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Abstract

Field spectroscopy is an accurate, rapid and nondestructive technique for monitoring of 

agricultural plant characteristics. Among these, identification of grapevine varieties is one of the 

most important factors in viticulture and wine industry. This study evaluated the discriminatory 

ability of field hyperspectral data and statistical techniques in case of five common grapevine 

varieties in the western of Iran. A total of 3000 spectral samples were acquired at leaf and 

canopy levels. Then, in order to identify the best approach, two types of hyperspectral data 

(wavelengths from 350 to 2500 nm and 32 spectral indices), two data reduction methods (PLSR 

and ANOVA-PCA) and two classification algorithms (LDA and SVM) were applied in a total of 

16 scenarios. Results showed that the grapevine varieties were discriminated with overall accuracy 

of 89.88%–100% in test sets. Among the data reduction methods, the combination of ANOVA 

and PCA yielded higher performance as opposed to PLSR. Accordingly, optimal wavelengths in 

discrimination of studied grapevine varieties were located in vicinity of 695, 752, 1148, 1606 

nm and 582, 687, 1154, 1927 nm at leaf and canopy levels, respectively. Optimal spectral 

indices were R680, WI, SGB and RATIO975_2, DattA, Greenness at leaf and canopy levels, 

respectively. Also, the importance of spectral regions in discriminating studied grapevine varieties 

was ranked as near-infrared > mid-infrared and red edge region > visible. As a general conclusion, 

the canopyspectral indices-ANOVA-PCA-SVM scenario discriminated the studied species most 

accurately.
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1 Introduction

Thousands of grapevine varieties (Vitis Vinefera L.) are known worldwide (Galet, 1979; 

Cervera et al., 1998), and each variety serves multiple applications such as fresh 

consumption or converting to secondary products: grape seed oil, jelly, jam, juice, raisins, 

vinegar and wine (Mirzaie et al., 2018). Identifying grapevine varieties is an important 

step in viticulture and wine industry due to the high economic and social impact of these 

businesses (Gutiérrez et al., 2016). Also, correct identification can help to determine the 

cultivated area of each variety (Galvão et al., 2009) and support the supply and demand 

estimates.

When it comes to identifying plant varieties, a diversity of destructive methods exists, 

such as those relying on morphological-physiological features (Galet, 1979), isoenzymes 

chemistry and DNA analysis (Cervera et al., 1998). However, due to the physical and 

biological similarity of plant varieties, ground-based distinguishing surveys of varieties 

is time consuming (Lacar et al., 2001). These methods also imply some disadvantages, 

including: (1) morphological-physiological methods require an expert with extensive 

training, or isoenzymes chemistry, and (2) DNA analysis approaches are time consuming 

and tedious (Gutiérrez et al., 2016; Diago et al., 2013). Alternatively, in-field, airborne 

and satellite spectral data are recommended to discriminate plant varieties as eco-friendly 

(solvent-free), nondestructive, rapid, and high-precision methods (Galvão et al., 2009; Zhang 

et al., 2012; Diago et al., 2013; Fassnacht et al., 2015; Gutiérrez et al., 2016). By applying 

in-field hyperspectral analysis and expanding obtained relationships to airborne and satellite 

remote sensing data, it becomes possible to measure plant characteristics for discriminating 

different plant varieties in a fast way over vast areas (Gutiérrez et al., 2016; Diago et al., 

2013). In field spectrometry, reflectance of electromagnetic waves from various plant species 

are recorded as contiguous spectral wavelengths, so that the collected spectral curve of 

any plant species is like a special fingerprint (He et al., 2007). Consequently, it can be 

expected that each plant variety leads to a distinct reflectance spectrum due to heterogeneity 

in intracellular and extracellular physicochemical components (Xu et al., 2009; Zhang et al., 

2012; da Silva Junior et al., 2018).

By using in-field spectroscopy a large amount of data can be obtained in the form of 

spectral curves, which in turn can be analyzed with statistical techniques to reveal desirable 

plant properties (Adam and Mutanga, 2009; Aneece and Epstein, 2017). For instance, 

linear and nonlinear multivariate statistical methods such as ANOVA test (Adam and 

Mutanga, 2009), principal component analysis-PCA (Li and He, 2008), linear discriminant 

analysis-LDA (Belton et al., 1998), artificial neural network-ANN (Li and He, 2008) and 

support vector machine-SVM (Prospere et al., 2014) have been applied to address questions 

related to plant species discrimination from hyperspectral data. Some studies took specific 
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advantage of applying multivariate statistical analyses to field spectroradiometry data to 

enable discriminating plant species/varieties. For instance, Manevski et al. (2011) used 

parametric statistical tests in discrimination of common Mediterranean species, Aneece and 

Epstein (2017) applied SVM in identifying invasive plant species, and Xu et al. (2009); 

Diago et al. (2013); Lehmann et al. (2015) and Abbasi et al. (2012) employed partial least 

squares regression (PLSR) to discriminate plant species/varieties. According to Diago et 

al. (2013), PLSR is among the most common statistical method in the processing of high 

dimension spectroscopic data for introducing optimal wavelengths in discrimination of plant 

species and varieties.

However, more often than not additional processing steps are required to reach an adequate 

discrimination accuracy. The spectral reflectance curve can be influenced by environmental 

disturbances, such as light propagation of adjacent phenomena, water vapor, leaf moisture, 

air temperature, biochemical parameters, and other variables (Abbasi et al., 2012). In part 

to overcome these confounding factors, the usage of spectral indices enables to eliminate 

atmospheric and background disturbance (Darvishsefat et al., 2011). Spectral indices are 

mathematical transformations of reflectance to improve vegetation signals (Prospere et al., 

2014). As such, they can reveal biochemical and physiological properties of intact leaves or 

canopies, which may provide facilities for discriminating the characteristics of plant species 

or varieties (Cho et al., 2008; Prospere et al., 2014).

Grapes and related products play an important role in the human food basket, and 

Iran is among the top ten grape producers in the world (FAO, 2016). So far in-field 

spectroscopy studies have not yet been conducted on grapevines varieties cultivated in the 

country. Nevertheless, conducting spectroscopy studies can play a valuable role in managing 

vineyards, and collecting a spectral library for each grapevine variety can provide a basis 

for variety discrimination. Also, the identification of optimal wavelengths in discrimination 

of common grapevine varieties can create a great leap in vineyard airborne and satellite 

monitoring, which is an effective step forward in precision agriculture (Zhang et al., 2003; 

Ferreiro-Arman et al., 2006; Mazzetto et al., 2010; Liu et al., 2011; Gutiérrez et al., 

2015, 2016). Therefore, this study attempted to develop hyperspectral libraries from the 

most common grapevine varieties in Chaharmahal-va-Bakhtiari province in the western of 

Iran. To do so, full range in situ spectroscopy (350–2500 nm) was conducted at leaf and 

canopy levels for each variety, with the aim of examining which level has more potential 

for differentiation of the varieties. In addition, the ability of two types of hyperspectral 

data (wavelengths and spectral indices) was also compared in an attempt to discriminate 

studied varieties. Since statistical methods play a significant role in hyperspectral data 

reduction (Prospere et al., 2014), the performance of PLSR as the most common method 

in reduction of spectroradiometry data, and a two-step approach (ANOVA-PCA) was also 

evaluated in discrimination of native Iranian grapevine varieties. Finally, the LDA and SVM 

algorithms were applied to classify grapevine varieties and to identify optimal discrimination 

scenario(s).
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2 Materials and methods

2.1 Study area

Iran is among the top ten countries in grapevine (Vitis vinifera) production, and 

Chaharmahal-va-Bakhtiari province is one of the main centers of grapefruits and its 

secondary products such as grape seed oil, jelly, jam, juice, raisins and vinegar. The province 

is located in western of Iran (39° 10′ 00″ to 32° 50′ 00″N latitude and 49° 30′ 00″ to 52° 

25′ 00″E longitude) and has a wet cold climate with warm and dry summers (Fig. 1). The 

cultivated area of grapevine consists of 4,800 ha, which Yaqooti, Perllet, Rishbaba, Black 

Seedless, and Askari are the common (make up 98%) varieties in this province.

2.2 Field spectral acquisition

2.2.1 Samples collection—In order to analysis the ability of in-field hyperspectral data 

to discriminate native Iranian grapevine varieties, samples were collected from leaf and 

canopy levels in June, July and August 2017. Five common grapevine varieties, including 

V. vinifera cv. Askari (AS), V. vinifera cv. Hologhi (HG), V. vinifera cv. Mehre (MH), V. 

vinifera cv. Siyah (SI) and V. vinifera cv. Yaghooti (YG) were selected, all originating from 

the Chaharmahal-va-Bakhtiari province of Iran.

To form a comprehensive spectral library of a plant variety or species, multiple samples 

of various status and distribution should be collected (Clevers et al., 2010). Therefore, we 

attempted to take samples from a wide range of situations to support community variance. 

So, for each variety 20 vineyards from different situations and local positions were selected 

as sampling sites. Then, leaf and canopy samples were collected from the studied vineyards 

during a vegetative season (Van Til et al., 2004). The samples were collected with five 

replications and their average was calculated to enter the next analysis. At the leaf level, 

100 healthy leaves in sunlight position were collected from 20 individual vine trunks per 

variety in three times series (beginning, middle and late of vegetative season). It led to a 

total collection of 1500 leaf samples. Because of differences in the amount and properties of 

photosynthesis, leaves have unique spectral behavior at different ages and different positions 

in the canopy (shadow-Light or top-middle-down) (Prospere et al., 2014), therefore all 

samples were collected from mature leaves located at top of canopy. At the canopy level, 

samples in sunlight position of healthy vine were collected for all of the studied varieties. 

The canopy samples were collected with five replications from 20 vineyards and their 

average for studied varieties was calculated to perform the next analysis. So, a total of 500 

canopy samples were prepared for spectroscopy measurements (3 (time series) × 5 (variety) 

× 5 (replication) × 20 (vineyard) = 1500 (sample)).

2.2.2 Spectra acquisition—Reflectance spectra of grapevine varieties at leaf and 

canopy levels were collected with the ASD FieldSpec®3 spectroradiometer. The ASD has 

three separate spectrometers, which ranged from 350 to 975, 976–1770 and 1771–2500 nm, 

with spectral resolution of 3 and 10 nm and a sampling interval of 1.4 nm and 2 nm, for the 

spectral regions of 350–1000 nm and 1000–2500 nm, respectively (ASD, Analytical Spectral 

Devices, Inc., 2005). The wavelength configuration of the spectroradiometer are organized 

as the Near-ultraviolet (NUV: 350~400 nm) the visible (VIS: 400~700 nm), Red Edge 

Mirzaei et al. Page 4

Int J Appl Earth Obs Geoinf. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Region (RDE: 680~750 nm), Near-Infrared (NIR: 700~1300 nm) and Mid-Infrared (MIR: 

1300–2500 nm) wavelengths (Kumar et al., 2001). To eliminate the effect of water vapor, 

temperature, wind and other environmental interferences errors, the spectroscopy operation 

was carried out in a completely dark room laboratory with a special bulb light (Abbasi et al., 

2012). It should be noted that the spectral curve of each sample was taken in 100 replicates. 

The obtained cures were initially reviewed and in cases where the obtained curves were 

inconsistent with the typical plant curve they were discarded. The raw data recordings were 

converted to reflectance (between 0–1) by ViewSpect version 6.0, and the reflectance curves 

were exported as text file in order to transfer them into the statistical software.

2.3 Extraction of hyperspectral indices

This study aims to exploit the capabilities of hyperspectral indices for the separation of 

grapevine varieties. To do so, a total of 32 spectral indices were selected and described in 

Table 1. These indices had been used in previous studies, and have proven to be sensitive to 

tiny differences in plant characteristics (Prospere et al., 2014; Devadas et al., 2009; Cho et 

al., 2008).

2.4 Feature selection / data reduction

In situ spectrometry produces a large amount of contiguous data in the form of spectral 

curves, which were converted to non-derivative reflectance. A reflectance spectrum 

comprised 2151 wavelengths from 350 to 2500 nm. From these wavelengths, the 32 

spectral indices were extracted to analyze their ability in discriminating grapevine varieties 

at leaf and canopy levels. To achieve this, a feature selection process for spectral indices 

and wavelengths should be performed in order to identify the most suitable wavelengths 

and indices in discriminating of grapevine varieties. Multivariate statistical analysis is an 

appropriate method for removing redundant data. Two statistical methods were applied 

to introduce the optimal wavelengths and spectral indices for separating of grapevine 

varieties at leaf and canopy levels. The first method was PLSR, which is widely used in 

discrimination studies of varieties and species. The second method was a two-step method 

including ANOVA and PCA. Based on these methods, the optimal wavelengths and indices 

were derived. In order to evaluate the accuracy of derived results from these methods, 

optimal wavelengths and spectral indices were considered as inputs variables for re-testing 

and selecting the higher-performance approach. Therefore, the performances of PLSR and 

ANOVA-PCA were subsequently evaluated by SVM (as a non-Linear classifier) and Linear 

Discrimination Analysis (as a linear classifier) based on overall accuracy (OA).

In this regard, the grapevine variety classes were considered as dependent variables and 

the wavelengths and spectral indices were assumed as independent variables. All data of 

wavelengths and spectral indices were divided into two categories, 70% as training and 30% 

as testing data, randomly.

2.4.1 Partial least squares regression (PLSR)—PLSR was employed as a 

classification method to reduce the dimension of hyperspectral data and select the optimal 

feature for classifying the studied grapevine varieties. This method is based on linear least 

squares regression that performs some new components, instead of on the original inputs 
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data. The main advantage of PLSR as opposed to PCA, is that the response variables are 

also considered in PLSR in parallel with the dimensionality reduction and the overlapping 

elimination are done (Xu et al., 2009). Other capabilities of PLSR are the ability to analyze 

highly collinear and high-volume spectroscopy data, providing a regression model between 

independent and dependent variables and also the acceptable processing speed (Peerbhay et 

al., 2013). After running PLSR, some components are formed, which each of them explained 

a part of community variance. The degree of correlation between independent variables 

and components is represented by factor load. Therefore, the basis for selecting of optimal 

wavelengths or spectral indices to discriminating of grapevine varieties had been the factor 

load of wavelengths and indices in each component. So that any wavelength or index that 

had more factor load in the component was chosen as the representative of that component. 

It is worth noting that wavelength and spectral indices were considered as independent 

variables and the grapevine varieties were assumed as dependent/target variables. More 

information about the theory and the structure of PLSR is given by Wold et al. (2001).

2.4.2 ANOVA-PCA method—The second method for reducing input data and 

identifying optimal wavelengths or spectral indices was a two-step method including 

ANOVA-PCA. One-Way ANOVA was used to test which of the wavelengths or spectral 

indices had been able to separate five grapevine varieties into five distinct subsets. In 

this regard, ANOVA was performed at a significant level of 95% (i.e. p < 0.05) with a 

post-hoc of Scheffé test (Adam and Mutanga, 2009). So at the end of this step, all the 

wavelengths or spectral indices that were able to separate the grapevine varieties were 

introduced. But there was a high probability that the number of introduced wavelengths 

or spectral indices would be high and there would be a severe overlap between them. 

So, in the next step, the ANOVA-selected wavelengths or spectral indices were entered to 

PCA. PCA is able to reduce the dimensions of the data into the components that these 

components can well explain the variance of society. The Varimax rotation method was used 

in order to better separation inputs (ANOVA selected wavelengths or spectral indices) in 

the principal component (PC) (Jolliffe, 1986; Mirzayi et al., 2014). The basis for selecting 

optimal wavelengths or spectral indices to discriminate five grapevine varieties had been the 

factor load in each PC. So that any wavelength or index that had more factor load in the PC 

was chosen as the representative of that component (Prospere et al., 2014).

2.5 Support vector machine (SVM)

Considering that each of the feature selection methods identified different multiple 

wavelengths or spectral indices for separating of studied grapevine varieties, it was 

therefore necessary to evaluate the performance of the applied feature selection methods 

(PLSR and ANOVA-PCA) in the same circumstances. Two algorithms were used to 

evaluate the PLSR and ANOVA-PCA performances, being SVM and LDA. SVM is a 

nonparametric statistical learning algorithm for regression and classification purposes, which 

are used in classification of hyperspectral and situ spectroradiometry data with acceptable 

performance (Prospere et al., 2014; Laurin et al., 2016; Ferreira et al., 2016). Transferring 

the n-dimensional input vector into a high-dimensional feature space and developing the 

optimal separating hyper-plane are the main presses in the SVM algorithm (Stitson et al., 

1996). Here SVM was applied in different scenarios and architectures to achieve the best 
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performance of the model in the classification of grapevine varieties at leaf and canopy 

levels. The selected wavelengths or spectral indices by PLSR and ANOVA-PCA were 

considered as independent variables and the grapevine varieties assumed as categorical 

dependent variables. In SVM, a kernel function relates input vectors with linear and 

nonlinear functions to output vectors. So when using SVM, one of the most important 

issues is to select the type of kernel function and its related parameters (Mirzaei et al., 2018). 

Therefore, regression SVM-type 1 was used with linear, polynomials, radial basis function 

(RBF) and sigmoid kernel functions. The training constants were optimized by V-fold 

cross validation (V value: 10 and seed: 1000) and the kernel parameters were changed (0 

≤ coefficient ≤ 3, 0 ≤ gamma ≤ 1, 1 ≤ degree ≤ 3) to gain the maximum classification 

performance. More details about the theory of SVM algorithm is given by Stitson et al. 

(1996).

2.6 Linear discriminant analysis (LDA)

LDA is a parametric statistical method applied to classify inputs data into two or more 

groups. The usage of LDA in species or varieties separation studies is very common because 

the response variable in this method is categorical (Belton et al., 1998 and Prospere et 

al., 2014). LDA can also be used as a discriminant analysis to investigate how variables 

contribute to group separation and to place objects or individuals into defined groups. In 

the training set, LDA was carried out at leaf and canopy levels with 70% of the data and 

the structure of the model was saved for testing set, then in the testing set, performance 

evaluation was performed with remaining data. An outline of the steps applied in this study 

is shown in Fig. 2.

3 Results and discussion

3.1 Reflectance spectra of grapevine varieties

The acquisition of spectral reflectance measurements at full range wavelength (350–2500 

nm) and calculated 30 spectral indices was assessed in order to discriminate five grapevine 

varieties (AS, HG, MH, SI and YG) in the western of Iran. Fig. 3 shows the mean 

reflectance spectrum of the grapevine varieties at leaf and canopy levels. The spectral curves 

obtained from five grapevine varieties were similar to that recorded by Strever (2012); Diago 

et al. (2013); Cao et al. (2010); Páscoa et al. (2016) and da Silva Junior et al. (2018), 

which indicate their compliance with the typical spectral pattern of healthy green plants. 

Also, all the obtained spectra were error-free (Fig. 3) represents the high accuracy of the 

spectroradiometer device (ASD Field spect) and the stable conditions of the laboratory 

environment (Wang et al., 2018; Abbasi et al., 2012).

The difference between grapevine varieties was hardly detectable in the VIS region, but 

sharp reflectance peaks were observed in the NIR region. Also, the greatest differences 

for both leaf and canopy levels were observed in the MIR region (Fig. 3). Due to the 

presence of foliar pigments (mainly chlorophylls and carotenoids) a strong absorption was 

detected in the VIS region, whereas, in the NIR and MIR regions, the adsorption rate was 

significantly reduced, because pigments do not absorb in these regions, and the spectral 

behavior were affected by structural/morphology and water content in the plant organs, 
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respectively (Penuelas et al., 1993; Xu et al., 2009; Strever, 2012). At the leaf level, AS vs. 

MH vs. SI and HG vs. YG varieties showed similar reflectance trends in the NUV and VIS 

regions (Fig. 3). In the NIR and MIR regions, the spectral reflectance similarity was also 

observed for AS vs. MH and HG vs. YG varieties (Fig. 3). AS vs. MH vs. SI and HG vs. YG 

varieties exhibited similar trends, but at the canopy level the similarities between the spectral 

behaviors of the varieties were less obvious in the NUV and VIS regions.

It does not come as a surprise to find that the studied grapevine varieties expressed a 

distinct spectral behavior, since similarly Li and He (2008); Xu et al. (2009); da Silva Junior 

et al. (2018) also obtained a different spectral behavior in the tea, tomato and soybean 

varieties, respectively. Although the plants’ morphological and biochemical parameters are 

not measured in this study, but as mentioned in many related studies (Adam and Mutanga, 

2009; Mutanga and Skidmore, 2007; Prospere et al., 2014; Aneece and Epstein, 2017; 

Damm et al., 2018), it can be concluded that the differences in the spectral behavior of 

studied grapevine varieties result from chlorophyll, carotenoid, nitrogen, water contents and 

intracellular and extracellular structure of leaf and canopy samples.

In all studied spectral regions, visual interpretation of spectral curves suggests that the 

spectral similarities between grapevine varieties at the canopy level are less prominent than 

the leaf level: at the canopy level the varieties are more aptly spectrally distinguishable (Fig. 

3).

3.2 Feature selection

Varieties discrimination based on hyperspectral data can be achieved with various statistical 

methods. These methods can be either applied individually, or several methods can be 

combined to identify most appropriate features among hyperspectral data (Prospere et al., 

2014; Große-Stoltenberg et al., 2016; Adam and Mutanga, 2009; Shang and Chisholm, 

2014). Here, two data reduction methods i.e., PLSR and ANOVA-PCA were applied to 

select the optimal wavelengths and spectral indices in discrimination of grapevine varieties 

at leaf and canopy levels. The PLSR is considered as a common method in this field; it 

had been used in many similar studies aiming for data reduction or feature selection of 

hyperspectral data (Xu et al., 2009; Diago et al., 2013; Lehmann et al., 2015; Abbasi et 

al., 2012). The second was a two-step proposed method, which combines ANOVA with 

PCA, subsequently. As Adam and Mutanga (2009) and Manevski et al. (2011) mentioned, 

ANOVA can select all wavelengths or spectral indices that have the primary potential to 

separate the studied varieties. Then, PCA can reduce the dimensions of the selected data and 

identify the most important ones (Prospere et al., 2014). In the following, the results of both 

methods are described.

3.2.1 ANOVA—The ANOVA test was conducted to identify the wavelengths or spectral 

indices that had the potential to discriminate grapevine varieties (AS, MH, SI, HG and 

YG) at leaf and canopy levels. The results are shown in Fig. 4. According to this Fig, the 

variance of the spectral curves of grapevine varieties in all wavelengths (350–2500 nm) 

was significantly different at both leaf and canopy levels. For further investigation of these 

spectra, the means comparison analysis was conducted with Scheffé test. The results of 
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Scheffé test revealed the existence of at least three and two subsets for the leaf and canopy 

levels, respectively.

At the leaf level, 50.10% (n = 1077) and 38.23% (n = 822) of the total wavelengths were 

able to separate three and four subsets, respectively, which the highest frequency of these 

wavelengths located in the MIR region (Fig. 4). Thus, 11.67% of the wavelengths (n = 251) 

were able to separate five grapevine varieties into five distinct subsets such that 3, 9, 30, 74 

and 138 of these wavelengths were located in the NUV, VIS, RDE, NIR and MIR regions 

(Fig. 4). This suggests that these significant wavelengths have the potential to discriminate 

five grapevine varieties from each other, and are subsequently introduced as PCA-inputs at 

leaf level.

At the canopy level, 2% (n = 43), 16.46% (n = 354) and 47.76% (n = 1027) of the total 

studied wavelengths were able to separate two, three and four subsets, respectively (Fig. 4). 

Because we are only interested at identifying wavelengths that can separate the five varieties 

into five distinct groups, the wavelengths separating less than five groups were excluded 

from further analysis. Therefore, 33.81% (n = 727) of studied wavelengths were potentially 

separated of five grapevine varieties in five distinct subsets and selected as PCA inputs 

at canopy level (Fig. 4). Frequency analysis of these selected wavelengths demonstrated 

that 32, 2, 96 and 597 wavelengths were located in VIS, RDE, NIR and MID regions, 

respectively (Fig. 4).

The ANOVA was subsequently applied to test for significance differences between 32 

spectral indices versus grapevine varieties at leaf and canopy levels. According Fig. 5, six 

indices at leaf level i.e., GM2, Lichtenthaler1, VOG, R680, WI and SGB, and four indices at 

the canopy level i.e., RATIO975_2, DattA, Greenness and CI were able to divide the studied 

grapevine varieties into five separate subsets. Therefore, these indices were introduced as 

inputs of the next step (i.e., PCA) and other indices were excluded.

Finally, the ANOVA results showed that 251 and 727 wavelengths, and on the other hand, 6 

and 4 spectral indices had the primary potential for separating five grapevine varieties into 

five distinct subsets at leaf and canopy level, respectively (Fig. 4). The wavelength-ANOVA 

results confirmed the visually observed trends of the grapevine varieties spectra curves, such 

that ANOVA results reveal a higher potential for varieties discrimination at canopy level as 

opposed to leaf level. This is promising, given that the canopy is directly sensed with aerial 

and satellite sensors, and the canopy level thus provides a better matching between field 

spectrometry and satellite remote sensing data (Clevers et al., 2010). From the application 

perspective, this finding supports the use of remote sensing into agricultural or viticulture 

monitoring i.e. grapevine varieties (Gitelson and Merzlyak, 1996; Goswami and Matharasi, 

2015; Jiménez and Díaz-Delgado, 2015).

Nevertheless, we encountered two challenges in choosing the optimal wavelengths or 

indices. Firstly, the introduced wavelengths and spectral indices had a significant overlap 

with each other and express the same information. Secondly, the introduced wavelengths 

were numerous, and it was necessary to select an optimal number. Therefore, the PCA was 

used to resolve the above two problems.
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3.2.2 PCA—A summary of the PCA results for wavelengths are presented in Figs. 6 

and 7 at leaf and canopy levels. The first four principal components (PC) were able to 

explain a total of 99.57% of the wavelength variance at the leaf level (Fig. 7). So that, 

PC1, PC2, PC3 and PC4 explained 52.43%, 35.69%, 10.87% and 0.58% of the variance, 

respectively (Fig. 7). The wavelengths with the most factor load in a PC (which indicates 

the correlation between wavelength and PC) were selected as the representative of that PC 

(Mirzayi et al., 2014 and Mirzaei et al., 2018). Therefore, the wavelengths in the vicinity 

of 1606, 752, 695 and 1148 (nm) were selected as optimal ones for discrimination of 

studied grapevine varieties at leaf level, which had the highest correlation with PC1, PC2, 

PC3 and PC4, respectively (Fig. 6). The PCA results at the canopy level indicated that the 

first four PCs can explain 99.78% of the variance of the wavelengths which introduced by 

ANOVA, cumulatively (Fig. 7). In this regard, each of the PC1, PC2, PC3 and PC4 can 

explain 89.64%, 6.62%, 3.10% and 0.42% of variance, individually (Fig. 7). The factor 

loads of wavelength for each of the PCs is shown in Fig. 6. According to this Fig, the 

wavelength in the vicinity of 1154 nm had the most factor loads in PC1 and was selected 

as the representative of this PC. The wavelengths in the vicinity of 1927, 582 and 687 nm 

also had the highest factor loads in PC2, PC3 and PC4, respectively, and were selected as 

representatives of these PCs.

PCA was also used to select the optimal spectral indices for discrimination of studied 

grapevine varieties. A summary result of this analysis is presented in Table 2. At the 

leaf level, the first three PCs were able to explain a total of 90.64% of the variance. 

SGB, WI and R680 indices had the most factor loads in PC1, PC2 and PC3, respectively. 

Therefore, these indices were preferred for discrimination of studied grapevine varieties 

at the leaf level. At the canopy level, the first three PCs were able to explain 98.92% of 

variance, accumulatively. So, in PC1, PC2 and PC3, the indices of DattA, Greenness and 

RATIO975_2 had the highest factor loads and were preferred for discrimination grapevine 

varieties at canopy level.

3.2.3 PLSR—PLSR was used as another data reduction method for selecting optimal 

wavelengths and spectral indices to discriminate of grapevine varieties. Therefore, 2151 

wavelengths (350–2500 nm) were entered into PLSR at leaf and canopy levels and grapevine 

varieties considered as dependent variables. One of the most important aspects in using of 

PLSR is to select the optimal component number (Diago et al., 2013). The high number 

of components leads to an increase in the overlap risk between the components, and the 

low number of components leads to the loss of the variance description (Mirzayi et al., 

2014). According to Fig. 7, if the first five components are selected, 99.02% and 98.35% 

of the variance of wavelengths is described at the leaf and canopy levels. After the fifth 

component, the gradient of the graph is very low and it seems that there is no need to enter 

another component and the first five components are optimal. In Fig. 8, the loads of the 

first five components are shown. According to this Fig, in components 1, 2, 3, 4, and 5, the 

wavelengths in the vicinity of 1379, 556, 621, 438, and 527 nm had the highest absolute 

loads, respectively. Therefore, these five wavelengths can be considered as representing 

the PLSR components, and are considered as most suitable in the separation of grapevine 

varieties at the leaf level.
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At the canopy level, the components of 1, 2, 3, 4 and 5 had the highest absolute loads in the 

wavelengths in vicinity of 2292, 636, 573, 1931, and 466 nm. Therefore, these wavelengths 

can be selected as representatives of these components in the discrimination of grapevine 

varieties at the canopy level.

In order to identify the optimal spectral indices in discriminating of grapevine varieties, 32 

calculated indices were entered into PLSR. The results of PLSR for this section indicate that 

the first five components were able to explain a total of 99.81% and 99.35% of the spectral 

indices variance at leaf and canopy levels, respectively. At the leaf level, R680, PRI3, GM1, 

PRI2 and R550 indices had the highest absolute loads in components 1, 2, 3, 4 and 5, 

respectively (Fig. 9). Therefore, these indices can be selected as optimal for discriminating 

grapevine varieties at the leaf level.

At the canopy level, R680, PRI3, Greenness, CRI and NPCI indices had the highest absolute 

loads in components 1, 2, 3, 4 and 5, respectively (Fig. 9). Therefore, it is possible to select 

these indices as the best indices of PLSR method for discriminating of grapevine varieties at 

canopy level.

3.3 Spectral region importance

One of the most important matters in the hyperspectral in situ spectroscopy studies is 

identifying the location of optimal wavelengths in the electromagnetic spectrum (Li and 

He, 2008). A small set of wavelengths must be selected to provide in-depth information 

about the study targets while at the same time missing data must be minimized (Prospere et 

al., 2014; Adam et al., 2010). Therefore, both PLSR and ANOVA-PCA were exploited to 

determine the optimal number and location of wavelengths for discrimination of grapevine 

varieties. The ANOVA-PCA results demonstrated that PC1, PC2, PC3 and PC4 were 

affected by the MIR, NIR, RDE and NIR regions at the leaf level, respectively (Fig. 6). 

Hence, the highest frequency of separation wavelengths of grapevine varieties at the leaf 

level was located in the NIR region. Also, at the canopy level, PC1, PC2, PC3 and PC4 were 

affected by NIR, MIR, VIS and RDE regions, respectively (Fig. 6). As a general summary 

of the ANOVA-PCA method, the importance of spectral regions was ranked as NIR > MIR 

and RDE > VIS. However, in the PLSR method, component 1 was affected by MIR region 

and the components 2, 3, 4, and 5 were affected by the VIS region, at the leaf level (Fig. 

8). Also, at the canopy level the greatest influence of components 1 and 4 was on the MIR 

region, and the most effective of components 2, 3 and 5 were formed by VIS region (Fig. 

8). Generally, according to PLSR results, the highest frequency of optimal wavelengths for 

grapevine discrimination was located in the VIS and MIR regions (ranking order: VIS > 

MIR > NIR and RDE).

According to these results, two remark s are worth addressingFirst, changing the data 

reduction method led to the selection of different wavelengths from different spectral 

regions. So that, in the ANOVA-PCA method the NIR and in the PLSR method the VIS 

were the most important regions, respectively. Manevski et al. (2011) also observed different 

results from ANOVA and U test methods in data reduction process. They discussed that the 

reasons for these differences was due to the two types of statistical analyzes (parametric and 

nonparametric). Here both methods belong to parametric statistical analysis. It can therefore 
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be admitted that the choice of data reduction methods plays a significant role in introducing 

optimal wavelengths, which was also confirmed by Prospere et al. (2014). Second, the 

selected wavelengths by the ANOVA-PCA method yielded the highest frequency in the NIR 

region, which was confirmed by the findings of Adam and Mutanga (2009), Schmidt and 

Skidmore (2003) and Aneece and Epstein (2017). However, in Vaiphasa et al. (2005) and 

Abbasi et al. (2012) the RDE was considered as a most sensitive region for discrimination 

of plants, which in this study had medium and no effect on the discrimination of grapevine 

varieties by ANOVA-PCA and PLSR, respectively.

According to Vogelmann, (1993); Slaton et al. (2001); Xu et al. (2009) and Strever (2012), 

the NIR region is mostly indicative of plant structural characteristics. On the other hand, 

the PLSR method selected most wavelengths in the VIS region, which is mostly driven by 

plant pigments (Boyer et al., 1988; Penuelas et al., 1993). This suggests that the studied 

grapevine varieties were likely different in terms of structural characteristics and foliar 

pigment concentrations, although these parameters were not measured.

3.4 Accuracy assessment results

After the selection of optimal wavelengths or indices for discriminating grapevine varieties 

by ANOVA-PCA and PLSR, it was necessary to settle a benchmark to evaluate the 

performance of different scenarios. In this regard, the LDA and SVM algorithms were 

used to evaluate the performance of different data collection level (canopy and leaf levels), 

hyperspectral data type (wavelength and spectral indices) and feature selection methods 

(ANOVA-PCA and PLSR). So, a total of 16 models were developed to support all existing 

scenarios. A summary of the results obtained by LDA in discriminating grapevine varieties 

is shown in Table 3. At the leaf level, the overall accuracy (OA) of discriminating grapevine 

varieties was 100% at both training and testing sets in wavelength-ANOVA-PCA, indices-

ANOVA-PCA and indices-PLSR scenarios (Table 3). Similarly, at the canopy level, the 

overall accuracy was 100% at the training and testing sets in wavelength-PLS, indices-

ANOVA-PCA and indices-PLSR scenarios (Table 3). It should be noted that the wavelength-

PLSR scenario performed poorer in discriminating the studied grapevine varieties at the 

leaf level, whereby the overall accuracy of this scenario at the training and testing 

sets was 91.85% and 89.88%, respectively (Table 3). At the canopy level, the weakest 

performance was related to the wavelength-ANOVA-PCA approach. This method was able 

to discriminate grapevine varieties in the training and testing sets with overall accuracy of 

97.14% and 96.66% (Table 3).

The SVM algorithm was applied by varying the kernel function (linear, polynomials, RBF, 

and sigmoid) and its related parameters (coefficient, gamma, degree) in order to achieve 

the highest performance (Gutiérrez et al., 2016; Mirzaei et al., 2018). Table 4, shows 

the structure and the best results obtained from SVM for each of the studied scenarios. 

According to the table, SVM was able to discriminate all leaves and canopies samples into 

their related variety names with accuracy of 100% in both training and testing sets. In many 

cases, SVM with the linear kernel function led to the best performance (Table 4).

Only in the leaf-wavelength-PLSR and canopy- wavelength- ANOVA-PCA scenarios 

outperformed the RBF kernel the other kernel functions (Table 4). The superiority of the 
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linear function over other kernel functions (polynomials, RBF, and sigmoid) can be due to 

the linear nature of the inputs data to the SVM model. Similarly, the data reduction methods 

(PLSR and ANOVA-PCA) are based on parametric statistics and linear relationships.

According to the results, in all scenarios the SVM performance was 100%, while the LDA 

was lower (OA < 100%) in two scenarios (Tables 3 and 4). Similar results in comparing 

of SVM and LDA were obtained in Große-Stoltenberg et al. (2016) and Yang et al. 

(2015) studies. The reason for such findings can be attributed to the benefits of machine 

learning techniques (i.e. SVM) as opposed to parametric methods (e.g. LDA) (Verrelst et 

al., 2018). These techniques have proven flexibility, generalization capability and accuracy 

in discrimination topics (Gutiérrez et al., 2016). So, the strength of the SVM can lie in 

the use of linear and nonlinear functions in the SVM kernel as well as confirming the 

high suitability and adaptability of machine learning approaches in classification studies 

(Gutiérrez et al., 2015, 2016; Verrelst et al., 2018).

Since SVM yielded a similar performance in all scenarios (OA = 100%), the decision 

for introducing the most suitable scenarios was possible only based on the LDA results. 

Accordingly, the OA of test sets were 89.88% and 96.66% in the leaf-wavelength- PLSR and 

canopy-wavelength-ANOVA-PCA scenarios, respectively (Table 3). So, despite the fact that 

the results were alike, on the whole, the ANOVA-PCA method selected input features for 

discriminating of studied grapevine varieties with a higher performance. This result suggests 

that, although the PLSR is most common method in reduction of in situ spectroradiometry 

data (Xu et al., 2009; Diago et al., 2013; Lehmann et al., 2015; Abbasi et al., 2012), the 

ANOVA-PCA can also be considered as an excellent alternative in this regard.

In accordance with Table 3, it is possible to calculate that averages OA in test sets were 

97.47% and 99.17% for leaf and canopy levels, respectively. Therefore, it can be deduced 

that the canopy level is more suitable for discriminating grapevine varieties. In confirming 

these results, Fig. 3 also displayed a distinct average foliar and canopy reflectance spectrum 

of studied varieties. As in the visual interpretation, the discrimination of varieties was more 

successful at the canopy level. This difference in scale can be attributed to the addition 

of some plant organs such as petioles, cords and branches to the spectroscopy process. 

So, when these plant organs were added to the spectroscopy process, the potential for the 

separation of grapevine varieties was higher than with individual leaves. Therefore, as a 

general finding, it can be admitted that the canopy level has a higher potential for separating 

grapevine varieties than the leaf level. The difference in spectral reflectance at the leaf and 

canopy levels is due to various factors such as canopy architecture, leaf orientation, leaf 

area index, non-photosynthetic elements and etc., which drive the spectral reflectance of the 

canopy level (Asner, 1998; Kalacska et al., 2007). Also Cho et al. (2008) found that the 

canopy level had a higher performance in plant species discriminating.

As a final remark, two types of hyperspectral data were applied, i.e. wavelengths and 

indices. According to Table 3, the OA was 100% in all indices-based scenarios, whereas in 

two wavelength-based scenarios (leaf-wavelength-PLSR and canopy-wavelength-ANOVA-

PCA) the OA was less than 100%. The success of spectral indices lies in their ability 

to improve vegetation signals (Prospere et al., 2014) while mitigating atmospheric or 

Mirzaei et al. Page 13

Int J Appl Earth Obs Geoinf. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



background disturbances (Darvishsefat et al., 2011) and thus provides more facilities for 

discriminating the characteristics of plant species or varieties (Cho et al., 2008; Prospere et 

al., 2014). Similarly, also Prospere et al. (2014) reported a preference of spectral indices in 

comparison to original spectral reflectance data to discriminate tropical wetland species.

4 Conclusions

The capability of in-field spectroscopy and multivariate statistical techniques was 

investigated to identify optimal features in discriminating common grapevine varieties in 

the western of Iran. In this regard, two types of hyperspectral data (wavelengths from 350 

to 2500 nm and 32 spectral indices), two data reduction methods (PLSR and ANOVA-PCA) 

and two classifier algorithms (LDA and SVM) at leaf and canopy levels were applied in 

a total of 16 scenarios to consolidate the best approach. According to the obtained results, 

it can be concluded that: 1) Data reduction methods play a very important role in the 

application of in-field spectroscopy data. In this regard the combination of ANOVA with 

PCA outperformed PLSR. 2) Optimal wavelengths in discrimination of studied grapevine 

varieties were located in vicinity of 695, 752, 1148, 1606 nm and 582, 687, 1154, 1927 

nm at leaf and canopy levels, respectively. On the other hand, optimal spectral indices 

were R680, WI, SGB and RATIO975_2, DattA, Greenness at leaf and canopy levels, 

respectively. 3) both in the visual interpretation and on the basis of statistical analyzes, 

the canopy level was more able to discriminate the grapevine varieties as opposed to the 

leaf level. 4) The spectral indices outperformed wavelengths in discrimination of grapevine 

varieties. 5) According to ANOVA-PCA method, the importance of spectral regions in 

discriminating studied grapevine varieties was ranked as NIR > MIR and RDE > VIS. 

6) in all scenarios, the SVM performance was 100%, while the LDA had lower (OA < 

100%) in some scenarios. Therefore, SVM was concluded as best classification algorithm. 

7) The grapevine varieties were discriminated with OA: 89.88%-100%, which supports 

the acceptable performance of the applied techniques. These results support the use of in-

field spectroscopy as a nondestructive, rapid, and highly accurate method in plant varieties 

discrimination.

Altogether, the canopy-spectral indices-ANOVA-PCA-SVM scenario discriminated 

grapevine varieties most accurately. This scenario is related to in-field data acquisition level, 

hyperspectral data type, data reduction method and classification algorithm, respectively. We 

encourage similar studies to complete the spectral library of grapevine or other orchards 

varieties and to use such data for the purpose of precision agriculture. A next step would 

be working on upscaling by coupling in-field spectroscopy data with hyperspectral-satellite 

imagery.
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Fig. 1. Location of the study site (Chaharmahal-va-Bakhtiari) in Iran.
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Fig. 2. Flowchart of processes described for identifying best scenarios in the grape varieties 
discrimination.
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Fig. 3. Average of reflectance spectrum of the five studied grapevine varieties at leaf (top) and 
canopy (down) levels from 350 to 2500 nm.
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Fig. 4. 
ANOVA results in representing the potential of each wavelength at leaf (top) and canopy 

(down) levels in the grouping of five grapevine varieties at 95% confidence level with a 

post-hoc of Scheffé test.
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Fig. 5. 
ANOVA results in representing the potential of each spectral index in the grouping of five 

grapevine varieties at 95% confidence level with a post-hoc of Scheffé test.
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Fig. 6. The factor load of wavelengths at leaf (top) and canopy (down) levels in each principal 
component with Varimax rotation method.
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Fig. 7. Cumulative variance explained (%) for wavelengths in the first ten components extracted 
by PCA and PLS R at leaf and canopy levels.
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Fig. 8. The loadings of wavelengths at leaf (top) and canopy (down) levels in the first five 
extracted components by PLSR.
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Fig. 9. The loadings of spectral indices at leaf (top) and canopy (down) levels in the first five 
extracted components by PLSR.
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Table 1

Characteristics of hyperspectral indices which had been used by Prospere et al. (2014) and Cho et al. (2008) in 

discrimination of plant species.

Index Name Formula Comments / Biophysical significance

Normalized Difference Vegetation 
Index, NDVI

)R831 — R667) /(R831 + R667( among the most widely used plant indices which is 
sensitive to chlorophyll content

Carter index (CI) (R760 / R695) sensitive to chlorophyll content

Vogelman index (VOG) (R740 / R720) sensitive to chlorophyll content

Carotenoid reflectance index (CRI) R800 (1/ R520 - 1/ R550) sensitive to plant stress and the content of 
carotenoids

Photochemical Reflectance Index, PRI PRI1 = (R531 — R570) /(R531 + R570) 
PRI2 =1.5 (R830- R660) / (R830 — R660 
+ 0.5) PRI3 = (R539 — R570) /(R539 + 
R570)

sensitive to vegetation type, water stress condition, 
efficiency of radiation and photosynthetic capacity

Gitelson and Merzlyak chlorophyll, 
GM 1 and 2,

GM1 = (R750) /(R550)
GM2 = (R750) /(R700)

estimating of chlorophyll content in plant leaves / 
chlorophyll index

Lichtenthaler Indices 1 to 3 Lic1 = (R800 — R680) /(R800 + R 680)
Lic2 = (R440)/(R690)
Lic3 = (R440)/(R740)

used to detect stress in green leaves

Simple Ratio Pigment Index, SRPI (R430) /(R680) sensitive to carotenoids and chlorophyll a content

Normalized Phaepophytiniz Index, 
NPQI

(R415 — R435) /(R415+ R435)  

Normalized Pigment Chlorophyll Ratio 
Index, NPCI

(R680 — R430)/(R680 + R430) sensitive to pigments and chlorophyll content

Greenness Index, G (R554) /(R677) long-term plant stress index due to changes in the 
structure of the canopy, but not due to biochemical 
components

Structure Intensive Pigment Index, SIPI (R445— R800) /(R680 — R800) estimation of the carotenoids: chlorophyll a ratio

Simple Ratio, SR (R774) /(R677) long-term plant stress index due to changes in the 
canopy structure

Reflectance at 550 nm, R550 (R550) sensitive to chlorophyll content

Reflectance at 680 nm, R680 (R680) sensitive to chlorophyll content

Water Index, WI (R900) /(R970) related to water status

Cellulose Absorption Index, CAI 0.5 (R2000+ R2200) — R2100 indicates the cellulosic absorption values

Moisture Stress Index, MSI (R1600) /(R820) related to water status

Normalized Difference Water Index, 
NDWI

(R860 — R1240) /(R860 + R1240) related to water status

Disease Water Stress Index, DWSI (R802 +R547) /(R1657 + R 682) related to plant disease and water status

Band ratio at 975 nm, RATIO975 2×R960— 990/(R920-940 + R1090—1110) related to water status

Band ratio at 1200 nm, RATIO975-2 2×R1180— 1220 /(R1090 —1110+ 
R1265-1285)

related to water status

Leaf Chlorophyll Index, LCI (R850—R710) /(R850 + R680) an indicator of chlorophyll content that is not 
affected by the scatter variation and represents the 
pigments absorption

DattA (R780—R710) /(R780-R680) sensitive to chlorophyll content

Chlorophyll Index, SGA (R750 + R705) /(R750 + R705 — 2×R445) sensitive to chlorophyll content

Chlorophyll Index, SGB (R750 — ρ445) /(R705— R445) sensitive to chlorophyll content

Water Index at 1180nm, WI1180 (R900) /(R1180) related to water status

R: Reflectance.
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Table 2
The factor loads of spectral indices at leaf and canopy levels with Varimax rotation 
method and cumulative variance explained by each principal component.

Spectral Indices PC1 PC2 PC3

Leaf level GM2 0.879 0.221 0.420

  Lichtenthaler1 0.606 0.478 0.634

  R680 −0.584 −0.475 −0.657

  WI 0.150 0.965 0.215

  SGB 0.967 0.140 0.201

  VOG 0.892 0.231 0.373

  Cumulative Variance Explained 53.94 79.07 99.64

Canopy level RATIO975_2 −0.114 −0.272 0.955

  DattA 0.988 0.012 −0.088

  CI 0.892 0.409 −0.123

  Greenness 0.181 0.932 −0.306

  Cumulative Variance Explained 45.43 73.19 98.92
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Table 3
A summary result of LDA in discriminating grapevine varieties at leaf and canopy levels 
based on wavelengths and spectral indices.

Hyperspectral Data Type
Feature selection 
Method Selected Inputs

Train OA % Test OA %

Leaf Level Wavelengths ANOVA-PCA w695, w752, w1148, w1606 100 100

    PLSR w1379, w556, w621, w438, w527 91.85 89.88

  Indices ANOVA-PCA R680, WI, SGB 100 100

    PLSR R680, PRI3, GM1, PRI2, R550 100 100

Canopy Level Wavelengths ANOVA-PCA w582, w687, w1154, w1927 97.14 96.66

    PLSR w2292, w636, w573, w1931, w466 100 100

  Indices ANOVA-PCA RATIO975_2, DattA, Greenness 100 100

    PLSR R680, PRI3, Greenness, CRI, NPCI 100 100

w: wavelength.
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Table 4
A summary results and properties of the best SVM models in discriminating grapevine 
varieties at leaf and canopy levels based on wavelengths and spectral indices.

  Hyperspectral 
Data Type

Feature 
selection 
Method

Selected Inputs Kernel 
type

Number 
of 
support 
vectors

Kernel Parameters Train Test

            coefficient degree gamma OA % OA 
%

Leaf 
Level

Wavelengths ANOVA-
PCA

w695, w752, 
w1148, w1606

Linear 28 – – – 100 100

    PLSR w1379, w556, 
w621, w438, 
w527

RBF 43 – – 0.20 100 100

  Indices ANOVA-
PCA

R680, WI, SGB Linear 25 – – – 100 100

    PLSR R680, PRI3, 
GM1, PRI2, 
R550

Linear 27 – – – 100 100

Canopy 
Level

Wavelengths ANOVA-
PCA

w582, w687, 
w1154, w1927

RBF 32 – – 0.25 100 100

    PLSR w2292, w636, 
w573, w1931, 
B466

Linear 28 – – – 100 100

  Indices ANOVA-
PCA

RATIO975_2, 
DattA, Greenness

Linear 24 – – – 100 100

    PLSR R680, PRI3, 
Greenness, CRI, 
NPCI

Linear 26 – – – 100 100
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