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Abstract

Nitrogen (N) is considered as one of the most important plant macronutrients and proper 

management of N therefore is a pre-requisite for modern agriculture. Continuous satellite-based 

monitoring of this key plant trait would help to understand individual crop N use efficiency and 

thus would enable site-specific N management. Since hyperspectral imaging sensors could provide 

detailed measurements of spectral signatures corresponding to the optical activity of chemical 

constituents, they have a theoretical advantage over multi-spectral sensing for the detection 

of crop N. The current study aims to provide a state-of-the-art overview of crop N retrieval 

methods from hyperspectral data in the agricultural sector and in the context of future satellite 

imaging spectroscopy missions. Over 400 studies were reviewed for this purpose, identifying 

those estimating mass-based N (N concentration, N%) and area-based N (N content, Narea) using 

hyperspectral remote sensing data. Retrieval methods of the 125 studies selected in this review can 

be grouped into: (1) parametric regression methods, (2) linear nonparametric regression methods 

or chemometrics, (3) nonlinear nonparametric regression methods or machine learning regression 

algorithms, (4) physically-based or radiative transfer models (RTM), (5) use of alternative data 

sources (sun-induced fluorescence, SIF) and (6) hybrid or combined techniques. Whereas in the 

last decades methods for estimation of Narea and N% from hyperspectral data have been mainly 

based on simple parametric regression algorithms, such as narrowband vegetation indices, there 

is an increasing trend of using machine learning, RTM and hybrid techniques. Within plants, N 

is invested in proteins and chlorophylls stored in the leaf cells, with the proteins being the major 

nitrogen-containing biochemical constituent. However, in most studies, the relationship between 
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N and chlorophyll content was used to estimate crop N, focusing on the visible-near infrared 

(VNIR) spectral domains, and thus neglecting protein-related N and reallocation of nitrogen to 

non-photosynthetic compartments. Therefore, we recommend exploiting the estimation of nitrogen 

via the proxy of proteins using hyperspectral data and in particular the short-wave infrared 

(SWIR) spectral domain. We further strongly encourage a standardization of nitrogen terminology, 

distinguishing between N% and Narea. Moreover, the exploitation of physically-based approaches 

is highly recommended combined with machine learning regression algorithms, which represents 

an interesting perspective for future research in view of new spaceborne imaging spectroscopy 

sensors.
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1 Introduction

The determination of nitrogen (N) in agriculture has been discussed and studied intensely 

because N is one of the most important plant macronutrients strongly influencing crop 

growth, production and quality (Baret et al., 2007; Lemaire et al., 2008). The proper 

management of N is a pre-requisite for modern agriculture: optimal crop yield from high 

quality grain can only be obtained with sufficient provision and corresponding uptake of 

N. Thus, in agricultural practise, N is usually applied via fertilization (Beeckman et al., 

2018). Because the actual uptake of N largely depends on the current growth conditions, 

which are extremely variable in space and time, fertilization is often oversupplied (Skiba 

and Rees, 2014). Such excessive fertilization causes plant stress and overproduction of 

leaves, which in turn renders the plants susceptible to diseases (Powell and Lindquist, 1997). 

Overfertilization also leads to excess N that remains unused in the soil. If this N leaches 

below the root zone or is lost through run-off, nitrate (NO3
–) will accumulate in natural 

water bodies (Jaynes et al., 2001; Padilla et al., 2018). The ecological effects of nutrient 

overloads are well known as algal blooms or eutrophication of freshwater lakes and coastal 

areas. This further leads to nitrate contaminated drinking water, which requires expensive 

treatments. Additionally, nitrous oxide (N2O) emissions from denitrification and manure 

decomposition processes on agricultural sites add to the greenhouse gas budget of the 

atmosphere contributing to global warming (Skiba and Rees, 2014). In summary, both wet 

deposited forms of N, i.e. ammonium (NH4
+) and NO3

–, and gaseous ammonia are harmful 

to vegetation and therefore have a strong impact on biodiversity through foliar damage, 

eutrophication, acidification and other stresses. These problems go far beyond agricultural 

areas: sensitive species are affected within vulnerable habitats often adapted to low nutrient 

levels, such as grassland, heathland, peatland, forests, arctic and montane ecosystems (Dise 

et al., 2011).

Nitrogen deficiency, on the other hand, negatively affects photosynthetic assimilation and 

crop yield both in terms of quantity and quality (Chlingaryan et al., 2018; Jay et al., 

2017; Milford et al., 1985). Therefore, fertilizer application rates for optimal economic 
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and environmental yield should be considered by taking into account the individual needs 

of genotypes as well as their actual uptake rates depending on growth stage, soil and 

weather conditions. Moreover, instead of applying excessive amounts of fertilizer to cover 

potential crop N demand, the N required according to the target yield should be determined 

(Lemaire et al., 2008). While monitoring crop N content during the early vegetative growth 

stages is of major importance for the planning of fertilization measures, assessment of N 

during mature growth stages provides valuable indication of expected yield quality. Thus, a 

continuous monitoring of crop N during all growth stages could be of high economic impact 

(Hank et al., 2019).

With this background in mind, our review study has the following objectives:

• We intend to give an actual overview of crop nitrogen retrieval by means of 

hyperspectral data and related methods both in view of upcoming spaceborne 

imaging spectroscopy missions and agricultural monitoring.

• A detailed analysis of the literature will indicate common methods used in the 

past and identify possible gaps and future trends.

• Finally, the review aims to give recommendations and inspirations for possible 

new research directions going beyond the traditional methods, and to discuss 

perspectives of N retrieval from future imaging spectroscopy data streams with 

associated challenges.

The remainder of the paper is organized as follows. Section 2 introduces the physiology of 

N and the strong relation to proteins. Section 3 presents the exploitation of reflectance data 

for the estimation of N or proteins and discusses important N related issues encountered in 

remote sensing based precision farming. The section also summarizes findings from other 

review studies. Section 4 discusses the current state of remote sensing retrieval algorithms 

linked to the estimation of N; Section 5 considers future available satellite missions suitable 

for N monitoring; Section 6 explains the screening of N studies, classifies applied methods 

and discusses advantages and limitations of the diverse approaches. Finally, Section 7 

summarizes significant research gaps and highlights future perspectives.

2 Nitrogen physiology: constituent of chlorophylls and proteins

The biochemical components of leaves are mainly composed of four elements: hydrogen 

(H), carbon (C), oxygen (O) and nitrogen (N) with resulting optical properties due to 

interactions of light with C—O, O—H, C—H, and N—H bonds and stretches (Kokaly and 

Clark, 1999). N, being taken up by the roots from soil in the form of NH4
+ and NO3

–, 

is a rather small component of leaf dry weight, ranging from 0.3% to 6.4% (Wright et 

al., 2004). A large amount of N is invested in proteins and chlorophylls within the leaf 

cells, with the proteins being the major N-containing biochemical constituent of plants 

(Kokaly et al., 2009). Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is the 

most abundant protein in leaves and in the world (Ellis, 1979). It catalyses the carbon 

fixation at the beginning of the Calvin-Benson cycle (Bassham et al., 1954) and accounts for 

15–30% of the total leaf N in C3 species (Evans, 1989; Makino, 2003). Moreover, rubisco 

is a major source for N remobilization along with other photosynthesis-related proteins 
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(Masclaux-Daubresse et al., 2010). Chlorophylls are the primary light harvesting molecules 

in the photosynthesis process converting carbon dioxide and water into carbohydrates 

(Evans, 1989; Kokaly et al., 2009). The organic molecule of chlorophyll is a porphyrin 

that contains four N atoms, which act as a stabilizer of the central magnesium ion. However, 

only very small shares of leaf N (1.7%) are held in chlorophyll pigments (Kokaly et al., 

2009). In total, about 19% of leaf N in C3 plants is allocated to light harvesting complexes 

(Chapin et al., 1987), see also Fig. 1. They are mainly used to synthesise chlorophyll and 

chlorophyll-binding proteins in both photosystems and thus explain the strong correlation 

between N and chlorophyll proposed by many studies. The largest part of leaf N (70%) 

is bound in molecules supporting carbon fixation, which include biosynthetic (~18%) and 

CO2-fixing molecules such as rubisco (26%), bioenergetics (5%) and light harvesting (19%), 

see also Fig. 1 for an exemplarily sun leaf of a C3 plant (Chapin et al., 1987; Kokaly et al., 

2009).

Vegetation growth is not a static but a dynamic process of constant nitrogen turnover 

(Kattge, 2002). For example, early in a growing season N is first bound in vegetative 

tissues. During the reproductive phase, N is moved or reallocated from the vegetative organs 

(leaves) to reproductive structures, such as seeds, ears or fruits (Ohyama, 2010). Note 

that allocation is not an independent process, but the combination of multiple processes 

involving the assembly and disassembly of N-containing structures, such as proteins, nucleic 

acids, chlorophyll and phytochemicals, and particularly alkaloids.

Numerous studies have related different kinds of spectroscopic estimation of chlorophyll 

content to nitrogen, relying on the fact that the two traits are highly correlated. However, 

the linkage is weak with Pearson correlation coefficient of 0.65 ± 0.15 across ecosystems 

(Homolová et al., 2013), which can be explained by the minor contribution of N to light 

harvesting processes, and the different allocations of N, including photosynthesis, storage, 

respiration and structure (Xu et al., 2012). Some ecosystems, e.g. as the humid tropics, are 

known for strong decoupling of leaf chlorophyll and N contents (Asner and Martin, 2009). 

The use of chlorophyll content as proxy for N can be misleading when in reality other 

mineral deficiencies occur: for instance, the sulphur deficiency symptom leads to chlorosis 

starting in the emergence of young leaves (Schnug and Haneklaus, 2005). Rust infestation 

may also be confused with N deficiency, as diseased plants exhibit higher reflectance values 

in the visible region caused by lower chlorophyll activity (Bravo et al., 2003). Yellowing due 

to a decrease in chlorophyll of crop leaves may therefore be caused by many factors that are 

not necessarily related to N deficiency, for instance herbicide injury, liquid fertilizer burn, 

freeze injury or moisture stress (Kimura et al., 2016). Therefore, decoupling the estimation 

of chlorophyll and N content from remote sensing data may contribute to improve our 

capacity to discriminate among various stresses and pathogens. In contrast to chlorophyll, 

the leaf protein content appears as a strong proxy for leaf N content which may not suffer 

from the same downsides, as the largest part of leaf N is bound in proteins. Proteins 

contribute to the different allocations of N (Xu et al., 2012), and strong correlations between 

N resorption and protein degradation have been evidenced for some species (Yasumura et 

al., 2007), even if this mechanism is not universally shared among species (Sample and 

Babst, 2018). The measurement of protein content in food material (including plant tissues) 

is usually directly derived from the Kjeldahl method which consists in digesting proteins 
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and measuring the N contained in these proteins, as well as ammonia and ammonium. 

Traditionally, a nitrogen-to-protein conversion factor of 6.25 was used. Yet, some studies 

have demonstrated that the factor is invalid for plant materials due to the existence of 

non-protein nitrogenous compounds (Milton and Dintzis, 1981; Mosse, 1990; Yeoh and 

Wee, 1994). In this context, different factors have been discussed as reviewed by Mariotti et 

al. (2008) and a factor of 4.43 was proposed by Yeoh and Wee (1994) for plant tissues after 

analysis of 90 plant species.

An exemplary relationship between in situ measured canopy chlorophyll content and 

aboveground nitrogen content (Narea) depending on the growth stage of winter wheat and 

maize is presented in Fig. 2. This finding points toward the limitation of solely using 

empirical chlorophyll-N relationships to estimate the area-based N content of crop canopies: 

the correlation between canopy chlorophyll content and aboveground Narea decreases as 

soon as flowers and fruits appear or senescence emerges. This results from the dynamic 

process of nitrogen turnover, explained before: in the reproductive growth stage, N is 

reallocated from the vegetative organs to reproductive structures (Ohyama, 2010). Hence, 

the amount of N in the plant remains the same whereas leaf chlorophyll content decreases.

The relationship among leaf constituents of the Leaf Optical Properties Experiment, LOPEX 

dataset (Hosgood et al., 1994), confirms these findings: the analysis of the LOPEX data 

(downloaded from opticleaf.ipgp.fr) revealed a weak correlation (R2= 0.14) between N and 

chlorophylls across growth stages and species, which limits the capability of estimating N 

from chlorophylls. Hereby, in situ observations for > 40 species were collected, including 

agriculturally relevant crops such as corn, sunflower, rice, potato, alfalfa and cabbage. This 

illustrates the difficulty to produce robust models for the estimation of plant N based solely 

on the relation between chlorophyll and nitrogen.

To summarize the physiological discussion of plant-bound nitrogen, we recommend 

recognizing proteins as the major N-containing biochemical constituent of leaves and plants. 

The often assumed strong positive relationship between N and chlorophylls is hampered 

by the fact that only a small part of the total plant N amount is effectively bound in 

chlorophylls. Moreover, the multiple allocations and remobilization of N leads to a decrease 

in the relation between chlorophyll content and N under environmental constraints and with 

beginning senescence at the end of the growing season. Besides, a positive N–chlorophyll 

relationship is species-specific and thus not applicable for regions with high species diversity 

(Hallik et al., 2009; Homolová et al., 2013).

3 Hyperspectral sensing and applications in the context of nitrogen

The three processes of absorption, reflection and transmission describe interactions between 

incident radiation, leaf biochemical constituents and canopy biophysical traits. The reflected 

solar radiation in the optical domain (i.e. from 380 to 2500 nm) is generally used in 

studies that analyze vegetation characteristics, since most of the absorption features of 

green vegetation are located in this part of the spectrum (Homolová et al., 2013; Kokaly et 

al., 2009). The reflectance in the optical domain can be divided into three spectral parts: 

the visible (380–700 nm, VIS), which is dominated by absorption of foliar photosynthetic 
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pigments, such as chlorophylls, carotenoids and anthocyanins; the near infrared (700–1300 

nm, NIR), which is dominated by scattering occurring at both leaf and canopy scale and 

driven, among others, by leaf structure, the leaf area index (LAI) and plant density; the 

shortwave infrared region (1300–2500 nm, SWIR) which is dominated by absorption of 

water, lignin, cellulose and proteins. The studies of Thenkabail et al. (2013a) and Hank et 

al. (2019) provide illustrative figures of the spectral domains and their sensitivity to specific 

vegetation variables.

For more than three decades, reflectance data from hyperspectral sensors have been used to 

estimate and monitor biochemical constituents and biophysical traits of vegetation, including 

foliar N (Hansen and Schjoerring, 2003; Inoue et al., 2012; Peñuelas et al., 1994). The term 

hyperspectral, used here for simplicity, rather emphasizes a large number of spectral bands 

without further specification. The more appropriate term would be “imaging spectrometry” 

or “imaging spectroscopy” according to Schaepman et al. (2006). It can be understood 

as a passive remote sensing technology simultaneously acquiring spatially co-registered 

images or signatures in contiguous series of narrow wavebands. The narrow bands are 

usually provided in spectral sampling distance (SSD) of 10 nm or less. The availability 

of hyperspectral data does not always imply that the full spectrum was exploited. Instead, 

one must distinguish between those studies that used data from hyper-spectral sensors 

for broadband analysis, i.e. resampling of spectral reflectance according to the spectral 

configuration of different (broad) band sensor systems, e.g. by Prey and Schmidhalter 

(2019). Hyper-spectral narrowband remote sensing techniques aim at taking advantage of 

hundreds of bands sensitive to biochemical constituents and biophysical traits (Marshall et 

al., 2016). There have been numerous studies demonstrating the suitability of broadband 

methods (and sensors) for the retrieval of structural biophysical vegetation traits, such as 

LAI (Darvishzadeh et al., 2019; Richter et al., 2012b; Vuolo et al., 2010). However, the 

usage of broadband methods (and thus sensors) is limited for the estimation of subtle 

features related to vegetation biochemistry such as proteins due to the fact that only portions 

of the solar spectrum are exploited and that spectral information is lost at integrating over 

coarse bandwidths (Ollinger, 2010). For the detection of these fine features, narrowband 

analysis or chemometric methods (Lavine and Workman, 2013) should be given preference.

In the pioneering work from Curran (1989), distinct absorption peaks of proteins (and 

nitrogen) were reported, located mainly in the SWIR spectral range (Table 1). These results 

were confirmed by Fourty et al. (1996), who found a good agreement within a 10 nm - 

window of protein absorption positions between their own measurements and the bands 

identified by Curran (1989). Table 1 summarizes specific absorption bands associated with 

proteins and nitrogen according to Kumar et al. (2001), Curran (1989) and Fourty et al. 

(1996). The studies reported absorption bands published by previous studies measuring 

biochemical absorption features (Curran, 1989; Elvidge, 1990; Himmelsbach et al., 1988; 

Williams and Norris, 1987).

Some of the indicated absorption bands are not only sensitive to proteins or N, but also to 

other important biochemical components, such as lignin at 1690 nm and 1940 nm, cellulose 

at 1940 nm and starch at 1690 nm and 1940 nm. In particular, the strong O—H bound 

at 1940 nm causes absorption of these biochemicals and water simultaneously (Kumar et 
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al., 2001). This should be taken into account for the estimation of foliar biochemistry from 

single absorption features.

Biophysical chemical analyses of N are costly, laborious, time consuming and restricted 

to a limited number of locations and time points, which does not allow for monitoring 

continuous seasonal development. Instead, this can be accomplished by usage of precision 

farming techniques. Precision farming is an important component of smart farming, which 

aims at information-driven optimization of farming systems (Bach et al., 2016) and includes 

real-time Earth observation contributing to site-specific planning of important management 

measures such as fertilization (Cidad et al., 2000; Hank et al., 2019). Recently, such 

satellite-, planes-, drones or vehicle-based remote sensing technologies are becoming 

important tools in supporting the present management systems. From satellites, multi-

spectral imaging systems have been frequently used to obtain information about crop N 

status (Söderström et al., 2017; Zheng et al., 2018). Mulla (2013) identified the use of 

hyperspectral remote sensing for variable rate, inseason management of nitrogen fertilizer 

as “perhaps of greatest interest for precision agriculture”. The implementation of such 

technologies may also mitigate the negative effects of N on the plant.

Review studies of N retrieval discussing the plethora of multi-spectral systems have been 

published by Goffart et al. (2008) or Muñoz-Huerta et al. (2013). Both studies highlight 

the potential of future hyperspectral sensors for N deficiency detection since discrimination 

of leaf biochemical components can best be achieved by exploiting narrow spectral bands. 

Moreover, the study of Baret et al. (2007) reviewed the quantification of stress levels from 

remote sensing observations with N as a key factor. The authors mainly focused on canopy 

chlorophyll content as a proxy for N based on findings of their previous study (Baret 

and Fourty, 1997), stating that “there were very few chances to retrieve canopy nitrogen 

directly or protein content from remote sensing observations, even using hyper-spectral 

systems” (Baret et al., 2007). This is in accordance with the exhaustive review study of 

Homolová et al. (2013) who examined optical based plant traits mapping including N. The 

authors discussed the problem of different scales, such as scaling up from leaf to canopy 

level and agreement between different kinds of remote sensing observations. Moreover, 

they presented a comprehensive figure of spectral wavelengths frequently used in scientific 

literature for estimation of N concentration (N%) and content (Narea), showing a broad 

distribution over the entire optical domain with some pronounced features in the SWIR. As 

conclusion of their study, Homolová et al. (2013) strongly supported the hypothesis that 

optical remote sensing of chlorophyll content can be used as an operational proxy for N 

estimation, based on moderate to good relationships between nitrogen and chlorophyll. In 

fact, since decades, numerous studies have been published demonstrating a success in N 

retrieval using chlorophyll as proxy, e.g. Filella et al. (1995). Dale et al. (2013) reviewed 

various applications of near-infrared hyperspectral imaging (NIR-HSI) in agriculture with 

plant stresses imposed, among others, by insufficient N fertilization. The authors pointed out 

that hyperspectral data from macroscopic to satellite level are currently a large opportunity 

to assess the quality of agro-food products. Weiss et al. (2020) defined N as a secondary 

agronomic state variable not directly derivable from radiative transfer modelling. Instead, 

N results from the combination of several processes within the soil-plant-atmosphere 

continuum and can only be directly derived using empirical approaches. Deterministic 
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approaches can be used to estimate primary variables (such as chlorophyll content or 

proteins) by combining land surface process models and remote sensing data. Knyazikhin et 

al. (2013b) analyzed the link between vegetation canopy bidirectional reflectance factor 

(BRF) and foliar N% for forests. The authors concluded that three-dimensional (3-D) 

radiative transfer theory is required to explain the physically consistent linkage between leaf 

scattering and canopy reflectance, which often neglected by existing approaches. Multiple 

studies have demonstrated that N% of grasslands or cultivates decreases over the growing 

season, implying that it negatively relates to dry total biomass (Greenwood et al., 1986; 

Justes et al., 1994; Tilly and Bareth, 2019). This dropping of crop-specific critical N% 

during growth can be described by a negative power function, named “dilution curve”. See 

also Lemaire et al. (2008) for details. In this context, the concept of the nitrogen nutrition 

index (NNI) has been introduced (Justes et al., 1994; Lemaire et al., 1989), which is the 

ratio between the actual N% to the optimal (critical) N% value. Hereby, knowledge of plant 

dry biomass is required. If NNI > 1.0, the crop is provided with sufficient (or excess) N. In 

contrast, NNI < 1.0 implies N deficiency, leading to crop stress. Considering this dilution 

phenomenon of N%, Baret et al. (2007) proposed to use Narea to calculate NNI instead of 

N%, since the resulting N excess or N deficiency can be directly quantified (see also Fig. 4 

in Baret et al. (2007)).

In summary, it appears that none of these review studies directly examined the potential of 

protein content as proxy for nitrogen but rather proposed the use of the relation between N 

and chlorophyll content for nitrogen retrieval. A reason for this may be the lack of satellite 

imaging spectroscopy missions in the past that could provide time series of narrowband 

reflectance data covering also the SWIR spectral region, which allows the monitoring of 

spectral features of proteins. Another explanation may be that the impact of proteins on 

canopy reflectance is rather small compared to other parameters by contributing with only 

2–4% to the total variation of canopy reflectance (Wang et al., 2018). It may therefore 

be more straightforward to estimate chlorophyll content exhibiting a distinctive signal in 

the visible spectral domain. Most of the studies highlight the meaningfulness of empirical 

methods for N retrieval (Clevers and Kooistra, 2012; Homolová et al., 2013), whereas 

deterministic approaches such as radiative transfer modelling of proteins is still in its 

infancy. Nevertheless, the physically-based N retrieval would be the only option for a 

transferable monitoring system within the agricultural context. With our review study we 

want to stress on these discussions and gaps, and point toward possible new developments.

4 Algorithms for nitrogen retrieval from remote sensing data

Thomas and Oerther (1972) made pioneering efforts to estimate N from remote sensing 

and were the first exploiting the relationship between foliar N concentration and laboratory-

based leaf reflectance measurements of sweet pepper plants. Since then, methodologies 

for remotely sensed retrieval of N in the agricultural context were further developed and 

improved. In the years 1991–1992, the NASA Accelerated Canopy Chemistry Program 

(ACCP, 1994) was established to identify a sound theoretical and empirical basis to estimate 

N (and lignin) concentrations in vegetation from remotely sensed imagery.
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From the controlled conditions of laboratory-based reflectance measurements to field-, 

airborne and satellite-based studies, a number of effects potentially increase uncertainties 

of N retrieval. According to Malenovský et al. (2019) three main categories of variability 

and uncertainty sources can be identified in the context of biochemical and biophysical 

plant traits retrieval from (satellite) imaging spectroscopy data. The first category includes 

the errors referred to the sensor, including sensor calibrations, and radiometric, geometrical 

and atmospheric corrections (Baret and Buis, 2008; Gao et al., 2009). The second category 

of uncertainties arises from the parameterizations and assumptions specific to retrieval 

algorithms (Knyazikhin et al., 2013b). The third group involves the acquisition of in situ 

field data which are the basis for physically quantifying the uncertainty of the derived 

vegetation traits (Richter et al., 2012a). Our review mainly focuses on the second category 

and investigates uncertainties, problems and challenges associated with the different 

methods for the estimation of N.

4.1 Parametric regressions methods

In the last decades, predominantly simple empirical algorithms based on parametric 

regressions have been used for N estimation from hyperspectral signatures in the agricultural 

context. These approaches are by far the most applied and largest group of biochemical 

and biophysical vegetation trait estimation techniques. Parametric regression models include 

narrowband vegetation indices (VI) exploiting wavelengths mainly in the VIS, red edge, 

NIR, but also SWIR, e.g. (Chen et al., 2010; Clevers and Kooistra, 2012; Eitel et al., 

2008; He et al., 2016; Herrmann et al., 2010; Jay et al., 2017; Moharana and Dutta, 2016; 

Stroppiana et al., 2009a). Several studies have demonstrated improved retrievals of canopy 

N when protein-related absorption bands in the NIR and SWIR were incorporated into 

narrowband indices (Ferwerda et al., 2005; Herrmann et al., 2010; Serrano et al., 2002).

4.2 Linear nonparametric regression methods

Linear nonparametric regression methods, also known as “chemometrics”, were also 

exploited for the estimation of N. Chemometrics can be summarized as data-driven 

approaches using mathematical and statistical techniques to extract chemical and physical 

information from complex data, such as those measured from hyperspectral sensors. In 

contrast to the statistical linear parametric approaches, chemometrics do not reduce the 

spectral information to defined indices but rather add value to the data by transforming them 

into new features (Davies, 2012): principal component analysis (PCA) is a full-spectrum 

chemometric procedure that converts a set of observations of possibly correlated variables 

into a set of principal components of linearly uncorrelated variables by applying orthogonal 

transformation (Liu et al., 2017). In hyperspectral remote sensing, PCA methods are usually 

applied for spectral dimensionality reduction (Rivera-Caicedo et al., 2017). The principal 

components can then be used to calculate regression coefficients for the derivation of 

biophysical or biochemical vegetation traits (=Principal Component Regression, PCR). 

Stepwise multiple linear regression (SMLR) uses a defined set of wavebands as independent 

(predictive) variables (Grossman et al., 1996). Within each step another predictive variable 

is added or subtracted from the set of explanatory variables in the function based on 

specific criteria, such as the Akaike information criterion (Yamashita et al., 2007). The 

full-spectrum methods of “partial least squares regression” (PLSR) have been widely used 
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in chemometrics (Atzberger et al., 2010; Wold et al., 2001). This technique relates two data 

matrices (i.e. reflectance and corresponding biochemical trait) by a linear multivariate model 

taking also the structure of these matrices into account. With this characteristic, PLSR goes 

beyond traditional regression (Wold et al., 2001), transforming the spectral feature space in 

a way that the resulting factors account for a maximum of variance in the covariance with 

the target variable(s). PLSR is able to analyze a vast amount of noisy, collinear data, and its 

precision increases with the increasing number of relevant variables and observations.

4.3 Nonlinear nonparametric regression methods

Further, nonlinear nonparametric regression methods, namely machine learning regression 

algorithms, have been adopted for vegetation remote sensing (Verrelst et al., 2019). The 

group of machine learning includes kernel methods such as support vector regression 

(SVR), e.g. described in Smola and Schölkopf (2004), a kernel-based regularized regression 

algorithm. One of today’s most promising machine learning methods is Gaussian processes 

regression (GPR), developed by Rasmussen and Williams (2006). These types of machine 

learning models have excelled in Earth observation problems in recent years and were 

mainly introduced for model inversion and emulation of complex codes (Camps-Valls et 

al., 2016). GPR belongs to kernel based methods relying on a solid Bayesian formalism 

and thus allow for a formal treatment of uncertainty quantification and error propagation 

(Camps-Valls et al., 2019; Verrelst et al., 2012). As a probabilistic approach, a GPR model 

is trained to find individual functions to all training data by fitting a mean and a covariance 

function. Other examples of machine learning include random forest regression (RFR) 

and artificial neural networks (ANN). These methods have become increasingly popular 

in image processing for numerous applications, which is due to their reliable performance 

and robustness (Verrelst et al., 2012). Random forest regression is a data mining method 

developed by Breiman (2001) combining a large set of decision trees. It is a robust ensemble 

learning technique able to handle large numbers of input variables. The widely used 

approach of ANNs makes use of error backpropagation through the network of perceptrons 

(Waske et al., 2009). A disadvantage of ANNs is that they are prone to overfitting, meaning 

that they strongly depend on input quality and may struggle with unknown values outside 

the range in which they were trained (Kimes et al., 2000). Problems of underfitting and - 

in particular - overfitting are, however, generally applicable to machine learning models. 

Overfitting occurs when the models learn random fluctuations and noise from the training 

data in high detail. Performance and generalization capability of the trained models is 

adversely affected if these features are not present in the validation data sets. Underfitting 

implies that the model did not capture essential trends in the training process and thus 

cannot be applied to new data. Alternative machine learning methods could be tested or 

hyperparameters tuned to improve performance (Verrelst et al., 2019).

4.4 Physically-based methods

As an interesting alternative, physically-based methods using radiative transfer modelling 

(RTM) offer the advantage of robustness and transferability (Berger et al., 2018a; Kimes 

et al., 2000), but have not been fully examined for the assessment of crop N (Wang et al., 

2015a). Physical modelling of the spectral signal of leaf N content has been discussed 

controversially. The authors of the original leaf optical properties model PROSPECT 
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(Jacquemoud and Baret, 1990) – a radiative transfer model based on Allen’s generalized 

“plate model”simulating the optical properties of plant leaves from 400 to 2500 nm based 

on a limited set of biochemical constituents and a structure parameter – were the first 

who tested the implementation of protein (as surrogate of N) into the absorption and 

scattering processes of the model. These and later attempts were abandoned due to the 

strong covariance of nitrogen with other N-containing compounds rendering the results 

inconsistent in particular for fresh leaves (Baret and Fourty, 1997; Fourty et al., 1996; 

Jacquemoud et al., 1996; Kokaly et al., 2009). Wang et al. (2015b) incorporated specific 

protein as well as cellulose + lignin absorption coefficients into PROSPECT-5 (Feret et al., 

2008). In their work, the authors demonstrated the applicability of the leaf optical properties 

model of separating specific absorption coefficients (SAC) for proteins and successfully 

evaluated the feasibility of estimating leaf protein content by means of model inversion 

from fresh leaf spectra in the spectral range of 800–2500 nm. This was possible through 

recalibration of the SACs using a new calibration algorithm (Feret et al., 2008; Wang et 

al., 2015b). The approach was applied by Berger et al. (2018b) to an agricultural area 

using a look-up table (LUT) based inversion of the actual PROSPECT model PROSPECT-D 

(Féret et al., 2017) adapting the SACs of protein content for fresh leaves from Wang et al. 

(2018), and coupling it with the actual version of Scattering by Arbitrary Inclined Leaves 

(SAIL) model “4SAIL” (Verhoef et al., 2007). The SAIL model (Verhoef, 1984) is one of 

the earliest and to date probably the most popular canopy bidirectional reflectance model 

(Jacquemoud et al., 2009). SAIL is based on the one dimensional (1-D) model developed 

by Suits (1972) to simulate the bidirectional reflectance factor of plant canopies which 

are assumed as turbid medium. Scattering and absorption is simulated by four upward 

and downward radiative fluxes. The coupling of SAIL and PROSPECT corresponds to 

the PROSAIL model (Jacquemoud et al., 2009). As recently reviewed by Berger et al. 

(2018a), PROSAIL has been used for almost 30 years within hundreds of studies in forward 

and inverse modes for numerous vegetation-related applications. The afore mentioned LUT-

based inversion technique consists of computing a cost function - most authors choose 

the root mean squared error (RMSE) cost function (Danner et al., 2017) - and finding 

its minimum over a (PROSAIL) data base of simulated spectral signals. The solution is 

often the mean or median of all spectra within a defined interval, such as 10–20% of 

the lowest RMSE values. The final solution for the estimated traits corresponds to the 

mean (or median) of the respective model input parameters (LAI, chlorophyll content, 

etc.). LUT-based approaches have been applied by numerous studies over the solar domain 

(Atzberger and Richter, 2012; Danner et al., 2017; Richter and Timmermans, 2009; Wang 

et al., 2015b; Weiss et al., 2000). Adapted PROSPECT models, e.g. by Wang et al. (2018) 

and Berger et al. (2018b), provide promising tools to estimate leaf proteins and thus could 

be further exploited for N retrieval application studies in an agricultural context (actual 

versions down-loadable from https://artmotoolbox.com/). Scaling up to the canopy level can 

be performed by implementing a protein-simulating PROSPECT version for instance into 

the Soil–Canopy–Observation of Photosynthesis and Energy fluxes (SCOPE) model (van der 

Tol et al., 2009) or coupling it with the Discrete Anisotropic Radiative Transfer (DART) 

model (Malenovský et al., 2013). The fact that protein absorption features are partly overlaid 

by absorption of other vegetation properties, such as water content, leads to difficulties by 

using simple parametric regression approaches for the retrieval (Feret et al., 2018). Thus, 
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RTMs should be specifically exploited to decouple confounding factors in the estimations of 

N or proteins, such as water content or canopy structure. The location of the specific protein 

absorption features (see Table 1) emphasizes the importance of incorporating the SWIR 

spectral region for RTM-based retrieval applications. Still, the ill-posed inverse problem may 

occur for which many solutions have been proposed, such as specific merit functions (Wang 

et al., 2015b) or the object-based retrieval (Atzberger and Richter, 2012). An exhaustive 

review to this and related topics is given in Verrelst et al. (2015).

4.5 Hybrid methods

Using RTMs, for instance PROSAIL, in combination with machine learning methods 

leads to hybrid retrieval procedures. Hybrid models offer the advantage of a physical 

basis provided by RTMs and the computational efficiency and flexible procedure provided 

by regression methods. While physical models explore the underlying causality between 

inputs and outputs, machine learning algorithms are able to isolate relevant inputs for a 

given output from large datasets (Baker et al., 2018). Practically, the machine learning 

model is trained on a simulated RTM database, thus rendering the need for in situ 

reference data obsolete during the training stage (Verrelst et al., 2019). The estimation of 

several biophysical and biochemical variables has been successfully performed with hybrid 

inversions: for instance leaf area index (LAI) retrieval by combining PROSAIL with ANNs 

(Verger et al., 2011), and chlorophyll content retrieval combining PROSAIL with RFR 

models (Doktor et al., 2014).

Table 2 lists the discussed main retrieval methods for N sensing from hyperspectral data 

within an agricultural context.

5 Satellite imaging spectroscopy missions for N sensing

In the past few decades, remote sensing has become an attractive technique to estimate crop 

N at the field scale, i.e. agricultural farmland within at least decametric spatial resolutions. 

In this context, field spectroscopy has been mainly used for biochemical characterization 

of vegetation during ground based campaigns, for instance by Alchanatis et al. (2005); 

Clevers and Kooistra (2012); Ecarnot et al. (2013); Li et al. (2010); Thorp et al. (2012). 

Proximal sensing at field level is locally constrained and often time-consuming. Instead, 

the monitoring of large areas using imaging spectroscopy has demonstrated advantages 

for ecological studies in the domains of agriculture, food security, soils, biodiversity, 

environmental degradation and hazards, hydrology, forestry and others, as reviewed and 

discussed by Rast and Painter (2019) or Ustin et al. (2004). For agricultural areas, satellites 

can provide spatially and temporally consistent information over the growing season 

capturing the biological lifecycle of the crop and spatial heterogeneity of every field on 

a weekly basis and at low cost (Atzberger, 2013). This is not feasible with field-based 

spectroscopy, unmanned aerial vehicles (UAV) or airborne sensors, which usually only fly 

within organized campaigns. For years, there were only two imaging spectrometers in orbit 

– Hyperion on NASA’s Earth Observing-1 satellite and Compact High Resolution Imaging 

Spectrometer (CHRIS) on ESA’s Proba-1. Yet, both sensors were not designed for global 

mapping. Hyperion data were for instance used by Abdel-Rahman et al. (2013) to estimate 
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sugarcane N concentration by means of a RFR. CHRIS data were exploited by Castaldi 

et al. (2016) to estimate the grain N uptake of wheat by means of stepwise regression 

combined with stepwise variance inflation factors (VIFs) analysis and linear mixed effect 

model (LMEM). Marshall and Thenkabail (2015) compared the estimation of crop biomass 

as important indicator for N uptake using spectral indices derived from multi-spectral sensor 

data (IKONOS, GeoEye-1, Landsat ETM+, MODIS, WorldView-2) with narrowband indices 

from the EO-1 Hyperion sensor. Results demonstrated that hyperspectral narrowband indices 

could explain 5–31% greater variability of biomass than broadband indices. This finding 

strengthens the need for satellite data with higher spectral resolution.

The rare usage of satellite imaging spectroscopy will change in the upcoming years with the 

evolution of several satellite missions that will provide frequent observations of large areas. 

Thus, a key role for scientists within the field of spectroscopy in optical remote sensing is 

the challenge of upscaling the developed models from field to spaceborne sensors (Mutanga 

et al., 2015). An actual overview of hyperspectral spaceborne systems under development, 

in preparation and recently launched is given by Rast and Painter (2019). Table 3 presents 

an overview of recently launched and planned spaceborne imaging spectrometer missions, 

which could be of interest for protein and N retrieval. These missions of interest include 

for instance the Italian PRISMA (PRecursore IperSpettrale della Missione Applicativa) 

satellite (Loizzo et al., 2019), launched on 22nd March 2019. Another example is the 

Hyperspectral Imager Suite (HISUI), developed by Japanese Ministry of Economy, Trade, 

and Industry (METI), which was launched on 5th December 2019 (Matsunaga et al., 2017). 

Shortly after, the German Environmental Mapping and Analysis Program (EnMAP) is 

foreseen for launch in April 2021 (Guanter et al., 2015). It will acquire information over 

30-km-wide areas in the across-track direction, with 30 m ground sampling distance, and 

measure the spectral domain from 400 nm to 2500 nm over 242 spectral bands with a 

SSD from 6.5 to 10 nm. Examples of other missions are, among others, the Italian-Israeli 

Spaceborne Hyperspectral Applicative Land and Ocean Mission SHALOM, envisaged for 

2022 (Natale et al., 2013). Some missions are still under investigation, as for instance the 

former Hyperspectral InfraRed Imager (HyspIRI) mission (Lee et al., 2015), now renamed 

to NASA’s Surface Biology and Geology (SBG), and the high-priority mission candidate 

Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), described in 

Nieke and Rast (2018).

The instrumental characteristics of PRISMA, EnMAP, CHIME and similar systems (see 

Table 3) are very auspicious for N retrieval studies: they cover the SWIR spectral domain 

where main protein (nitrogen) absorption features are located. The study of Pellissier et al. 

(2015), for instance, successfully estimated foliar N concentration using a PLSR approach, 

and concluded that the proposed HyspIRI (SBG) mission is promising for detecting canopy 

N concentration across multiple forms of managed grasslands. The contiguous sampling of 

spectral bands by these sensors allows the discrimination of leaf biochemical components 

such as proteins. It would be optimal if the spatial resolution provided by the future sensors 

is in accordance with ESA Sentinel-2 sensors (10–20 m) to allow the mapping of small 

agricultural fields. Nonetheless, a ground sampling distance of 30 m is still acceptable 

for many agricultural regions and applications (Rast and Painter, 2019). Thus, with all 

those missions ahead, an era of operational agricultural monitoring systems is about to 
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start providing for the first time hyper-spectral time series over large areas. This will 

enable the further exploitation and validation of efficient retrieval algorithms for vegetation 

biochemical plant constituents such as nitrogen (Hank et al., 2019). Moreover, time series 

of crop N content are crucial for the management of fertilization timing to be performed 

at specific growth stages (Weiss et al., 2020). Nevertheless, the availability of these new 

hyperspectral data streams will also pose a variety of challenges, such as the correction of 

atmospheric effects (Gao et al., 2009), temporal gap filling (Gao et al., 2008), understanding 

of floristically mixed pixels (Ollinger, 2010) or uncertainties arising from leaf-to-canopy 

upscaling approaches (Malenovský et al., 2019). Given the relatively large pixel size of these 

new and upcoming hyperspectral satellite sensors (with GSD of 10 m to 30 m, see Table 3), 

the measured signals will always represent a heterogeneous surface composite; meaning that 

one pixels’ signal is the result of the interactions of electromagnetic radiation with several 

(plant and soil) constituents (Keshava and Mustard, 2002). Therefore, specific techniques, 

such as Spectral Mixture Analysis (SMA) were explored, as it was done for instance by 

Lelong et al. (1998) for stress detection and mapping of wheat agronomic variables. A 

review of available SMA methods and results of endmember variability reduction in SMA 

is provided by Somers et al. (2011). The handling of large data volumes will also be an 

issue, but should become feasible in the near future due to the broad availability of artificial 

intelligence, machine learning and advanced data analytics (Rast and Painter, 2019).

6 Literature review of nitrogen studies for agricultural applications

6.1 Identification and screening of relevant literature

A systematic literature review was carried out including identification, screening, eligibility 

and inclusion of relevant records, described in the scheme of the Supplementary material 

(Supplement 1). The ISI Web of knowledge (Gillis, 2018) and ScienceDirect search 

engines were the main sources for the identification of relevant records. The topics 

“hyperspectral” or “imaging spectroscopy”, and “nitrogen concentration”or “nitrogen 

content”, and “agriculture” were searched in all variations for the period of 1994–2019. 

After collecting all apparently relevant records (number of studies, n = 426), a first screening 

process was performed to remove duplicates and references not relevant for the review study, 

such as conference proceedings or other non-peer reviewed works or reports, resulting in 

n = 391 papers for further investigation. In the next step, titles and abstracts screening 

was performed to exclude all studies from other research fields. In the eligibility part, the 

remaining n = 167 records underwent intensive analysis. We specifically excluded studies 

with the following criteria:

(1) No direct estimation of N (but chlorophyll content, nicotine, yield, proteins, 

fiber quality or other proxies);

(2) N of soil was determined;

(3) Forest, shrubs, wetlands or other vegetation types instead of agriculture;

(4) Resampling into multi (super-) spectral data (e.g. Quickbird, Sentinel-2);

(5) Only rough classification of N supply without concrete measurements;
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(6) Review study.

Finally, a total number of 125 records (see Supplement 2) were identified fulfilling the 

main criterion of crop N estimation with different methods from hyperspectral or imaging 

spectroscopy data within an agricultural context. From those studies relevant information 

according to the following criteria were extracted:

• Spectral exploitation: sensor type, sensor with respective spectral domain;

• Retrieval method;

• Usage of terms (N content/concentration or others);

• Geographic location of the experiments;

• Crop types and scale (leaf and/or canopy).

Fig. 3 shows the absolute number of N retrieval studies extracted from our meta-review from 

1994 to 2018 that used data from hyper-spectral sensors to estimate N within an agricultural 

context. This trend also reflects the general trend of remote sensing application studies, as 

shown for instance by other reviews in the context of agriculture (Berger et al., 2018a; Weiss 

et al., 2020).

6.2 Sensor systems

Concerning the usage of different sensor systems, it can be observed that predominantly 

proximal sensing using field spectrometers has been carried out to acquire canopy spectral 

reflectance in the field (Fig. 4), as it was the case in 75% of all studies. The most 

used instruments were from the Analytical Spectral Devices (ASD) series, operating in 

the spectral range from 350 to 2500 nm, used for instance by Stroppiana et al. (2009b); 

Wang et al. (2013); Yao et al. (2014). Field-based measurements are followed by airborne 

acquisitions, for instance with Compact Airborne Spectrographs Imager, CASI (Boegh et al., 

2002; Chen et al., 2010), AISA Eagle (Nigon et al., 2015) and AVIRIS (Perry and Roberts, 

2008). The low use of satellite-based data, mainly from CHRIS/Proba and Hyperion, was 

already discussed in Section 5. A few studies used laboratory spectroscopy for leaf N 

simulation (Chen et al., 2019) or additionally simulated reflectance from hyperspectral 

sensors by means of radiative transfer modelling (Eitel et al., 2008). UAV or drones, offering 

novel remote sensing tools for precision agriculture, were used for instance by Näsi et 

al. (2018). All studies cited in this section belong to the list of identified studies (see 

Supplement 2).

6.3 Retrieval methods

Retrieval methods for crop N used by the identified studies can be grouped into six general 

approaches, similar to the state-of-the-art retrieval methods categorization of Verrelst et al. 

(2019), see also Table 2:

• Parametric regression methods, involving the relation of N to narrow spectral 

bands or derivates, ratio narrowband vegetation indices (NB-VI) and spectral 

shapes or transformations (Section 6.3.1);

• Linear nonparametric regression methods or chemometrics (Section 6.3.2);
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• Nonlinear nonparametric regression methods or machine learning regression 

algorithms (Section 6.3.3);

• Physically-based or radiative transfer models (RTM) (Section 6.3.4);

• Alternative data sources such as sun-induced fluorescence based methods (SIF) 

(Section 6.3.5);

• Hybrid or combined techniques (Section 6.3.6).

Fig. 5 gives an overview of the frequency of applied methods within their categories of the 

n = 125 studies. Note that many of the studies used several approaches; hence the sum of all 

applied algorithms does not correspond to the total number of studies.

6.3.1 Application of parametric regression methods—The parametric regression 

models were divided into three main subgroups. Note that further subdivision is possible but 

exceeds the scope of this study. Fig. 5 indicates nine studies using the correlation of spectral 

bands or derivatives to estimate N. Tian et al. (2011), for instance, exploited the relationships 

between the red edge positions (REP) derived from different algorithms and canopy leaf N 

concentration of field-grown rice. The REP, defined as the position of the sharp change in 

leaf reflectance between 680 and 750 nm, is mainly related to changes in chlorophyll content 

(Horler et al., 1983) and thus secondarily to N.

The overall most used approaches with 62% of all identified records were the narrowband 

ratio vegetation indices. Only few studies pointed out the limitations of the indices-based 

approaches, such as limited transferability to different sites. For instance, Moharana and 

Dutta (2016) established regression models for N indices from Hyperion imagery in an 

agricultural system. The authors found that Simple Ratio (SR) and leaf N concentration 

indices, exhibiting linear and nonlinear relationships, were completely different from those 

developed by other studies. Camino et al. (2018) pointed to the importance of SWIR spectral 

information. They could show that nitrogen indices (NIs) centered at 1510 nm obtained 

better agreement with N% (R2 = 0.69) than traditional chlorophyll indices (TCARI/OSAVI 

R2 = 0.45) and structural indices (NDVI R2 = 0.57), which are solely based on the VNIR 

region. Nevertheless, the major part of the studies in this category estimated plant N on the 

basis of its correlation to chlorophyll content.

In summary, although these approaches delivered acceptable to good accuracies of N 

estimation and are fast in calculation and prediction times, it remains questionable whether 

the full complexity of hyperspectral data observed by a spectroradiometer can be captured 

by means of transformed data originating from a few discrete spectral bands (Verrelst et 

al., 2019). The main drawbacks of VI-based retrievals can be summarized in five points 

according to Atzberger et al. (2011):

(1) The ill-posedness of the inverse problem occurs, meaning that the resulting 

value of combining two bands can be a result of several different parameter 

solutions.
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(2) By using only few spectral bands, available hyperspectral information is only 

partially exploited, and enhanced sensitivity to noise may occur if narrow bands 

of low signal-to-noise (SNR) were combined.

(3) Sensor-specific calibration may not be transferred to other sensors due to 

different instrumental characteristics.

(4) Overspecialization or over-fitting can occur, meaning that the established 

VI-N models are specific to the dataset used for model calibration. This 

includes sensitivity to crop type, growth stage, underlying soil type, sun-sensor-

constellation, time and date.

(5) Finally, the need to collect in situ reference data for model establishment 

requires man power, availability of instruments for all acquisitions and 

campaigns organizational efforts.

Some of these drawbacks can be addressed by generating synthetic databases with 

appropriate RTMs (Hunt et al., 2013), or by the exploitation of hyperspectral reflectance 

data collected during intensive campaigns in diversified agricultural regions (Thenkabail et 

al., 2013b).

6.3.2 Use of chemometrics—PLSR proved to be the most popular technique in the 

group of chemometrics for studying N from hyperspectral data, and follows directly the 

NB-VI regarding all methods. It was employed by 37% of all studies selected in the review 

process. This can be explained, among other reasons, by the fact that the classical PLSR 

method is available in many software packages and is straightforward in implementation. 

Worth to mention in this context is the highly cited study of Hansen and Schjoerring (2003) 

who demonstrated that PLSR improved the prediction of N concentration and decreased the 

root mean square error (RMSE) by 24%, compared to the application of narrowband indices. 

The authors specifically highlighted that PLSR analysis “...may provide a useful exploratory 

and predictive tool when applied on hyperspectral reflectance data”. The frequent use of 

PLSR by N studies mirrors its advantage of combining the positive features of PCA and 

SMLR, as hereby the covariance to the biochemical traits of interest is considered. One 

should carefully choose the number of components; otherwise overfitting caused by too 

many components may occur (Hansen and Schjoerring, 2003). Inoue et al. (2012) stated 

that PLSR may be more suitable than principal component regression (PCR) for predictive 

purposes since the resulting latent variables (LV) of a PCR account only for variance in the 

feature space instead of the covariance between the independent and target variables as in 

case of PLSR. Nevertheless, also the PLSR method may not always provide optimal results 

due to possible disturbance by certain wavebands (Inoue et al., 2012). Some optimized 

PLSR methods have been developed to overcome these limitations, such as interval PLSR 

(Nørgaard et al., 2000).

Stepwise multiple linear regression was applied by Miphokasap et al. (2012) who found 

higher correlations with N content than by models based on narrowband vegetation indices. 

The authors illustrated their findings with the utilization of the full spectral domain of 

the SMLR (400 to 2500 nm). The benefit of SWIR bands was hereby demonstrated by 

the study of Dunn et al. (2016) who identified the four most important wavelengths for 
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predicting N uptake by means of a new calibration created by multiple linear regression 

using 738 nm, 1362 nm, 1835 nm and 1859 nm spectral bands. Since (S)MLR approaches 

do not compress spectral data to extract most essential information, sensor noise has little 

chance to be canceled out (Jacquemoud et al., 1995). An advantage of SMLR is that one 

can focus on spectral regions of interest when the relation to the variable is well-known 

(Fourty and Baret, 1997). Moreover, SMLR methods may deliver high predictive accuracies 

but sometimes at the cost of overfitting and large computational loads, in particular when 

excessive numbers of variables are selected (Yu et al., 2013; Zhou et al., 2018).

All in all, chemometric methods may be able to provide relatively high retrieval accuracies 

of N estimation. These methods may be also more suitable for N sensing from hyperspectral 

data as the NB-VI or other linear parametric approaches due to the above discussed 

advantages of exploiting the full available spectrum. However, with this approach the 

local calibration and validation limits the transfer of the models to another space and time 

(Verrelst et al., 2019). A major advantage of the two full spectrum methods PCR and 

PLSR is that they are able to overcome multicollinearity, which is the inherent problem 

of (S) MLR (Grossman et al., 1996). Multiple linear regression methods cannot cope with 

multicollinearity of hyperspectral data and therefore they tend to be unstable which limits 

their predictive capabilities (Inoue et al., 2018). It also cannot be assured that established 

components contain the most relevant information of the biochemical property of interest. 

Regarding computational efficiency, chemometric techniques may be in slight advantage 

over more complex machine learning regression and in particular compared to RTM-based 

approaches. Although machine learning models may be more complex to implement than 

PLSR approaches, they can deliver explicit estimates of uncertainties and can provide higher 

mapping qualities as found by several studies (Ashourloo et al., 2016; Verrelst et al., 2019). 

These are important aspects to be considered in view of future operational processing of 

vegetation properties from spaceborne imaging spectrometer data streams.

6.3.3 Use of machine learning regression algorithms—Regarding the usage of 

nonlinear nonparametric regression methods, random forest regression, artificial neural 

network and support vector regression have been applied in almost equal frequency (RFR, n 

= 10; ANN, n = 8; SVR, n = 9). Pullanagari et al. (2016) compared different nonparametric 

models (including PLSR, SVR and RFR) regarding their performance to estimate N% of 

heterogeneous mixed pasture and found that RFR yielded the highest accuracy. Liang et 

al. (2018) also reported that RFR algorithms largely improved the prediction of N content 

compared to two VI-models. Artificial neural networks were applied for instance by Yi et 

al. (2010), who used the advantages of a PCA with an ANN approach and successfully 

determined N concentration of rice from spectral reflectance. Miphokasap and Wannasiri 

(2018) estimated N% of sugarcanes: their results indicated higher correlation coefficients 

using SVR-based Radial Basis Function (RBF) kernel compared to SMLR models. A 

large comparative study of Yao et al. (2015) evaluated the performance of six different 

algorithms, including continuum removal, VI, SMLR, PLSR, ANN and SVR to estimate N 

concentration in winter wheat. Results indicated that all nonparametric methods performed 

similar with SVR being the most flexible approach regarding the handling of potential 

confounding factors.
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GPR models, in contrast, have only been evaluated in one study of Zhou et al. (2018) 

who specifically analyzed the influence of spatial resolution on the separation of leaf N 

signals from the background in rice canopies. Comparing the results of the GPR model with 

PLSR and VIs, the authors demonstrated that GPR achieved the best prediction of leaf N 

concentration.

These comparative studies demonstrated that machine learning often yielded higher 

estimation accuracies than linear nonparametric approaches, mainly for N% predictions 

(Miphokasap and Wannasiri, 2018; Pullanagari et al., 2016; Yao et al., 2015; Zhou et al., 

2018).

Although these studies have demonstrated the feasibility and applicability of machine 

learning methods for estimating N of different crops, the models have been exclusively 

trained and calibrated on in situ measured field data as it is the case for chemometrics 

and parametric regressions. Therefore, it is difficult to physically inter-compare the results 

using varying spatial resolutions, diverse sensors and model configurations. Regarding 

prediction time, nonlinear nonparametric regression algorithms can map biochemical and 

biophysical vegetation traits quasi instantaneously from hyperspectral scenes, in particular 

when combined with dimensionality reduction such as PCA. Among these machine learning 

methods, random forests are fastest in training and prediction; they are also less prone 

to overfitting and can be regarded as robust to outliers and noise (Belgiu and Drăguţ, 

2016). The flexibility offered by kernel methods, in particular the GPRs, make them the 

most interesting candidates to solve nonlinear problems in hyper-spectral remote sensing. 

These outstanding methods convince with their intrinsic regularization capabilities and low 

sensitivity to data dimensionality over other methods for vegetation traits retrieval (Tuia et 

al., 2018). Due to their capability to provide uncertainty intervals of the predictions, GPR 

methods will certainly play a major role for automatic processing of biochemical vegetation 

traits mapping in the future, in particular within hybrid retrieval schemes.

6.3.4 Use of radiative transfer models—Only three studies applied a radiative 

transfer model for N retrieval in an agricultural context: the N-PROSPECT model (Z. Li 

et al., 2018; Li et al., 2019; Yang et al., 2015). N-PROSPECT is a modified PROSPECT 

model version, where the SACs corresponding to chlorophylls were replaced with SACs 

corresponding to N in order to simulate leaf nitrogen density (LND, in μg/cm2) at the leaf 

scale (Yang et al., 2015). In the study of D. Li et al. (2018), crop N status both at leaf and 

canopy scales could be retrieved through coupling of N-PROSPECT with the SAIL model 

(N-PROSAIL).

The N-PROSPECT model, however, was restricted to winter wheat since it was calibrated 

on four winter wheat cultivars. Hence it is only suitable for estimating N content with 

experimental set ups similar to the calibration situation (Yang et al., 2015). Finally, this 

model relies on the correlation between leaf chlorophyll content and N, for which limitations 

have been highlighted in the previous sections.

Researchers from the radiative transfer community are less optimistic that proteins 

(nitrogen) can be retrieved by means of physically-based methods (Homolová et al., 2013; 
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Jacquemoud et al., 1996; Knyazikhin et al., 2013a). This is also mirrored by our literature 

review with only three studies having used RTM-based approaches within the agricultural 

context to derive N. It is therefore questionable if satellite-based reflectance will allow for 

an accurate, transferable and physically-based retrieval of N. According to a broad body 

of research, the accurate estimation of N is mainly possible through indirect correlations 

with those traits that are more explicitly linked to the radiative transfer - mostly chlorophyll 

content. Protein content should be the trait of choice according to its strong connection 

to N. To guarantee transferability and robustness of monitoring systems, these mechanistic 

approaches are urgently needed. Large training data sets can be established for machine 

learning models using deductive capabilities of these physical models to extrapolate to 

predictions not present in collected in situ data in the past (Baker et al., 2018). This shall 

motivate researchers to further exploit RTMs tailored to simulate the absorption features of 

proteins for the retrieval of N.

6.3.5 Alternative data sources: SIF—A few studies used sun-induced chlorophyll 

fluorescence (SIF) as alternative data source to estimate crop N. Jia et al. (2018) assessed 

the feasibility of quantifying leaf N concentration from SIF based on the response of SIF to 

chlorophyll content. The authors found that downward SIF yield indices gave more accurate 

estimation than the upward SIF yield (FY) indices, though measurement with today’s 

available instruments is still difficult. In the study of Camino et al. (2018) a higher accuracy 

of N retrieval could be achieved when chlorophyll fluorescence was included compared to 

models only built based on chlorophyll a + b (Cab), dry matter (Cm) or equivalent water 

thickness (Cw). The contribution of SIF to N estimation may be highly valuable, though only 

the chlorophyll-based relation to N is taken into account. Ground-based measurement and 

modelling studies have reported about the suitability of red and far-red SIF for the detection 

of N deficiency, which affected many parts of the photosynthetic apparatus, including 

photosynthetic pigments, thylakoid proteins, and the soluble enzymes such as rubisco (Ač 

et al., 2015; Mohammed et al., 2019). In this review, however, our focus is on the N 

retrieval studies using reflectance measurements from hyperspectral sensors but not on SIF 

measurements.

6.3.6 Implementation of hybrid or combined methods—Hybrid techniques 

denominate a combination of at least two methods in synergic use. In biophysical and 

biochemical variable retrieval studies, this method is often the combination of machine 

learning methods and RTMs, thus combining the generalization level of a physically-based 

method with a flexible and computationally efficient nonlinear nonparametric statistical 

method (Verrelst et al., 2019). This kind of studies were not found within the identified 

records which may be explained by the lack of publicity available RTMs involving N 

(protein) modelling. We thus extend the definition to include studies using different kinds 

of methods in combination, for instance crop growth and canopy reflectance modelling. As 

such, Thorp et al. (2012) combined the DSSAT Cropping System Model (CSM) with the 

PROSAIL radiative transfer model (CSM-PROSAIL). This study also used the relationship 

between chlorophyll and N content, by applying a conversion factor to calculate the CSM 

nitrogen state variable (g cm–2) from Cab (μg cm–2).
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The additional information of SIF can be exploited in synergy with RTM-based variable 

retrieval: in Camino et al. (2018) multiple regression models were established to estimate 

N with and without including airborne retrieved sun-induced fluorescence. The model 

performance could significantly be increased by combining SIF with PROSAIL derived 

variables in the regression.

Fig. 6 shows the development of the application of different method-categories over time. 

In addition to an overall increasing trend, an increasing interest in nonlinear nonparametric 

regression algorithms and hybrid/combined methods is obvious. There is also a positive 

trend in the usage of RTMs in view of the slow but steady increase of physically-based 

modelling of N content (Li et al., 2019; Wang et al., 2015a; Wang et al., 2015b; Yang et al., 

2015).

6.4 Use of technical terminology

There is a lack of consistency regarding the terminology within the identified records. 

Studies estimating nitrogen from remote sensing acquisitions use diverse expressions, for 

instance N content, N concentration, N uptake, N status, N rate, N accumulation, N density 

or even only refer to “N” without any unit or additional designation. To enable a valid 

comparison between nitrogen-related studies, a standardization of terms would be highly 

desirable. We recommend that the definition and units of nitrogen should be clearly stated in 

future works.

Moreover, regarding retrieved nitrogen information from remote sensing, we strongly 

recommend to distinguish between two measures (D. Li et al., 2018; Scott Green et al., 

2003; Wang et al., 2015a):

• Area-based measure “nitrogen content” (Narea), expressed per surface unit, and 

e.g. given in [g.cm–2] at leaf scale, in [g.m2] at canopy scale, or [kg.ha–1] at field 

scale.

• Mass-based measure “nitrogen concentration” (N%), expressed per leaf mass 

unit (or other plant organs), usually using dry weight, and e.g. given in [mg.g–1] 

or [%].

The leaf dry mass per unit leaf area (LMA) can be used to convert N % to Narea (Baret and 

Fourty, 1997):

Narea  = N% ⋅ LMA (1)

Hence, plant N content, expressed on a land area basis, is the product of plant N 

concentration and plant dry biomass in kg ha–1 (Chen et al., 2010).

Narea is important from a physiological perspective since it is highly correlated to the 

photosynthetic capacity of leaves and thus to carbon fixation (Evans, 1989; Rosati et al., 

2000).
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Narea is also considered as the candidate trait with the strongest relationship to Vcmax and 

Jmax (Dechant et al., 2017; Kattge et al., 2009). Expressing the light saturated photosynthetic 

rate and nitrogen on the basis of leaf dry weight (i.e., N%), this species-independent 

relationship clusters around a straight line and reaches zero at 0.6 mmol N g–1 (Evans, 

1989). Osnas et al. (2013) found that leaf traits were primarily proportional to leaf area, 

but not to leaf mass as suggested by Wright et al. (2004). Moreover, reflectance and 

transmittance are not directly sensitive to the concentration, but rather to the content of 

absorbers per unit leaf area. Therefore, Narea should be estimated and – if needed – 

converted into N% using LMA (Baret and Fourty, 1997). The inverse linear relationship 

of biomass and N% (dilution phenomenon) shows that with increasing growth stage from 

planting to maturity, crop N concentration decreases while biomass and LAI increase (Chen 

et al., 2010; Plenet and Lemaire, 1999). Thus, the usage of N content is more useful 

and suitable to describe optimal N status (Baret et al., 2007). Moreover, as proposed 

by Kattenborn et al. (2019) for pigments, the area-based measures are more suitable for 

upscaling purposes from leaf to canopy level. Upscaling leaf Narea to aboveground Narea 

only requires an estimate about total foliage (e.g. LAI) and not, as with N%, additional 

knowledge about dry matter content.

Nevertheless, the identified records of our meta-analysis focused mainly on N%, see 

also Fig. 7. In contrast, the estimation of the area-based measure, Narea, has been rarely 

performed, as it was also pointed out by D. Li et al. (2018). Unfortunately, confusion 

about terminology is present, since many studies use the terms content and concentration 

interchangeably (Fig. 7), as it was also found by Kattenborn et al. (2019) for pigments. 

One essential reason for the preferred usage of the mass-based measures might be that 

leaf nutrients are commonly extracted from plant powder without the availability of 

either the covered area of leaves or ground (Kattenborn et al., 2019). Therefore, field 

experiments measuring both crop biochemistry as well as structural canopy variables are 

highly encouraged.

Some studies focused on the estimation of N uptake although this goal might be challenging 

to be achieved solely by remote sensing. Hereby, the time factor (i.e. crop growth rate) 

must be taken into account including the N allocation between vegetative and mature or 

reproductive organs. For instance, in case of paddy rice approximately 80% of total plant N 

is absorbed from the soil before flowering and stored in vegetative organs. At the same time 

and subsequently, N is transported from these organs to the ears and the grains (Ohyama, 

2010). There is a strong link between cumulative N uptake and aboveground biomass 

accumulation. A mathematical relationship between these parameters has been introduced 

by Plenet and Lemaire (1999), including the amount of N present in the shoots as well as the 

actual aboveground biomass.

Effectively, the aboveground Narea could be estimated for a certain point of time by 

means of remote sensing techniques. The determination of N uptake, instead, is often not 

straightforward. This could be potentially achieved with the knowledge of N allocation as 

well as by combining remote sensing with process-based crop growth models.
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Finally, it should be pointed out that remote sensing is primarily limited to N retrieval in 

leaves. It is not possible to directly detect N stored in the soil. The same holds true for 

plant organs such as tubers, fruits or hardened stalks because radiation in the solar optical 

domain is not able to penetrate these tissues completely and to transport information about 

the biochemical content. Accordingly, a reference to “aboveground nitrogen content” seems 

most appropriate to describe N content at the canopy scale. Nevertheless, we recommend 

adapting terminology and units according to the related objectives and hypotheses of the 

specific studies.

6.5 Study locations and analyzed crop types

The largest part of the studies was performed in China (~45% of all studies), which can be 

easily explained by the large agricultural areas and the increasing usage of remote sensing 

techniques and other precision farming technology. European countries follow with 27%, 

with most studies performed in Germany and Italy. The USA with their vast agricultural 

regions holds 15% of the studies. Studies were carried out in all continents except South 

America. This large number of countries involved reflects the global interest in optimal N 

supply for agriculture.

Regarding the crop types, wheat or winter wheat was analyzed with 34% of all studies, 

followed by rice with 21% and maize with 13%. This mirrors the world’s staple cropping 

systems with wheat, rice and maize occupying a large part of agricultural areas around the 

globe (Khoury et al., 2014).

7 Conclusions

In recent years, interest grew in the determination of crop N using imaging spectroscopy 

(hyperspectral) data (Fig. 3). This need is currently addressed by the launch and planning 

of several satellite imaging spectrometers - suitable for N sensing due to the included 

SWIR domain - that will provide scenes over large agricultural areas. High spatial and 

temporal coverages supplied by these stable instruments optimally designed for the retrieval 

of nitrogen will allow testing the transferability of all mentioned N retrieval approaches.

From our meta-analysis, we identified some specific problems and limitations: at first, 

main effort was invested into parametric regression modelling despite the well-known 

limitations of vegetation indices, mostly not discussed in the studies. The increasing usage 

of chemometrics with the most popularly applied PLSR method leads to improved retrievals. 

Nonetheless, chemometrics still suffer from limited transferability and the inevitable need 

of in situ training data. Among the machine learning algorithms, GPRs were rarely used, 

although this technique can be considered as one of the most promising regression models 

providing uncertainties of the estimates. Within all methods, a strong focus on the N-

chlorophyll relationship could be identified, neglecting the fact that most N is bound in 

proteins. Moreover, there is a lot of confusion in used terminology, i.e. N content versus 

N concentration, or many other terms. We therefore recommend a standardization of terms, 

using mass-based N (N concentration, N%) and area-based N (N content, Narea). In general, 

a dominance of N%-based studies compared to Narea-based studies can be observed, which 

may be related to the common measurement practices. The apparent estimation of “N 
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uptake” from hyperspectral signatures should be handled carefully, because the processes of 

N allocation between vegetative and reproductive organs and the strong connection to the 

aboveground biomass accumulation must be considered. However, if there is ground data of 

biomass available (for instance using LiDAR measurements or biophysical crop modelling) 

then the term “N uptake” can be appropriate. In all cases, the authors should always provide 

the appropriate units of their studied measures.

We further recommend the development of leaf RTMs simulating absorption features of 

proteins. In this way, the retrieval of N solely based on chlorophyll content could be 

overcome. Nevertheless, one of the main reasons for focusing on chlorophyll measurements 

and estimations is to understand photosynthetic processes, plant stress and impact to plant 

growth and development, as well as N uptake. Therefore, decoupling of the estimation 

of chlorophyll and N content would provide a more pronounced understanding of N 

allocation within the plant and the origin of diverse stresses. Moreover, the application 

of hybrid methods, in particular the combination of physically-based retrieval combined 

with different machine learning algorithms is suggested for N sensing. In this way, a 

large training dataset can be generated from RTM simulations which reduces the need for 

collecting in situ training data. Nevertheless, successful validation exercises under various 

conditions are required to allow for transfer of the proposed hybrid inversion approach to 

agricultural areas around the globe: therefore, we strongly recommend to organize extensive 

field campaigns during future hyperspectral satellite sensors overpasses with simultaneous 

structural (biomass, LAI) and biochemical (chlorophyll, water, nitrogen, LMA) sampling 

for improved crop N determination from hyperspectral data. Concurrently or independently, 

proximal sensing studies (using field spectrometers) can help developing the tools and 

methods to be further applied and validated at the canopy scale using satellite data.

Continuous crop N monitoring may help to understand the transition of N from the soil 

into the crop, to help farmers to improve their farm management (Hank et al., 2019) and 

to alert growers about potential shortfalls, thus guiding real-time or long-term fertilizer 

management plan modifications for future production years. In this way, overfertilization 

could be reduced preventing harmful effects on the environment, while at the same time 

a sustainable use of production resources can be maintained. The outcomes of our study 

propose that a new era of N sensing also beyond agricultural research and applications could 

be initiated.

Supplementary data to this article can be found online at https://doi.org/10.1016/

j.rse.2020.111758.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Nitrogen as key component of biomass (left) and its proportional allocation in a C3 plant 
leaf (right). Adapted from Chapin et al. (1987).
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Fig. 2. 
Relationship between field measured canopy chlorophyll content (i.e. leaf area index, LAI, 

multiplied with leaf chlorophyll content, Cab) and measured aboveground N content (Narea) 

as sum of measured N content of leaves, stalks and ears. Regression line in green shows 

only dates with solely green vegetation (vegetative stage). Regression line in black was 

achieved using all dates of the MNI field campaign (winter wheat from 29/3–6/7 2017 and 

maize from 17/7–15/9 2017), as described in Berger et al. (2018b) (Unpublished data). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 3. Absolute number of N retrieval studies per year from 1994 to 2018 as identified by the 
literature review.
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Fig. 4. 
Sensor systems used in hyperspectral N retrieval studies. Field: field-based spectrometers, 

Lab: laboratory analysis (with spectrometers), UAV: sensors on unmanned aerial vehicles, 

Airborne: sensors on aircrafts, Satellite: satellite-based sensors, Synthetic: simulated 

reflectance data from hyperspectral sensors, e.g. by RTMs.
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Fig. 5. Identified methods used for the estimation of N content and N concentration.
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Fig. 6. Development of the five main categories of N retrieval methods in scientific studies over 
time (from 1994 to 2018).
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Fig. 7. 
Total number of studies apparently retrieving N content, N concentration and N uptake. 

The color of the bars indicates the in reality estimated measure. For instance, the large part 

in darker green of the first column (N content) indicates all those studies which in reality 

estimated N% despite the use of “N content” as terminology. In some cases, more than one 

term was used in a single study. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Table 1

Specific absorption bands associated with proteins and nitrogen and the related absorption mechanisms 

according to the literature (Curran, 1989; Fourty et al.,1996; Kumar et al., 2001). Wavelength in brackets 

corresponds to the values remeasured by Fourty et al. (1996).

Wavelength (nm) Absorption mechanism/electron transition Absorbing compound

910 C—H stretch, 3rd overtone Protein

1020 N—H stretch Protein

1510 (1520) N—H stretch, 1st overtone Protein, nitrogen

1690 C—H stretch, 1st overtone Protein, nitrogen, lignin, starch

1730 C—H stretch Protein

1940 O—H stretch, O—H deformation Protein, nitrogen, water, lignin, cellulose, starch

1980 (1960) N—H asymmetry Protein

2060 N—H stretch, N=H rotation Protein, nitrogen

2130 N—H stretch Protein

2180 (2200) N—H rotation, C—H stretch, C—O stretch, C=O stretch Protein, nitrogen

2240 (2270) C—H stretch Protein

2300 (2290) C—H rotation, C=O stretch, N—H stretch Protein, nitrogen

2350 CH2 rotation, C—H deformation Protein, nitrogen, cellulose
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Table 2

Overview of main retrieval methods used for N sensing from hyperspectral data in an agricultural context. 

Categorization according to Verrelst et al. (2019).

Category Method group, abbreviation Exemplary references

Linear parametric 
regressions

Narrowband reflectance or derivative types (Alchanatis et al., 2005; Goel et al., 2003; Lee et al., 2008)

Narrowband ratio vegetation indices, NB-VI (Chen et al., 2010; Herrmann et al., 2010)

Spectral shapes/transformation (Feng et al., 2014; Yao et al., 2015)

Linear nonparametric 
regressions 
(chemometrics)

(Stepwise) multiple linear regression, (S)MLR (Castaldi et al., 2016; Miphokasap and Wannasiri, 2018)

Principal component analysis/regression, PCA/PCR (Wang et al., 2017)

Partial least squares regression, PLSR (Hansen and Schjoerring, 2003; Inoue et al., 2012)

Nonlinear nonparametric 
regressions (machine 
learning)

Decision trees (e.g. Random forest regression, RFR) (Näsi et al., 2018; Pullanagari et al., 2016)

Artificial neural networks, ANN (Afandi et al., 2016; Monteiro et al., 2007)

Kernel-based (Support vector regression, SVR; 
Gaussian processes regression, GPR)

(L. Li et al., 2018; Wang et al., 2012; Zhou et al., 2018)

Physically-based 
methods

Radiative transfer modelling, RTM (Z. Li et al., 2018; Yang et al., 2015)

Hybrid methods Combination of at least two methods in synergic use (Song et al., 2011; Thorp et al., 2012)
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Table 3

Overview of recently launched or planned spaceborne imaging spectrometer missions which will potentially 

provide opportunities for complementary global N sensing. SSD: spectral sampling distance.

Mission 
(organisation, 
country)

Spectral range, (SSD, no. 
of bands)

Spatial resolution 
(swath)

Launch date Usage Reference

PRISMA (ASI, Italy) 400–2500 nm (6–12 nm, 
237 bands)

30 m (30 km) 22/03/2019 Technology 
demonstrator

(Loizzo et al., 2019)

HISUI (METI, 
Japan),

400–2500 nm (10–12 nm, 
185 bands)

20 m (cross-track) × 
30 m (along-track) (20 
km)

05/12/2019 Operational (Matsunaga et al., 
2017)

EnMAP (DLR, 
Germany)

400–2500 nm (6.5–10 nm, 
242 bands)

30 m (30 km) 04/2021 Scientific 
precursor

(Guanter et al., 
2015)

SHALOM (Italian-
Israeli)

400–2500 nm (10 nm, 275 
bands)

10 m (30 km) 2022 Operational/
commercial

(Feingersh and Ben 
Dor, 2015)

CHIME (ESA) 400–2500 nm (210 bands) 20–30 m tbd Copernicus high-
priority mission 
candidate

(Nieke and Rast, 
2018)

SBG (NASA, U.S.) 350/400–2500 nm (10 nm or 
better, 210 bands)

30–45 m (150 km) tbd Operational (NASA, 2018)
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