegetation cover in large parts of this district as a result of ecological 

rehabilitation and conservation efforts. Therefore, if the most recent satellite images together 

with outdated land cover maps are used to calculate NDVIc,∞ in this region, the results 

will be unrealistic. Furthermore, the land cover product should be as accurate as possible 

(i.e., the LULC map should be optimized to fit the local context), or of a high resolution. 

Li and Zhang (2016) indicated that the fc′ inversion accuracy over all of China was better 

with the ChinaCover product compared to the International Geosphere-Biosphere Program 

(IGBP) product, particularly in areas with high vegetation coverage. Second, the data for 

one full year from the same satellite sensor are a prerequisite for using Eq. (11) to estimate 

fc′. Clearly, data continuity is crucial for the use of this interannual relationship described 

in Zeng et al. (2000). Therefore, it might not be feasible to use Eq. (11), especially in 

studies focused on medium to high resolution satellite remote sensing products (e.g., from 

the RapidEye and WorldView-2 satellites). This is due to the lack of consistency in the 

data availability, same as most optical remote sensing datasets. Third, fc′ refers to the 

annual maximum green vegetation fraction. Consequently, fc′ cannot be directly related to 

the real-time monitoring of surface greenness, although the annual maximum fractional 
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vegetation cover may be useful for analyzing the interannual driving relationship between 

spatiotemporal variations of the vegetation cover and climatic factors (e.g., precipitation 

and temperature). Most agronomic studies focus rather on fc, which can provide real-time 

characterization of the vegetation growth status. In addition, the use of a fixed NDVIs value 

in Eq.(11) is unreasonable, in particular for large areas covered by contrasting soil types, as 

the soil reflectance always varies together with pedological classes.

3.1.2 Evolvement of approaches to determine NDVIs—As opposed to 

conventional methods that involve setting a global invariant NDVIs value for the whole 

satellite image, the method proposed by Montandon and Small (2008)uses global databases 

of NDVIs together with information on historical NDVIpixel values to estimate the 

statistically most-likely fractional vegetation cover fc
∗ :

fc
∗ =

∑i = 1
n NDV Ipixel − NDV Is, i

NDV I∞ − NDV Is, i

a

n
(12)

where NDVIpixel is the NDVI of a pixel; NDVI,i is the NDVI value of the i-th bare soil in the 

global soil spectral libraries and is lower than or equal to NDVIpixel, n is the number of the 

values meeting the condition NDVIs,i ≤ NDVIpixel. NDVI∞ is calculated using the approach 

developed by Zeng et al. (2000), and a is equal to 1 for the linear NDVI model and 2 for the 

quadratic NDVI model. It should be noted that in the case where NDVIpixel is greater than 

NDVI∞, the green vegetation fraction is assigned a value of 1.0.

The biases of the NDVIs estimates could lead to substantial uncertainties in the derivation 

of f using RA algorithms (Montandon andSmall, 2008; Song et al., 2017). The use of a 

collection of NDVIS,i values at each pixel can partially mitigate the effect of uncertainties in 

the NDVIs estimates on the retrieval of the green vegetation fraction. However, in addition 

to the preceding discussion on the NDVI∞ calculation using the approach proposed by 

Zeng et al. (2000), other considerations regarding this approach should be noted. First, it is 

unrealistic to expect that all spectrums in the global soil spectral libraries are presented in a 

fine-scale study area (Johnson et al., 2012). Second, some soil spectrums in the soil spectral 

libraries that are not presented in the given pixel might also satisfy the criterion NDVIs,i ≤ 

NDVIpixel. A further constraint is the use of the local historical lowest NDVI value instead 

of NDVIpixel to ascertain the range of possible NDVIs values more accurately. However, 

errors associated with fc
∗ could still occur. This is because there is no guarantee of a unique 

and authentic relationship between the spectrum of a soil endmember within a pixel and the 

soil spectral reflectance in the spectral libraries. Following the ideas of Zeng et al. (2000) 

and Montandon and Small (2008), Wu et al. (2014) and Ding et al. (2016b) attempted to 

calculate NDVI∞ and NDVIs for each vegetation type and soil group based on IGBP and 

the Harmonized World Soil Database (HWSD) classification schemes. However, the values 

of NDVI∞ and NDVIs still remain biased, as it is difficult to identify accurately the number 

and type of endmembers within a pixel, as well as its corresponding spectral signatures 

(Ding et al., 2016b; Wuet al., 2014). Third, the fc
∗ estimates are inherently statistical values 

that can be closer to the real green vegetation fraction calculated by using the NDVI values 
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of the authentic soil and vegetation endmembers. Fourth, in view of data interdependency, 

it is cumbersome to suffice the requirement of the prior knowledge of the land cover type 

information or the soil spectral libraries for applying the approach proposed by either Zeng 

et al. (2000) or Montandon and Small (2008). Hence, if no available auxiliary data exist (or 

these data are outdated/mismatching to the used remote sensing images), it is not clear how 

to use these approaches to estimate NDVI∞ and NDVIs values.

3.1.3 Simultaneous determination of NDVI∞ and NDVIs—To address the invariant 

threshold problem discussed above, Johnson et al. (2012) attempted to use GIS spatial 

interpolation techniques, such as inverse distance weighting (IDW) and ordinary kriging 

(OK) to determine NDVI∞ and NDVIs at each pixel location. This approach is based on 

the assumption that it is likely that the spectral characteristics of the vegetation (or soil) 

endmember are more similar to the nearer vegetation (or soil) samples. The number of pure 

(vegetation or soil) samples and the performance of the spatial interpolation techniques 

are crucial to ensuring the accuracy of the interpolated NDVI∞ and NDVIs values. 

Consequently, this method may be more appropriate for scenarios where the multitude of 

pure vegetation and soil pixels are presented. However, its use might not be feasible in 

studies that are aimed at large geographic areas or use coarse resolution satellite images, as it 

is difficult to collect an adequate number of pure pixels as samples for spatial interpolation. 

Certainly, the use of more suitable interpolation methods can yield more reliable results.

In addition, recent studies (Mu et al., 2018; Song et al., 2017) suggested an alternative 

means of estimating NDVI∞ and NDVIs simultaneously without any prior knowledge, 

which usually is required in the approaches of Zeng et al. (2000) and Montandon and 

Small(2008). They utilized a directional reflectance dataset to develop the relationship 

between the directional green vegetation fraction fc
θ  and NDVI at a particular viewing 

zenith angle (VZA, θ) based on the linear NDVI model:

fc
θ = NDV Iθ − NDV Is

θ

NDV I∞
θ − NDV Is

θ (13)

where NDVIθ, NDV I∞
θ , and NDV Is

θ are the directional NDVI, NDVI∞ and NDVIs at θ, 

respectively.

Using a Markov-chain model linked according to the modified Beer–Lambert law, the gap 

fraction for a given LAI at θ (P0 (θ)) is expressed as, follows:

P0(θ) = e( − G(θ) ⋅ Ω ⋅ LAI)/cos(θ) (14)

where G(θ) is the projection coefficient, which is approximately 0.5 around the zenith angle 

of 57°, and Ω is the clumping index. Then, using the relationship defined by Eq. (2), Eqs. 

(13) and (14) were integrated as

NDV I∞ − NDV Iθ

NDV I∞ − NDV IS
= e( − G(θ) ⋅ Ω ⋅ LAI)/cos(θ) (15)
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Eq. (15) is based on the assumptions that the pure vegetation (or soil) is isotropic and that 

the viewing angle influences only mixed pixels consisting of vegetation and soil.

For calculating NDVI∞ and NDVIs, in the two studies different strategies were adopted. 

Song et al. (2017)used the MODIS Bidirectional Reflectance Distribution Function (BRDF)/

Albedo products and the Global Land Surface Satellite (GLASS) LAI product to estimate 

the NDVI∞ and NDVīs values at the 57° VZA, using a 3 × 3 sliding window involving 

nine pixels and more than three equations based on Eq. (15). Mu et al. (2018) established 

two equations for VZAs of 55° and 60°, respectively, to describe the relationship defined by 

Eq.(15). Thereafter, they combined these two equations to eliminate G, Ω, and LAI with the 

assumption that G and Ω are invariant between VZAs of 55° and 60°:

cos55∘ · ln NDV I∞ − NDV Ii
55∘

− cos60∘ · ln NDV I∞ − NDV Ii
60∘

= cos55∘ − cos60∘ · ln NDV I∞ − NDV Is
(16)

where NDV Ii
55∘

 and NDV Ii
60∘

 are the NDVI values of pixel i at VZAs of 55° and 60°, 

respectively. Finally, NDVI∞ and NDVīs can be calculated by using Eq. (16) with nine 

pixels within a 3 × 3 sliding window.

Despite achieving some success, the methods proposed by Song et al. (2017) and Mu et al. 

(2018)still have several limitations. First, the fc estimation was conducted within a sliding 

window of a certain size in both studies. Consequently, the size of the sample window is 

important for minimizing differences in NDVI∞ or NDVīs across the window pixels, as 

all pixels within the window have the same values of NDVI∞ or NDVīs. Although it was 

verified that a 3 × 3 window was appropriate for the 500 m or 1 km spatial resolution 

satellite images used in both studies, with the exception of the heterogeneity within pixel, 

it is still difficult to identify, whether a single vegetation type or soil group is presented 

in the sliding window, especially in complex and heterogeneous ecosystems. In contrast to 

the use of a sliding window, the time series of remotely sensed observations may be more 

suitable for deriving both thresholds as soil types and plant species remain unchanged for a 

long time in an area (Mu, personal communication). Second, these methods might be time 

consuming, in particular for images with large swath widths, because a number of pairs 

of NDVI∞ and NDVīs need to be calculated within each window throughout a satellite 

image. Consequently, high-performance computer systems might be needed to maintain 

rapid computation of these methods. Third, MODIS BRDF/Albedo products were used in 

both studies. However, the available BRDF products obtained from spaceborne sensors are 

relatively limited in number and coarse in spatial resolution. In addition, it should be noted 

that the improved methods proposed by Zeng et al. (2000),Montandon and Small (2008), 

Song et al. (2017), and Mu et al. (2018)were all applied to cases where coarse spatial 

resolution satellite images (mostly MODIS data) were used. Considering the performance of 

these methods using higher spatial resolution remote sensing images (or images other than 

the MODIS data), their applicability still needs further validation.

Gao et al. Page 11

ISPRS J Photogramm Remote Sens. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



3.2 Methods for correcting NDVI defects

The NDVI is the most commonly used index for remote sensing of vegetation. Despite 

its usefulness, the NDVI is known to be saturated at high LAI levels and vulnerable to 

atmospheric perturbations, scaling, and soil background effects. Thus, the use of other more 

robust vegetation indices as substitutes for the NDVI of linear or semi-empirical NDVI 

models to monitor the vegetation cover changes has attracted growing attention from the 

scientific community.

The scaling effect of the NDVI cannot be addressed efficiently by image preprocessing 

techniques; therefore, it has become one of the main issues influencing fc estimation based 

on RA algorithms. This issue involves more than the discrepancies among NDVI values 

derived from different observation scales, e.g., the NDVI of mixed pixels and endmembers 

within pixels or the NDVI at a fine resolution where the landscape is homogeneous and 

at a coarse resolution where the landscape is heterogeneous. It also concerns the errors 

caused by the application of fc retrieval models at inappropriate scales, e.g., where a model 

designed for small-scale analysis is applied to a large-scale analysis. Jiang et al. (2006), 

Zhang et al. (2006), Obata et al. (2012a),Obata et al. (2012b), and Obata and Huete (2014) 

independently reported that LSMA was applied to the red and NIR bands to explore ways to 

correct the spatial scaling effect of the NDVI on RA algorithms. According to Zhang et al. 

(2006), the NDVI mixture model was applicable to estimating fc on different scales. Obata 

et al. (2012a) explained the theoretical basis underlying the scaling effect and developed an 

NDVI-isoline-based linear mixture model, which was an extension of the RA algorithms to 

rectify the scaling effect in fc retrievals. A similar analysis was conducted by Jiang et al. 

(2006), who proposed a scale-invariant index (i.e., the scaled difference vegetation index 

(SDVI)). The SDVI was calculated according to the formula of the linear NDVI model with 

the difference vegetation index (DVI) and proved it as a robust approach.

In view of the soil background effects, the optimized soil adjusted vegetation index (OSAVI) 

and modified soil adjusted vegetation index (MSAVI) were used in lieu of the NDVI 

(Gonsamo, 2010; Gonsamo and Chen, 2014; Merlin et al., 2010; Tsai et al., 2016), as 

both of these performed better at minimizing soil background variances (Qi et al., 1994; 

Rondeaux et al., 1996). Furthermore, the enhanced vegetation index (EVI) was chosen 

for deriving fc by Cho et al. (2014), because it can minimize the soil background and 

atmospheric interference effects. The modified triangular vegetation index (MTVI2) was 

selected by Liuet al. (2008)as it minimizes the effects of the soil background and leaf 

chlorophyll, and maintains adequate sensitivity over a wide range of LAI. To address the 

saturation problem of the NDVI, Li et al. (2014)incorporated the average fc estimates from 

the ratio vegetation index (RVI) and NDVI (hereafter denoted NDVI plus RVI) to obtain 

more accurate results than those yielded by a single VI. The variable atmospherically 

resistant index (VARI) also performed better than the NDVI in terms of fc estimation 

(Jimenez-Munoz et al., 2009). Apart from the aforementioned vegetation indices, other 

vegetation indices (e.g., vegetation, bare soil, and shadow indices (VBSI) (Zhang et al., 

2013)) have also been employed for fc retrievals using RA algorithms. However, although 

these vegetation indices were used as substitutes for the NDVI, none of them is as the 

universal VI that can replace the other sufficiently.
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4 Overview of RA algorithms

RA algorithms constitute a big branch of remote sensing methods for estimating fc. 

An overview, including a search and selectionstrategy, literature status, and performance 

evaluation, is now provided in this section to present the status quo and trends in the 

development of RA algorithms.

4.1 Search and selection strategy

This review is focused specifically on English-language peer-reviewed journal papers 

published between January 1990 and November 2019 that reported studies in which RA 

algorithms were applied to estimate fc. Before query processing, we designed two major 

categories of terms to search the relevant literature: fc-based terms (“fractional vegetation 

cover” OR “green vegetation fraction” OR “vegetation fraction coverage” OR “canopy 

fraction cover” OR “fraction of vegetation cover” OR “vegetation cover fraction”) and terms 

related to RA algorithms ((“vegetation index” OR “NDVI”) OR (“spectral mixture analysis” 

OR “linear mixture model”) OR “scaled NDVI” OR “NDVI SMA” OR “linear NDVI 

model” OR “dimidiate pixel model” OR “pixel dichotomy model” OR “two-endmember 

mixing model” OR “quadratic NDVI model”)). A TOPIC-based Boolean query search using 

fc-based terms returned 489 records pertaining to the relevant studies on fc, of which 234 

publications also contained terms related to RA algorithms. These records were further 

screened by investigating thoroughly all the articles to exclude irrelevant studies with similar 

terms. Finally, 173 studies in which RA algorithms were used to estimate fc were selected.

To conduct the present review, we derived a set of descriptive statistics from the 173 

publications based on the following pre-defined criteria:

(1) The linear NDVI model (for the semi-empirical NDVI model) and its analogous 

versions that employ other vegetation indices as substitutes for NDVI were 

regarded as linear VI models (for semi-empirical VI models) and then counted. 

As the formula of the scaled NDVI (see Eq.(10)) is identical to the right hand 

side of Eq. (6), we regarded the scaled NDVI as a linear VI model.

(2) The studies in which multi-sensor images (Qi et al., 2000) or different RA 

algorithms (Li et al., 2013; Wittich and Hansing, 1995) or both (Montandon and 

Small, 2008) were used to derive fc were occasionally divided into sub-studies 

and considered as individual cases according to the number of remotely sensed 

image types and corresponding models in the literature.

(3) The spatial resolutions (abbreviated as “R”) of remote sensing images used to 

estimate fc based on the RA algorithms in the selected studies were classified 

into four types: R ≤ 10 m; 10 m < R < 100 m; 100 m ≤ R < 1 km; and R ≥ 1 

km. It should be noted that images with the same spatial resolution were treated 

as the same type in a study.

It should also be noted that these statistics are influenced by the study selection process 

employed in the present review and might lack completeness.

Gao et al. Page 13

ISPRS J Photogramm Remote Sens. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



4.2 Literature status

4.2.1 Published trends—Over the past three decades, RA algorithms have been used in 

numerous applications as demonstrated by the 173 papers published in 62 academic journals 

on remote sensing, agriculture, forestry, wetlands, hydrology, and meteorology (Table 2). 

The top three journals in terms of publications related to the RA algorithms were found to 

be Remote Sensing, Remote Sensing of Environment, and International Journal of Remote 
Sensing. The number of published items (the bar in Fig. 3), as well as the general trend of 

the usage frequency of the RA algorithms (the broken line in Fig. 3), increased consistently 

in each five-year time interval between 1990 and 2019. Furthermore, among these RA 

algorithms, the linear VI model was the most frequently applied followed by the quadratic 

NDVI model. The NDVI mixture model was rarely used, and has not even been reported in 

the literature since 2010. The possible explanation, why the linear VI and quadratic NDVI 

models were more popular, could be related to their considerably simpler formulations as 

compared to the NDVI mixture model, as well as to the fact that they do not require any 

additional variables to be calculated, e.g., the extinction coefficient in the semi-empirical VI 

model.

4.2.2 Sensor type—The remote sensing data used in the selected literature were 

collected mainly from satellite sensors, although in several studies airborne sensor data, 

ground-based spectroradiometer measurements (e.g., ASD FieldSpecFR spectrometer data 

and MSR5 field-portable radiometer data), or simulated data were used. In general, the 

increasing usage of RA algorithms was closely related to the availability of remote sensing 

data, as well as to the innovations and increasing deployment of remote sensing instruments 

(Fig. 4). In terms of satellite images, early landmarks in the spatially explicit estimation of 

fc using RA algorithms emerged almost 30 years ago through the usage of remote sensing 

images with low spatial resolution (R ≥ 1 km, e.g., the Advanced Very High Resolution 

Radiometer (AVHRR)). Although the higher spatial resolution Landsat Thematic Mapper 

(TM) satellite data were also collected at that time, they were not yet freely available to 

the public, which has limited their usage in the research. Despite the growing availability 

of time series satellite data in the 21st century, moderate-coarse (100 m ≤ R < 1 km) 

and moderate (10 m < R < 100 m) spatial resolutions satellite images became the most 

frequently employed data sources among those utilized for RA algorithms. The most 

frequently applied sensor type was the Landsat series (involving TM, Enhanced Thematic 

Mapper Plus (ETM+), and OLI) data, which was used in 31.9% of the studies, followed by 

the MODIS data (28.6%). This explains why RA algorithms are focused predominantly on 

moderate and low spatial resolution (R > 10 m) remote sensing applications. Nonetheless, 

in recent years, increased attention has been paid to the use of high-resolution satellite 

sensors (R ≤ 10 m, e.g., IKONOS, SPOT-5/HRG, RapidEye, WorldView-2, and ZY-3). 

Although there are strong biases depending on sensor type, most studies have made use of 

multispectral systems, and only a few cases of hyperspectral studies were found in which 

CASI, OMIS, Hyperion, or HJ-1 A/HIS sensors were used. Furthermore, the dominant 

image spatial resolutions in fc estimation using RA algorithms are 30 m, 250 m, and 

1 km, which correspond to the Landsat series, MODIS, and AVHRR data, respectively. 

Consequently, images at these three levels were specially sorted out in terms of the types 

of RA algorithms used (excluding the NDVI mixture model) (Fig. 5). Images with a 30-m 
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spatial resolution were most frequently used for fc estimation after the year 2000, while 

1-km AVHRR images were the most frequently used between 1990 and 1999. Additionally, 

the linear VI model was most frequently applied to images with a 30-m spatial resolution, 

and the semi-empirical VI model has been rarely used for images with a 250-m, 1-km, and 

even lower spatial resolutions.

4.2.3 Geographic patterns and geoscientiflc applications—Research institutions 

corresponding to the selected articles are located in 23 countries (Fig. 6), mainly in Asia 

(accounting for 51%, especially China), followed by North America (24%, especially the 

United States), and Europe (19%). There has been relatively little research pertaining to 

the use of RA algorithms in Oceania, South and Central America, and Africa. Among the 

173 publications, approximately 49% of the studies focused on the methodological issues, 

whereas the remainder concerned indirect applications. In particular, researchers in Asia 

paid more attention to methodological issues and the application of RA algorithms to the 

estimation of vegetation cover. Conversely, indirect applications have gained wider attention 

in Europe. In North America, the number of studies form the two aspects is nearly equal. 

In terms of vegetation types, RA algorithms can be used to determine fc of varying plant 

species, such as crops (Liu et al., 2008), grasslands (Rundquist, 2002), forests (Yang et 

al., 2013), shrubbery (Zhou et al., 2009), desert vegetation (Jiapaer et al., 2011), and even 

aquatic plants (Cheruiyot et al., 2014).

RA algorithms play an important role in global f estimation (Wuet al., 2014; Zeng et 

al., 2003) and serve as a feasible means of detecting vegetation recovery in areas that 

have experienced natural hazards, such as forest fires (Vila and Barbosa, 2010), typhoons 

(Wang and Xu, 2018), or earthquakes (Jiao et al., 2014). In addition, a large number of 

research works have assessed the effectiveness of RA algorithms for deriving spatiotemporal 

distributions of fc at the regional scale. Fig. 6 shows the geographic locations of their study 

areas (except for the national- or global-scale studies) as presented in the literature. From 

Fig. 6, it can be seen that most studies were conducted in China, especially in areas on 

the northwestern side of the Hu Line (Hu, 1935), including such research sites as Mu Us 

Sandland (Cao et al., 2011; Liu et al., 2019), the Heihe River basin (Jia et al., 2017; Wang 

et al., 2014), the Qaidam basin (Jin et al., 2016; Zhang et al., 2019), the Tibetan Plateau 

(Liu et al., 2014; Wang et al., 2014), and the grasslands of Inner Mongolia (Li et al., 2014; 

Li et al., 2013). The northwestern side of the Hu Line is sparsely populated, whereas the 

dense population distribution in China is concentrated predominantly in the southeast; RA 

algorithms have rarely been applied in the latter. There were also many research sites in 

Europe, particularly in Spain and Germany (Imukova et al., 2015; Verger et al., 2009). Not 

many locations in the United States appear in Fig. 6, however, this is mainly because many 

studies conducted in the United States using RA algorithms were nationwide or global in 

scale (Gallo et al., 2001; Jiang et al., 2010). In terms of the geographic distribution of 

regional studies on fc, most of them were conducted in northern temperate zones at latitudes 

between 25° and 55°N, while less attention was paid to tundra, boreal forest, tropical rain 

forest, and tropical savanna ecosystems.

In terms of indirect applications utilizing fc values derived by RA algorithms, related 

studies included the calculation of land surface parameters such as LAI (Propastin 
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and Erasmi, 2010; Walthall et al.,2004), M (Vicente-Serrano et al., 2004; Wang et al., 

2018), LSE (Sobrino et al., 2008), Ts(Agam et al., 2007; Bhattacharya andDadhwal, 

2005), ET (Long and Singh, 2012; Tang et al., 2009), SEF (Liet al., 2005; Liu et 

al., 2017), and IS (Kaspersen et al., 2015). As the NDVI has been used traditionally 

as an indicator of vegetation abundance to estimate the relationship between surface 

temperature and vegetation (Petropoulos et al., 2009), RA algorithms were commonly used 

to determine satellite-derived land surface energy fluxes (including LSE, Ts, ET, and SEF) 

and soil surface moisture analysis. In addition to studies on indirect applications using 

visible-infrared remote sensing data, both previous and latest studies have reported that 

combinations of RA algorithms and microwave remote sensing data improved soil moisture 

retrieval (Hasan et al., 2014) or the disaggregation of Ts(Amazirh et al., 2019).

4.3 Performance evaluation of RA algorithms

The present study reviewed the performance evaluation of RA algorithms performed in the 

previous research works in terms of two aspects: comparisons of models within the RA 

family, and comparing RA algorithms with other fc estimation approaches.

Numerous studies have attempted to determine which model within the RA family is the 

most effective in deriving fc through a comparative analysis of model sensitivity to the soil 

background (Ding et al., 2017; Montandon and Small, 2008), scale (Jiang et al., 2006), 

and atmospheric (Gonsamo, 2010) effects. In general, RA algorithms are affected by soil 

noise mainly because of the sensitivity of VI values to soil optical properties. However, 

the quadratic NDVI model was found to be superior to the linear NDVI model in terms of 

reducing soil noise (Dinget al., 2017; Montandon and Small, 2008). In terms of the scale 

effect, the semi-empirical NDVI and quadratic NDVI models were found to outperform the 

linear NDVI model, as the former ones transform the scaled NDVI through power functions 

that reduce the positive bias of the scaled NDVI (Jiang et al., 2006). SDVI was concluded to 

be scaleinvariant (Jiang et al., 2006) and less sensitive to the atmospheric scattering effects 

(Gonsamo, 2010). However, SDVI did not perform as well as expected in some applications 

using moderate and low spatial resolution satellite images (Ding et al., 2016a; Li et al., 

2014; Merlin et al., 2010). In addition, several studies also assessed the applicability of 

various vegetation indices used in RA algorithms to perform fc estimation. The MSAVI 

(Wang et al., 2005), VARI (Jimenez-Munoz et al., 2009), NDVI plus RVI (Li et al., 2014), 

and MTVI2 (Liu et al., 2008) were suggested and confirmed as feasible alternatives to the 

NDVI.

Many studies also investigated the discrepancies between RA algorithms and other fc 

estimation approaches in terms of fc retrieval. RA algorithms were generally yielded 

reasonable fc estimates; however, in areas dominated by NPV (e.g., dry shrubs) and sparse 

vegetation (e.g., desert plants) they tended to exhibit larger degrees of error compared 

with other fc estimation approaches, such as LSMA (Cheruiyot et al., 2014; Xiao and 

Moody, 2005), multiple endmember spectral mixture analysis (MESMA) (Liu et al., 2017), 

a combination of geometric-optical models with SMA (Cao et al., 2011), support vector 

machine (SVM) (Ge et al., 2018), and the modified three-band maximal gradient difference 

(TGDVI) model (Jiapaer et al., 2011). Additionally, Ding et al. (2016a) reported that the 
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results yielded by RA algorithms were slightly better than those generated from the look-up 

table-based inversion of the PROSAIL model and were also faster in terms of computational 

time.

5 RA challenges in relation to the earth system science and future 

perspectives

5.1 Novel approaches for improving RA algorithms

One of the main ways to improve the RA algorithms is to develop or utilize a VI that 

is highly sensitive to the parameter of interest (i.e., fc), but insensitive to the expected 

perturbing components (e.g., species, soil, shadow, and non-photosynthetic materials). In 

this regard, it is possible to consider the modified chlorophyll absorption reflectance index 

(MCARI(705,750)), which uses bandwidths other than those of the traditional broadband VI 

and is designed to minimize the effects of soil and NPV (Jay et al., 2017; Wu et al., 2008), 

as a more appropriate alternative to the NDVI. In particular, in the context of the growing 

amount of freely available Sentinel-2 (S2) databases, as the central wavelengths of the S2 

image band 3/5/6 are close to the hyperspectral bands used to calculate MCARI(705,750), 

the MCARI(705,750)-based linear VI model is expected to mitigate the impact of the soil 

background and non-photosynthetic materials on fc estimation. However, the relationship 

between MCARI(705,750) and fc still requires further evaluation. Kallel et al. (2008) also 

suggested that fusion of vegetation indices, for example, MCARI/OSAVI (Daughtry et al., 

2000), could be an alternative direction to improve their performance. However, the means 

for rendering this combined VI approach applicable to RA algorithms to yield a more 

powerful and universal model for retrieving fc also requires further research. In addition, 

previous studies (Guerschman et al., 2009; Hill et al., 2016) revealed that the combination 

of visible, NIR and the shortwave-infrared (SWIR) bands could facilitate the extraction 

of fc from pixels composed of green vegetation, bare soil, and the NPV. This motivates 

development of three-endmember (including photosynthetic vegetation, NPV or shadow, and 

bare soil) mixing models as an extension of RA algorithms. However, the use of these 

models implies that sensors must meet higher band setting requirements, i.e., they should be 

equipped with not only the conventional visible and NIR spectral bands, but also the SWIR 

bands. Therefore, for satellite sensors having only visible and NIR bands and lacking SWIR 

bands, further investigation should be focused on how to improve the performance of RA 

algorithms by overcoming the problem associated with a limited spectral resolution.

In addition to the development of more suitable vegetation indices, the improvement in the 

accuracy of VI∞ and VIs estimates by rendering both values less sensitive to plant species 

and soil background is another future research priority. In this context, the endmember 

generation algorithm (EGA)—including the minimum volume transform (MVT) (Craig, 

1994; Hendrix et al., 2012), non-negative matrix factorization (NMF) (Pauca et al., 2006; 

Tong et al., 2017), and independent component analysis (ICA) (Chen and Zhang, 1999; 

Xia et al., 2011)—may be appropriate. The EGA has been used mainly for analyzing 

hyperspectral remote sensing images; therefore, the issue of effectively using EGA for 

multispectral images needs to first be addressed.
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Furthermore, the fractional cover of green vegetation should be further divided into sunlit 

and shaded vegetation components because of the difference between sunlit and shaded 

leaves in terms of absorbed photosynthetically active radiation (PAR). This would be 

beneficial for optimizing the precision of the light use efficiency models to understand 

the process of carbon and water cycles of terrestrial ecosystems. Therefore, the development 

of a simple, available, and robust algorithm based on the formulae of RA algorithms for 

estimating sunlit and shaded vegetation cover is critically required.

5.2 Challenges and future prospects on applications and sensors

As discussed above in Section 4.2.3, RA algorithms have been widely used over the last 

three decades. Nevertheless, in certain cases associated with LULC changes, such as those 

where the potential presence of landslides and land flows needs to be inferred (Chen and 

Huang, 2013), drought conditions need to be quantitatively estimated (Barbosa et al., 2019) 

and post-fire vegetation recovery monitoring is required (Veraverbeke et al., 2012), very 

little attention has been paid to the use of RA algorithms. Natural hazards are major threats 

to human life and the world economy. As is known, rapid and prompt detection of the 

vegetation cover changes is specifically important for disaster prevention and mitigation 

and post-disaster recovery (Dahigamuwa et al., 2016; Sekizawa et al., 2015). Specifically, 

in the face of recurring droughts in arid and semi-arid regions (e.g., southern Africa), 

detailed spatiotemporal patterns of drought are vital for scheduling agricultural management 

practices and thus ensuring food security. The modified perpendicular drought index (MPDI) 

was developed by Ghulam et al., (2007) by introducing the fc derived by the semi-empirical 

NDVI model and has been efficiently used for crop drought monitoring. In addition, in view 

of the frequent fires in the Amazon forest, pragmatic algorithms for monitoring post-fire 

vegetation recovery efficiently may be helpful for forest management. Vila and Barbosa 

(2010) demonstrated that post-fire vegetation regrowth detection using the semi-empirical 

NDVI model was more accurate than that using SMA, although both underestimated fc 

(possibly, owing to the presence of the NPV). Therefore, mitigating the NPV effects is a 

priority for broadening the application of RA algorithms. In this regard, as discussed in 

Section 5.1, the MCARI(705j750)-based linear VI model might be more useful for assessing 

post-fire vegetation recovery.

Focusing on sensor types, we note that RA algorithms have rarely been applied to Sentinel-2 

data, which have come to be among the most popular sources of remote sensing data used 

for the derivation of fc(Verrelst et al., 2012; Wang et al., 2018). Three newly added red-edge 

wavelength bands of S2, which are not presented in many other satellite sensors, such as the 

Landsat series, may lead to breakthrough innovations in RA algorithms, because red-edge-

based indices were found to be highly correlated with the vegetation cover in previous 

studies (Gitelson, 2013; Liu et al., 2007). A recent study by Feng et al. (2017)showed that 

use of the red-edge slope instead of the NDVI in the linear VI and semi-empirical VI models 

could improve the precision of the retrieved fc values. In addition, China’s high-resolution 

earth observation system (CHEOS) satellite series also play an important role in longterm 

remote sensing services (Gu and Tong, 2015). According to Jiaet al. (2016), GF-1 wide field 

view (WFV) surface reflectance data can produce satisfactory fc products. However, thus 

far, only little international attention has been paid to the CHEOS satellite series. In the last 
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several years, the GaoFen (GF) satellite series (GF-2/-4/-5/-6) were launched successively 

and have significantly increased the earth observation system’s capacity. More recently, 

the 16-m data of GF-1 and GF-6 can be freely downloaded by users on China National 

Space Administration (CNSA) GEO platform (access at: http://www.cnsageo.com). Other 

GF satellite images (e.g., GF-5) are not available as openaccess satellite data, but they are 

expected to be in the near future. Therefore, the CHEOS satellite series are expected to 

aid in the near real-time quantitative measurement of vegetation, which could bridge the 

data gaps in the long revisit cycle of current operating earth resource satellites (e.g., the 

Landsat series) and could respond to the demand for accurate and prompt fc estimation. 

However, development of approaches for harmonizing GF satellite observations to achieve 

the maximum benefit from current earth observation instruments is a significant challenge. 

In brief, the S2 data and GF images have extraordinary potential for deriving spatial and 

temporal distributions of fc. However, the applicability of combinations of such data with 

RA algorithms for vegetation cover monitoring remains largely unexplored and requires 

further investigation.

6 Conclusions

Given the increasing interest in the exploration of land surfaces, regularly and promptly 

updated vegetation cover products are essential. This requires convenient and powerful 

processing methods for quantifying fc. In this review, we discussed the background, issues, 

status quo and trends, challenges, and future prospects of RA algorithms based on 173 

selected scientific publications. The most important key findings are listed below:

(1) The number of studies using RA algorithms has increased constantly over 

the last three decades, and the linear VI model has been the most frequently 

used within the RA family. The Landsat series and MODIS remain the most 

frequently used data sources for the fc estimation using RA algorithms, although 

the most recent studies have focused increasingly on the use of high-resolution 

satellite data from other spaceborne sensors. Regional studies of fc have been 

conducted mainly in the northern temperate zones at latitudes between 25° and 

55°N, whereas regional studies that include Oceania, South/Central America, 

and Africa were presented limitedly.

(2) In the related research, three main issues influencing the inversion accuracy 

of fc using RA algorithms are to determine NDVI∞ and NDVIs values, to 

correct for the inherent limitations of NDVI, and to mitigate the NPV effects. 

For large-scale applications, we recommend the use of the improved methods 

proposed by Zeng et al. (2000), Montandon and Small (2008), Song et al. 

(2017), and Muet al. (2018). We also emphasize the importance of evaluating the 

performance of these improved methods using remote sensing images with other 

spatial resolutions, in addition to the Landsat and MODIS data. In addition, 

the MSAVI, VARI, NDVI plus RVI, and MTVI2 could be feasible alternatives 

to the NDVI in RA algorithms for fc estimation. We recommend that future 

research considers the substitution of NDVI by red-edge vegetation indices (e.g., 
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MCARI(705,750)) and utilizes the new generation of satellite sensors (e.g., S2, 

CHEOS satellites) for near real-time retrieval of fc.
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Fig. 1. 
Summary of the origin, improvement, and applications of relative vegetation abundance 

algorithms. Numerical models include meteorological, climate, ecohydrological, and 

agronomic models, and others.
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Fig. 2. 
Values of NDVI∞ and NDVIs. Green vegetation consists of cultivated land, woody plants, 

grassland, and combinations. Woody plants is a combination of forest and shrubbery. 

Combinations refers to mixtures of cultivated land, woody plants, and grasslands.
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Fig. 3. 
Published items (left y-axis) and usage frequency (right y-axis) of RA algorithms over the 

five-year intervals between 1990 and November 2019 (x-axis). The pie chart indicates the 

contribution of RA algorithms used to estimate fc in the relevant studies on fc. The broken 

line shows the trend of usage frequency of RA algorithms.
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Fig. 4. Number (x-axis) of RA algorithms applied to the remotely sensed data obtained from 
sensors or database (lefty-axis) with various spatial resolutions (right y-axis) between 1990 and 
2019.
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Fig. 5. Number of RA algorithms (excluding the NDVI mixture model) applied to remotely 
sensed images with 30-m, 250-m, and 1-km spatial resolutions.
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Fig. 6. World map displaying the geographic distribution of the selected studies.
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Table 2

Relevant journals that have published four or more of the papers related to RA algorithms. The search was 

conducted on November 5, 2019.

Journals Number of papers

Remote Sensing 21

Remote Sensing of Environment 21

International Journal of Remote Sensing 19

International Journal of Applied Earth Observation and 7

Geoinformation

IEEE Transactions on Geoscience and Remote Sensing 6

Agricultural and Forest Meteorology 4

ISPRS Journal of Photogrammetry and Remote Sensing 4

Hydrology and Earth System Sciences 4
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