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Explicit information obtained through instruction profoundly shapes human choice behaviour. 

However, this has been studied in computationally simple tasks, and it is unknown how model-

based and model-free systems, respectively generating goal-directed and habitual actions, are 

affected by the absence or presence of instructions. We assessed behaviour in a variant of a 

computationally more complex decision-making task, before and after providing information 

about task structure, both in healthy volunteers and individuals suffering from obsessive-

compulsive (OCD) or other disorders. Initial behaviour was model-free, with rewards directly 

reinforcing preceding actions. Model-based control, employing predictions of states resulting from 

each action, emerged with experience in a minority of participants, and less in OCD. Providing 

task structure information strongly increased model-based control, similarly across all groups. 

Thus, in humans, explicit task structural knowledge is a primary determinant of model-based 

reinforcement learning, and is most readily acquired from instruction rather than experience.

Introduction

The brain uses multiple systems to choose which actions to perform1–6. One widely held 

distinction is made between goal-directed actions, guided by predictions of their specific 

outcomes, and habitual actions, performed according to preferences acquired through prior 

reinforcement1,7–9. This cognitive and behavioural classification is thought to correspond, 

at least in part, to a computational distinction between two different types of reinforcement 

learning (RL), termed model-based and model-free4,5,10,11. A model-based RL algorithm 

learns to predict the specific consequences of actions, and computes their values, i.e. long 

run utilities, by simulating likely future behavioural trajectories. This allows for statistically 

efficient use of experience, and thus flexibility, at the cost of the computational demands 

of planning4,10,12. Model-free RL, by contrast, learns estimates of the value of states or 

actions directly from experience, and updates these estimates using reward prediction errors. 

This allows for rapid action selection at low computational cost, but uses information less 

efficiently, resulting in slower adaption to changes in the environment4,10. It is thought that 

the brain takes advantage of the complementary strengths of both prospective (model-based) 

and retrospective (model-free) approaches to decision-making, through mechanisms that 

estimate whether the payoff for more accurate prediction is worth the computational costs of 

planning4,13,14.

Sequential, or multi-step, decision tasks have emerged as a powerful approach to study 

model-based and model-free RL in humans11,13,15,16. In such tasks, participants move 

through a sequence of states to obtain rewards, typically with non-stationary reward and/or 

action-state transition probabilities, forcing continuous learning. The contributions of model-

based and model-free RL can be determined by examining how participants update their 

choices in light of recent experience. To date, the most commonly used task is the ‘two-step’ 

task, employing a choice between two ‘first-step’ stimuli, which leads probabilistically to 

one of two ‘second-step’ states, where rewards may be obtained11. Each first-step stimulus 

commonly leads to one of the second-step states but, on a minority of trials, leads to 

the state commonly reached from the other stimulus. Model-based and model-free RL 

are identified according to how the trial outcome (rewarded or not) and state transition 

(common or rare) interact to affect the subsequent choice. Under model-free control, the 
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agent will tend to repeat first-step choices that are followed by reward, irrespective of 

the state transition. By contrast, under model-based control, the agent will tend to switch 

first-step choice when a rare transition leads to reward, given that the reward increases the 

value of the state commonly reached from the not-chosen first step option. The two-step task 

has been used to study neural correlates of model-based and model-free control in healthy 

participants11,17–27, and to investigate decision making in clinical populations28–32.

Human participants typically receive extensive instruction about task structure prior to 

performing the two-step task11,33. However, though there is extensive literature showing that 

instruction profoundly shapes human behaviour in operant34–36 and fear37,38 conditioning, 

as well as value-based decision making39–42, little is known about how instruction affects 

behaviour in multi-step tasks that dissociate model-based and model-free control. To our 

knowledge, a single study in healthy humans has partially addressed this question, showing 

that making instructions more comprehensive and easier to understand, increases the 

influence of model-based relative to model-free RL33. This result, in combination with other 

analyses, led the authors to propose that humans are primarily model-based learners on this 

task, suggesting that apparent model-free behaviour, including in some clinical populations, 

may result from incorrect task models, rather than a true model-free strategy.

However, few studies have explored behaviour on multi-step tasks in the absence of 

information about task structure, in either healthy or clinical populations. Thus, it remains 

unclear how model-based and model-free RL contribute to action selection in situations 

where participants must learn task structure directly and exclusively from experience, and 

how providing explicit information about task structure affects each system. To address these 

questions, we created a simplified version of the two-step task, requiring minimal prior 

instruction. We initially administered it with no information given about the task state space, 

transition structure, or reward probabilities. Then, the task was repeated following debriefing 

about these elements of the task’s structure. Behaviour was tested in healthy volunteers, as 

well as in a sample of individuals with obsessive-compulsive disorder (OCD), previously 

reported to have deficits in the degree to which model-based RL is employed29,31. To 

control for the effects of psychotropic medication and of unspecific mood and anxiety 

symptoms, data was also collected in a comparison sample of individuals with mood and 

anxiety disorders. Initial behaviour, prior to instructions, was model-free across all groups, 

with model-based control emerging with experience in only a minority of participants, 

and to a lesser extent in OCD. However, once task structure information was provided, 

model-based control increased to a very similar, and significant extent in healthy volunteers 

and individuals with OCD or other disorders. These findings demonstrate that explicit task 

structural knowledge is a primary determinant of human use of model-based RL, and is most 

readily acquired from instruction rather than experience.

Results

We developed a simplified two-step task requiring minimal prior instruction. Specifically, 

we simplified the visual representation of task states on the screen, the task structure 

(allowing only a single action rather than a choice in each second-step state), and the 

reward probability distribution (using blocks, instead of slowly fluctuating Gaussian random 
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walks, to increase the contrast between good and bad options43,44; Figure 1). Two-hundred 

and four individuals were recruited in Lisbon and New York to perform this task: 109 

were healthy volunteers, 46 were diagnosed with OCD and 49 with other mood and 

anxiety disorders. Sociodemographic and psychometric data from all participants is shown 

in table 1. While statistically significant differences between groups were not found for 

age (F2=2.4, P=0.1, η2=0.02, one-way ANOVA) nor gender (χ2=5.1, P=0.3, Cramer’s 

V=0.1, Pearson’s chi-squared), they were present for years of education (F2=5.7, P<0.01, 

η2=0.06, one-way ANOVA), which were slightly, but significantly, higher in healthy 

volunteers than the mood and anxiety group (difference between means=1.7, 95% CI [0.42, 

2.91], P=0.01, Tukey’s HSD). As expected, both clinical groups had significantly higher 

anxiety and depression scores than healthy volunteers (F2>55, P<0.001, 0.36<η2<0.62, 

across all one-way ANOVA’s for depression and anxiety scores), while participants with 

OCD had higher obsessive-compulsive scores than participants in either of the two other 

groups (F>200, P<0.001, 0.76<η2<0.81, across all one-way ANOVA’s for the Yale-Brown 

Obsessive-Compulsive Scale total and sub-scores). Regarding medication, we classified it in 

classes and we did not find statistically significant differences between clinical groups in the 

use of any class of medication (χ2<1.6, P>0.2, across all Chi-squared tests).

While developing the task among healthy volunteers in Lisbon, participants were 

randomized between two different versions, one with fixed transition probabilities linking 

the first-step actions and second-step states (Fixed version; n=40), and one where 

the transition probabilities underwent periodic reversals (Changing version; n=42). The 

Changing version proved too complex for most participants, particularly as shown by the 

lack of effects of debriefing on the development of model-based RL, although a small subset 

was able to learn the task structure (see “Changing transition probabilities inhibits model-

based control” in Supplementary Information for details), so we subsequently focused on the 

Fixed task, which is used for all data and figures in the main text. All healthy volunteers 

recruited in New York (n=27), and all clinical participants at both sites (n=95) completed 

this version. All participants in both versions performed 4 sessions of 300 trials each in a 

single day. A subset of healthy controls, and all clinical participants, were debriefed between 

sessions 3 and 4, with the task structure explained to them. We assessed the effect of 

uninstructed experience by comparing behaviour between sessions 1 and 3, and the effect of 

explicit knowledge by comparing behaviour between sessions 3 and 4.

Initial behaviour is under model-free control

As participants were not told how their actions (arrow key presses) affected the stimuli 

shown on the screen, they had to learn both the correspondence between arrow keys 

and stimuli, and that stimuli could only be selected when highlighted. In the 67 healthy 

volunteers performing the Fixed version of the task, the number of invalid key presses per 

trial (i.e. presses to keys whose corresponding stimulus was not highlighted) decreased 

over the first 50-100 trials, before stabilising at a low level in all but a minority 

of participants (Supplementary Figure 1). During session 1 there was no statistically 

significant difference in the average rate of invalid key presses at the second-step following 

common (median=0.027/trial) vs rare (median=0.023/trial) transitions (P=0.2, Sign test, 

Supplementary Figure 1).
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To assess how trial events affected subject’s choices, we analysed the probability of 

repeating first-step choices (termed ‘stay probabilities’) as a function of the previous state 

transition (common or rare), trial outcome (rewarded or not), and their interaction11. During 

session 1, stay probability was strongly influenced by trial outcome (coefficient=1.17, 95% 

CI [0.92,1.44], P<0.001, bootstrap test). There was no statistically significant evidence 

for an influence of state transition (coefficient=0.07, 95% CI [-0.07,0.21], P=0.3) or the 

transition-outcome interaction (coefficient=0.1, 95% CI [-0.02,0.23], P=0.1); Figure 2 a, d) 

on stay probability. This pattern is consistent with a simple model-free strategy, in which the 

outcome received at the end of the trial directly reinforces the choice made at the first-step11. 

This direct reinforcing effect of reward was evident from the very start of the first session 

(Figure 2b), rather than emerging with task experience.

Although we did not find evidence for state transitions influencing subsequent first-step 

choices in session 1, key-press reaction times at the second-step were faster following 

common than rare transitions (399.1 ± 16.9ms and 514.4 ± 20.5ms respectively; t66=7.81, 

P<0.0001, d=0.75, paired t-test; Figure 2e). This dissociation between choice and implicit 

measures of task-structure learning suggests that motor systems learned to predict and 

prepare upcoming actions before decision making systems were using a predictive model to 

evaluate choices.

Modest increase in model-based control with experience

To assess how task experience affected behavioural strategy we compared behaviour in 

sessions 1 and 3. Stay probability at session 3 was more strongly influenced by both state 

transition (null 95% CI [-0.18,0.18], coefficient change=0.27, P=0.003, permutation test) 

and the transition-outcome interaction (null 95% CI [-0.25,0.24], coefficient change=0.39, 

P<0.001), while evidence for a change in the influence of trial outcome was not statistically 

significant (null 95% CI [-0.31,0.32], coefficient change=0.31, P=0.06; Figure 2 c, d). 

This pattern is consistent with increased influence of model-based control, as model-based 

agents know that outcomes following rare transitions primarily influence the value of the 

first-step option that was not chosen11,43, leading to loading on the transition-outcome 

interaction predictor. Importantly, loading on the transition–outcome interaction parameter 

across sessions 1 to 3 was positively correlated with the number of rewards obtained by 

each subject (r[65]=0.41, P<0.001; 95% CI [0.19, 0.59], Pearson’s correlation), suggesting 

that participants who learned a model of the task used information more efficiently and 

thus obtained rewards at a higher rate. Furthermore, we have previously shown that, 

when transition probability estimates are updated based on experienced state transitions, 

as is the case here, model-based agents tend to repeat the same choice after common 

transitions, producing a positive coefficient for state transition as a predictor of stay 

probability43. Increased loading on the state transition predictor thus provides added support 

for development of model-based control with task experience between sessions 1 and 3.

To further explore model-free and model-based control prior to receiving instructions, we 

fit RL models to the data. Model-comparison combining data from sessions 1-3 indicated 

that a mixture model including model-free and model-based components fit data better 

than a purely model-free or a purely model-based model, as reflected by lower Bayesian 
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Information Criteria (BIC) scores for the mixture model (Supplementary Figure 2a, left 

panel). Models that included a “bias” parameter, capturing bias towards the upper or 

lower first-step choice, and a “perseveration” parameter, capturing a tendency to repeat 

the previous choice, fit the data better than a model not including these parameters 

(Supplementary Figure 2a, right panel). As it has been suggested that apparently model-free 

behaviour could in fact reflect a model-based strategy with an incorrect model of the task 

structure33, we considered 3 additional model-based agents with incorrect beliefs, but found 

these fit the data from both session 1 and 3 worse than any of the traditional models 

(Supplementary Figure 2b). We also simulated behaviour from the best fitting RL model and 

verified that it produced stay probability plots qualitatively similar to the experimental data 

(Supplementary Figure 5).

To assess uninstructed learning effects using RL models, we compared parameter values 

of the fitted models for sessions 1 and 3. The value learning rate increased significantly 

between session 1 and 3 (null 95% CI [-0.17,0.17], parameter change=0.18, P=0.03), 

permutation test), but there was no statistically significant evidence for changes other 

parameters (P>0.06), including the strength of model-based influence on choices (null 95% 

CI [-0.30,0.30], parameter change=0.07, P=0.65; Figure 2f). The discrepancy with increased 

loading on the ‘transition x outcome’ predictor in the stay-probability analysis may reflect 

lower statistical power to detect subtle strategy changes in the strongly non-linear and more 

flexibly parameterised RL model. It likely also reflects the fact that only a minority of 

participants learned to use model-based RL, with per-subject model comparison between 

the mixture RL model and a simpler model-free RL model indicating that only 15% of 

participants (10/67) used model-based RL at session 3 (likelihood ratio test, threshold 

P=0.05).

Key-press reaction times at the second-step became faster overall between session 1 and 

3 (main effect of session F1,66=21.1, P<0.0001, ηp
2=0.24), but this was more pronounced 

following common than rare transitions (session-transition interaction F1,66=21.1, P=0.008, 

ηp
2=0.1, repeated measures ANOVA; Figure 2e). Additionally, by session 3 the rate 

of invalid key presses was significantly higher following rare (median=0.037/trial) than 

common (median=0.017/trial) transitions (P=0.004, Sign test, Supplementary Figure 1). 

Therefore, both choice-based and implicit measures showed evidence of learning about 

the transition structure between session 1 and 3. The strength of model-based influence 

on choice was significantly correlated across participants with the rare-common reaction 

time difference at both session 1 (r[65]=0.57; P<0.001, 95% CI [0.37,0.71]; Pearson’s 

correlation, Supplementary Figure 3) and session 3 (r[65]=0.69; P<0.001, 95% CI 

[0.54,0.80]), suggesting interaction between learning at motor and cognitive-levels, though 

this appeared to be driven by the minority of participants whose choices were more model-

based.

A possible reason why model-free control might predominate is that participants could 

perform the task as fast as they wished and, thus, might have been optimising speed over 

accuracy. To address this possibility, we tested an additional group of 20 healthy volunteers 

(mean age = 29.6 years old [SD=9]; gender = 25% males; mean education = 15.3 years [SD 

= 2.8]) on a slow-paced version of the task, in which a 1 second delay occurred between 
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circles lighting up and being active for selection, cued by a change in colour from pale 

to bright yellow, in addition to a 1 second intertrial interval (ITI). Participants completed 

three sessions, each of 150 trials followed by receiving explicit information about task 

structure, and a further session of 150 trials afterwards. As in the self-paced task, initial 

behaviour was consistent with model-free control, with a main effect of trial outcome on 

stay probability in session 1 (coefficient=0.79, 95% CI [0.44,1.14], P<0.001, bootstrap test). 

There was no statistically significant evidence for an effect of transition (coefficient=0.16, 

95% CI [-0.10,0.41], P=0.2) or the transition-outcome interaction (coefficient=-0.01, 95% 

CI [-0.24,0.25], P=0.9) on stay probability (Supplementary Figure 4a,b). Also, similarly 

to the self-paced task, the effect of transition-outcome interaction on stay probability 

increased between session 1 and 3 (null 95% CI [-0.35,0.34], coefficient change=0.45, 

P=0.005, permutation test), as assessed by the logistic regression (Supplementary Figure 

4b), consistent with increased use of model-based control with experience. However, at 

session 3 the influence of model-free control was still substantially larger than that of 

model-based, as assessed by RL model-fitting (Supplementary Figure 4d), and a likelihood 

ratio test on session 3 data supported a mixed model-based plus model-free strategy over a 

simpler model-free only strategy in only 3 among the 20 participants.

Overall, these data show that while signatures of model-based RL increased modestly with 

uninstructed experience, model-free RL predominated during uninstructed behaviour in this 

unfamiliar domain, and remained the strongest influence on choices for most participants 

over uninstructed trials.

Impaired use of model-based control with experience in OCD

Ninety-five individuals with either OCD or mood and anxiety disorders (Table 1) also 

completed the Fixed version of the simplified two-step task. In the stay probability analysis, 

when comparing session 1 with session 3, we did not find statistically significant evidence 

for an increased influence of transition (null 95% CI [-0.23,0.23], coefficient change=0.2, 

P=0.09, permutation test) or transition-outcome interaction (null 95% CI [-0.23,0.22], 

coefficient change=-0.04, P=0.7) in the OCD group (n=46; Figure 3a, b). Instead, there was 

an increased influence of trial outcome over uninstructed learning (null 95% CI [-0.35,0.36], 

coefficient change=0.58, P<0.001), that may reflect enhanced model-free control with 

experience. However, in direct comparisons with healthy volunteers (n=67), session by 

group interaction was significant only for the transition-outcome interaction parameter (null 

95% CI [-0.35,0.36], group difference in coefficient change=-0.43, P=0.015), but not for the 

transition (null 95% CI [-0.30,0.30], group difference=-0.07, P=0.65) or outcome parameters 

(null 95% CI [-0.46,0.48], group difference=0.27, P=0.25).

As in healthy participants, second-step reaction times were faster following common 

than rare transitions (main effect of transition, F1,45=51.3, P<0.0001, ηp
2=0.53, repeated 

measures ANOVA; Figure 3c), and also faster in session 3 than session 1 (main effect of 

session, F1,45=10, P=0.003, ηp
2=0.18). However, the session by transition interaction did 

not reach significance (F1,45=1.95, P=0.16, ηp
2=0.04). Directly comparing OCD and healthy 

volunteers, while individuals with OCD had slower reaction times overall (main effect 

of group, F1,111=8.65, P=0.004, ηp
2=0.07, mixed ANOVA), interactions with group were 
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not significant for session, transition, nor session by transition interaction (all F1,111<0.67, 

P>0.4, ηp
2<0.006). Finally, consistent with the stay probability analysis, RL mixture model 

fits to sessions 1 and 3 (Figure 3c) showed an increase in the influence of model-free action 

values on choice over learning (null 95% CI [-1.36,1.32], parameter change=1.71, P=0.012, 

permutation test), although session-by-group interaction with healthy volunteers did not 

reach significance (null 95% CI [-1.68,1.68], group difference in parameter change=1.52, 

P=0.07, permutation test, Supplementary Table 1).

To investigate potential contributions of medication or of unspecific mood and anxiety 

symptoms for the findings in the OCD group, equivalent experiments and comparisons 

were performed in a sample of individuals with other mood and anxiety disorders (n=49). 

Here, in stay probability analysis (Figure 3e, f) we found an increased influence of trial 

outcome (null 95% CI [-0.33,0.35], coefficient change=0.63, P<0.001, permutation test) 

and transition (null 95% CI [-0.25,0.25], coefficient change=0.33, P=0.011) with task 

experience, but we did not find statistically significant evidence for a change in the 

influence of the transition-outcome interaction predictor on stay probability (null 95% 

CI [-0.26,0.27], coefficient change=0.20, P=0.15). Second-step reaction times were faster 

following common than rare transitions (main effect of transition, F1,48=34.2, P<0.0001, 

ηp
2=0.42, repeated measures ANOVA, Figure 3g), and faster in session 3 than session 

1 (main effect of session, F1,48=30.5, P<0.0001, ηp
2=0.39), but the session by transition 

interaction was not statistically significant (F1,48=0.86, P=0.36, ηp
2=0.02). Compared with 

the healthy volunteers, this group had slower second-step reaction times overall (main 

effect of group, F1,114=6.97, P=0.009, ηp
2=0.06, mixed ANOVA), and a stronger influence 

of both the transition type (group-transition interaction F1,114=4.26, P=0.041, ηp
2=0.04) 

and session number (group-session interaction F1,114=6.74, P=0.011, ηp
2=0.06) on reaction 

time. Finally, RL model fits showed only an increased value learning rate (null 95% 

CI [-0.21,0.21], coefficient change=0.26, P=0.011, permutation test). We did not find 

statistically significant evidence for changes in the influence of model-free or model-based 

action values on choice over learning (model-free: null 95% CI [-0.80,0.80], coefficient 

change=0.49, P=0.24, model-based: null 95% CI [-0.43,0.42], coefficient change=0.10, 

P=0.64 permutation test) (Figure 3h). Importantly, there were no statistically significant 

session by group interactions between these patients and healthy volunteers for the stay 

probability analysis or RL model fits (P>0.11, Supplementary Table 2, permutation test). 

Overall, these data suggest a different pattern of learning from experience in individuals with 

OCD, with a failure to learn the task-transition structure and exhibit model-based RL.

Explicit knowledge increases model-based control

We next assessed how providing explicit information about the task structure changed 

behaviour, by comparing behaviour in sessions 3 and 4 in a group that received debriefing 

about task structure after session 3, and in another group that was not provided such 

information. To avoid ceiling effects in participants who already acquired a model of the 

task, these analyses only included the 57 healthy volunteers for whom a likelihood ratio 

test indicated model-based RL was not being used significantly in session 3, as described 

above. Among these participants, in session 4, more than 50% of those that were debriefed 

were identified by the likelihood-ratio test as using model-based RL (21/41), while in 
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the absence of debriefing, only one subject became model-based (1/16; z=3.13, P=0.002, 

z-test for difference in proportions; Figure 4a, f). Consistently, debriefing strongly affected 

how events on each trial influenced the subsequent choice (Figure 4b, c, g, h), with 

increased influence of state transition (null 95% CI [-0.42,0.42], coefficient change=0.75, 

P<0.001; null 95% CI [-0.61,0.60], debriefing vs no-debriefing group difference in 

coefficient change=0.66, P=0.03; permutation tests) and transition-outcome interaction (null 

95% CI [-0.51,0.50], coefficient change=1.07, P<0.001; null 95% CI [-0.73,0.67], group 

difference=0.93, P=0.002) on stay probability. Similar effects of debriefing on the transition-

outcome interaction were found among the 17 healthy volunteers performing the slow-paced 

version of the task (Supplementary Figure 4e-g).

RL mixture model fits of pre and post debriefing data (Figure 4e, j) confirmed that 

the influence of model-based action values on choice was increased by debriefing 

(null 95% CI [-0.70,0.70], parameter change=1.17, P<0.001; null 95% CI [-1.07,0.92], 

group difference=1.19, P=0.006). Furthermore, the influence of model-free action values 

on choice reduced after debriefing (null 95% CI [-0.79,0.79], parameter change=-1.04, 

P=0.006), while value learning rates increased (null 95% CI [-0.18,0.18], parameter 

change=0.29, P<0.001), though the session by group interactions were not statistically 

significant (respectively: null 95% CI [-1.73, 2.15], group difference=-0.36, P=0.7; and 

null 95% CI [-0.30, 0.32], group difference=0.07, P=0.75). In addition to modifying 

choice behaviour, debriefing increased differences in second-step key-press reaction times 

between common and rare transition trials (debriefing group session-transition interaction 

F1,40=59.6, P<0.0001, ηp
2=0.59, repeated measures ANOVA; session-transition-group 

interaction F1,55=19.3, P<0.0001, ηp
2=0.26, mixed ANOVA comparing debriefing and non-

debriefing groups, Figure 4d), further supporting that the influence of state transition on 

RT in this task comprises both a motor component, which is independent of the use of 

model-based RL, and a cognitive component which manifests when participants are using 

model-based RL. Statistically significant evidence for differences in comparisons between 

sessions 3 and 4 were not found in the no debriefing group (Figure 4f-j). Similar effects 

of debriefing on model-based action values, value learning rates and second-step key-press 

reaction times were found among healthy volunteers performing the slow-paced version of 

the task, albeit the sample size not being sufficient to produce significant differences in some 

comparisons (Supplementary Figure 4h,i).

Finally, among participants recruited in Lisbon, where neuropsychological data was 

available, we tested for correlations between test scores, namely from the Corsi block 

tapping test (assessing visuospatial working memory) and a Go/No-Go task (number of 

No-Go errors and reaction-time, assessing impulsivity), with several behavioural measures, 

specifically the outcome and transition-outcome interaction logistic regression predictor 

loadings, as well as the RL model parameters controlling the influence of model-free and 

model-based values on choice. Significant correlations were not found, neither among all 

healthy volunteers using data from session 3 (-0.27<r[38]<0.31, 0.054<P<0.8, %95 CI 

[-0.54<lower bound<-0.01, 0.05<upper bound<0.57]; Pearson’s correlation), nor among 

the debriefing group using data from session 4 (-0.45<r[15]<0.38, 0.07<P<0.8, %95 CI 

[-0.76<lower bound<-0.16, 0.08< upper bound<0.75]).
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Explicit knowledge affects value updates and perseveration

Unexpectedly, the RL model eligibility trace parameter also decreased after debriefing 

(null 95% CI [-0.16,0.17], parameter change=-0.23, P=0.006; null 95% CI [-0.31,0.28], 

group difference=-0.36, P=0.024; permutation tests; Fig. 4e). A similar effect of debriefing 

on the eligibility trace parameter was found among healthy volunteers performing the 

slow-paced version of the task (null 95% CI [-0.26,0.27], parameter change=-0.27, P=0.048; 

Supplementary Figure 4i). This parameter controls the relative influence of the second-

step state’s value and the trial outcome on updates to model-free first-step action values. 

Debriefing increased the influence of the second-step state value and decreased that of the 

trial outcome. As there is no obvious reason why providing task structure information 

should change model-free eligibility traces, we hypothesized that this effect is in fact 

mediated by the influence of task structural knowledge on representation of the task state 

space. By telling participants that the reward probabilities depend on the second-step 

state reached, these states are likely made more distinct and salient in their internal 

representation of the task, and hence better able to accrue value, which can then drive 

model-free updates of first step action values. Consistent with this interpretation, participants 

who, following debriefing, had large increases in the strength of model-based control, 

indicating that they had correctly understood the task structure, also had a larger decrease 

in the eligibility trace parameter (r[39]=-0.34, P=0.03; 95% CI [-0.59, -0.04]; Pearson’s 

correlation; Supplementary Figure 6).

Debriefing also increased how often participants repeated choices independent of subsequent 

trial events, as reflected by a significant increase in the ‘perseveration’ parameter of 

the RL model (null 95% CI [-0.75,0.76], parameter change=1.63, P<0.001; null 95% CI 

[-1.25,1.07], group difference in parameter change=1.76, P<0.001; permutation tests; Fig. 

4e). This may result from information that reward probabilities on the left and right reversed 

only occasionally and are thus stable for extended periods of time. In this case, one would 

expect a reduction in perseveration across the course of each block, from shortly after a 

reversal, when reward probabilities are stable, to late in the block, when the next reversal 

is anticipated. Consistent with this hypothesis, we found that participants with larger post-

debriefing increases in overall perseveration also had larger declines in perseveration within 

post-debriefing non-neutral blocks, from trials 10-20 (early) to 30-40 (late; r[39]=-0.35, 

P=0.02; 95% CI [-0.59, -0.05]; Pearson’s correlation; Supplementary Figure 6).

To verify that changes in other model parameters (e.g. MF and MB weights) had not 

artifactually caused these effects by preventing us from accurately estimating parameter 

values, we assessed the accuracy of parameter recovery from simulated data (Supplementary 

Figure 7). Overall, the accuracy of parameter recovery was very good, with a slightly 

reduced accuracy for the transition probability learning rate (parameter αT) in sessions 

1 and 3, where the influence of model-based RL is small. Furthermore, we tested for 

differences in learning or debriefing effects between the Lisbon and New York debriefing 

groups, and did not find any significant differences (Supplementary Table 3).
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Explicit knowledge increases model-based control in OCD

In the 41 of 46 individuals with OCD that were model-free at session 3, 37% (15 

participants) started using model-based RL after debriefing (Figure 5a, likelihood ratio test 

with threshold P=0.05). Consistent with this, the stay probability analysis showed increased 

loading on both the transition (null 95% CI [-0.35,0.37], coefficient change=0.56, P<0.001, 

permutation tests) and transition-outcome interaction (null 95% CI [-0.50,0.51], parameter 

change=0.88, P<0.001) predictors, similarly to that observed in healthy controls (Figure 5b, 

c). Increased use of model-based RL after debriefing was confirmed by model fitting (Figure 

5e), which showed increased influence of model-based action values on choice (null 95% 

CI [-0.63,0.64], parameter change=1.22, P<0.001), and a trend towards reduced influence of 

model-free action values (null 95% CI [-1.16,1.18], parameter change=-1.08, P<0.07). As 

in healthy volunteers, debriefing in participants with OCD increased differences in second 

step reaction times between common and rare transition trials (session-transition interaction 

F1,40=30.8, P<0.0001, ηp
2=0.43, repeated measures ANOVA; Figure 5d), while overall 

reaction times remained slower than in healthy volunteers (main effect of group, F1,80=7.31, 

P=0.008, ηp
2=0.08, mixed ANOVA). Again, similarly to healthy volunteers, debriefing 

reduced the value of the eligibility trace parameter (null 95% CI [-0.19,0.19], parameter 

change=-0.24, P=0.017), and this decrease correlated with increased use of model-based 

RL (r[39]=-0.56, P=0.0001; 95% CI [-0.74, -0.30]; Pearson’s correlation; Supplementary 

Figure 6). Though debriefing increased choice perseveration in OCD participants (null 95% 

CI [-0.67,0.66], parameter change=0.77, P=0.023), the effect was significantly smaller than 

in healthy volunteers (null 95% CI [-0.84,0.8], group difference in parameter change=-0.86, 

P=0.042). This was the only significant interaction between debriefing and OCD diagnosis 

in direct comparisons with data from healthy volunteers for stay probability analysis and RL 

model fits (Supplementary Table 1). In individuals with OCD we did not find statistically 

significant correlation between the increase in perseveration following debriefing and 

changes in perseveration from early to late in blocks after debriefing (r[39]=-0.09, P=0.5; 

95% CI [-0.39, 0.22]; Pearson’s correlation; Supplementary Figure 6).

In the group with mood and anxiety disorders, among 37 participants that were model-free 

at session 3, 68% (25 participants) started using model-based RL after debriefing (Figure 5f, 

likelihood ratio test with threshold P=0.05).debriefing increased the influence of transition 

(null 95% CI [-0.40,0.41], coefficient change=0.64, P<0.001, permutation tests) and 

transition-outcome interaction (null 95% CI [-0.57,0.59], coefficient change=1.20, P<0.001) 

predictors on stay probability (Figure 5f, g), similarly to healthy volunteers. The RL model 

fit confirmed that debriefing increased the influence of model-based action values on choice 

(null 95% CI [-0.81,0.81], parameter change=1.63, P<0.001), and reduced influence of 

model-free action values (null 95% CI [-0.69,0.71], parameter change=-0.82, P=0.019; 

Figure 5h). As in healthy volunteers, debriefing increased the difference in second-step 

reaction times between common and rare transition trials (F1,36=26.2, P<0.0001, ηp
2=0.42, 

repeated measures ANOVA), and there was no statistically significant difference in reaction 

time effects between this group and healthy controls (F1,76<2.9, P>0.10, ηp
2<0.04, mixed 

ANOVA). Debriefing effects observed in healthy volunteers for the value learning rate (null 

95% CI [-0.17,0.18], parameter change=0.21, P=0.015) and eligibility trace parameters(null 

95% CI [-0.15,0.15], parameter change=-0.15, P=0.04) were also replicated here, with 
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decrease in the latter again correlating with increased use of model-based RL (r[35]=-0.45, 

P=0.005; 95% CI [-0.68, -0.15]; Pearson’s correlation; Supplementary Figure 6). However, 

unlike in the healthy volunteers, we did not find a statistically significant effect of debriefing 

on choice perseveration (null 95% CI [-0.46,0.47], parameter change=0.23, P=0.35; null 

95% CI [-0.82,0.84], group difference=-1.4, P=0.001), and no significant correlation across 

participants between the debriefing effect on perseveration and post debriefing change in 

perseveration from early to late in blocks (r[35]=-0.16, p=0.36, 95% CI [-0.46, 0.17]; 

Pearson’s correlation). This was the only significant session by group interaction for stay 

probability analysis and RL model fits (Supplementary Table 2). Overall, there was no 

significant evidence that either clinical group was less able to use information about task 

structure to employ a model-based strategy, but both clinical groups showed a reduced 

influence of this information on choice perseveration.

To further explore potential effects of medication, we also tested for differences in RL 

strategies between the clinical groups recruited in Lisbon, the majority of whom were 

receiving pharmacological treatment (13/16 in OCD group, 14/16 in mood and anxiety 

disorders group), and the clinical groups recruited in New York, who were tested in the 

absence of such treatment. We found that debriefing reduced the strength of model-free RL 

in treated but not untreated individuals with OCD (null 95% CI [-2.86,2.5], group difference 

in parameter change=-3.12, P=0.037; Supplementary Table 4, Supplementary Figure 8). 

Among individuals with other mood and anxiety disorders, significant differences were not 

found between Lisbon and New York samples (Supplementary Table 5).

Finally, among clinical groups recruited in Lisbon, where neuropsychological data was 

available, we tested correlations between test scores from the Corsi block tapping test or a 

Go/No-Go task, and outcome or transition-outcome interaction logistic regression predictor 

loadings, as well as model-free or model-based the RL model parameters, as described 

above for healthy volunteers. In the group with mood and anxiety disorders there were 

significant positive correlations between reaction time in the Go/No-Go task and several 

measures of model-based control, namely the transition-outcome interaction predictors 

from sessions 3 (r[14]=0.69; P=0.007; 95% CI [0.3, 0.88]; Pearson’s correlation), and 4 

(r[14]=0.54; P=0.048, 95% CI [0.06, 0.82]), and the fitted model-based strength parameter 

value from session 4 (r[14]=0.58; P=0.03, 95% CI [0.12, 0.84]). Other correlations 

were not statistically significant (-0.26<r[14]<0.31, 0.059<P<0.99, %95 CI [-0.69<lower 

bound<-0.01, 0.31<upper bound<0.82]; Pearson’s correlation),.

Discussion

We developed a simplified two-step task to examine how model-based and model-free 

RL contribute to behaviour in healthy and clinical populations, when task structure must 

be learned directly from experience. This allowed for subsequent testing of modifications 

of behavioural strategies once information about task structure was provided. In healthy 

volunteers, uninstructed behaviour was initially model-free, with strong direct reinforcement 

of choices by rewards from the start of the first session, but no evidence of participants using 

knowledge of task structure early on. In fact, even with extensive experience, signatures of 

model-based control increased only modestly at the population level, and unevenly across 
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participants. This is striking given the relative simplicity of the task and suggests that 

humans are surprisingly poor at learning causal models from experience when they lack 

prior expectations about task structure. Very similar effects were observed in another group 

of healthy volunteers tested in a slow-paced version of the task, suggesting that the initial 

predominance of model-free control was not simply an effect of optimising speed over 

accuracy. When learning from experience, individuals with OCD were impaired in their 

acquisition of model-based control, as compared with healthy volunteers. Providing explicit 

information about task structure strongly increased the use of model-based control, across 

all tested populations, including individuals with OCD, with additional unexpected effects 

on model-free action value updates and choice perseveration. The absence of a model-based 

control deficit in OCD following debriefing is surprising, given the compelling evidence for 

such deficits in the original two-step task, and raises the question of which task properties 

determine model-based control deficits in OCD.

The increasing influence of model-based RL with experience contrasts with habit formation 

in rodent instrumental conditioning, where actions are initially goal-directed but become 

habitual with extended experience45, a process thought to involve a transition from model-

based to model-free control4. This transition, and arbitration between model-based and 

model-free control more generally, has been proposed to occur through meta-cognitive 

mechanisms which assess whether the benefits of improved prediction accuracy are worth 

the costs of model-based evaluation4,13,14. The different trajectory in the current task likely 

results from a more complex state space that increases model uncertainty in early learning 

and makes model-based learning more demanding, and from ongoing changes in reward 

probability that prevent the model-free system from converging to accurate value estimates 

in late learning4. In fact, it has been recently suggested that performance during initial 

stages of action selection tasks may be primarily based on trial-and-error exploration, 

with progression towards model-based RL occurring in intermediate stages, as participants 

acquire a model of the environment46.

Our finding that model-free RL dominates uninstructed behaviour on a two-step task 

contrasts with recent arguments from Silva & Hare33 suggesting humans are primarily 

model-based learners on two-step tasks, and that apparent model-free behaviour is in fact 

model-based control using muddled or incorrect task models. We cannot rule out the 

possibility that some apparently model-free behaviour at later uninstructed sessions in our 

task was in fact model-based control with an incorrect model, though model comparison did 

not favour any of the incorrect-model strategies proposed. However, we do not think this 

is a plausible overall explanation for the observed predominance of model-free behaviour 

prior to instructions. Firstly, because stay probabilities at session one showed a strong 

main effect of outcome but no statistically significant evidence for a transition-outcome 

interaction, i.e. the canonical picture of a model-free agent. This is not consistent with 

Silva and Hare’s simulations of agents with muddled models, which show a strong effect 

of transition-outcome interaction33. Secondly, our participants showed a direct reinforcing 

effect of reward on first-step choice from their very first interactions with the task. It does 

not appear likely that participants almost instantly acquire muddled models of the task 

which happen to produce the exact effect predicted by model-free reinforcement. Rather, 

we propose that, consistent with findings as early as Thorndike’s law of effect47, rewards 
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in our task had a direct reinforcing effect on actions performed shortly prior to their being 

obtained. While these findings provide evidence that participants use model-free control in 

unfamiliar domains, this speaks only indirectly to the question of whether model-free RL or 

muddled models underlie apparent model-free behaviour in the original two-step task.

Providing explicit information about task structure strongly boosted the influence of 

model-based RL. This complements Silva and Hare’s findings that model-based control 

is increased by making instructions more complete and embedding them in a narrative 

to make them easier to remember and understand. Such instruction effects are consistent 

with meta-cognitive cost-benefit decision making, since an accurate model of the task 

structure will boost the estimated accuracy of model-based predictions and hence the 

expected payoffs from model-based control. Our findings also build on extensive literature 

examining how instruction and experience interact to determine human behaviour, in 

tasks that do not discriminate model-free and model-based control. Early work examining 

instruction effects on operant conditioning found that after explicit information about the 

schedule of reinforcement, responses match the contingencies explained to participants 

(e.g. fixed interval, variable interval or fixed ratio), even when these differ substantially 

from the actual contingencies34–36. In common with our study, these results emphasize 

that humans learn about task structure much more readily from explicit information than 

via trial-and-error learning. More recent work has focused on the effect of advice, i.e. 

informing participants that one option is particularly good or bad, on reward guided decision 

making in probabilistic settings39,40. Such advice impacts not only initial estimates of how 

good or bad different options are, but also modifies subsequent learning, by up-weighting 

and down-weighting outcomes. Whether such bias effects extend to learning about task 

structure, in addition to simple reward learning, is an open question for further work. 

Functional neuroimaging has also shown that instructions change responses to outcomes in 

the striatum, ventromedial prefrontal cortex and orbitofrontal cortex, potentially mediated by 

representations of instructed knowledge in the dorsolateral prefrontal cortex38,41,48. Our task 

provides a potential tool for extending such mechanistic investigation of instruction effects 

into the domain of task structure learning and model-based RL.

Our findings may have translational relevance for OCD. Prior studies have shown that 

individuals with OCD, as well as healthy volunteers with self-reported OCD-like symptoms, 

have deficits in model-based control in the original two-step task29,31. There is also data 

showing that these findings reflect a transdiagnostic compulsivity dimension, rather than 

an OCD-specific characteristic31,49. Consistent with these reports, when comparing with 

healthy volunteers we found evidence for impaired acquisition of model-based control 

among patients with OCD, when learning directly and exclusively from experience. No 

difference was found in comparisons between healthy volunteers and individuals with 

other mood and anxiety disorders during uninstructed experience. Surprisingly, following 

debriefing we did not observe deficits in the ability of OCD participants to adopt a 

model-based strategy, demonstrating that, under some conditions, individuals with OCD 

recruit model-based control as readily as healthy volunteers, which is of particular interest 

given the established efficacy of cognitive-behavioural therapy (CBT) in the treatment of 

OCD50. We further observed a difference in the effect of debriefing between medicated and 

non-mediated OCD patients, with a reduction in the use of model-free control in medicated 
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but not non-medicated patients. Although it has been shown that, in OCD participants, 

CBT does not change use of model-based control in the original two-step task51, our 

results suggest that pharmacological treatment may have an effect on the ability to suppress 

model-free control and modify behaviour once a correct model is acquired.

There are substantial differences between our paradigm and the original two-step task, 

that may explain the different pattern of deficits observed in individuals with OCD. 

Our task is structurally simpler due to having no choice at the second step, which 

will reduce working memory load and hence make model-based control easier. Indeed, 

while in the original two-step task working memory capacity is correlated with the use 

of a model-based strategy22,23, we did not find any such correlations here, neither in 

healthy volunteers nor in clinical populations. The fact that participants in our task have 

extensive prior experience before being told its structure may also help them understand 

or remember this information when it is provided. We also found that participants who 

gave correct answers to pre-debriefing questionnaires showed a higher influence on model-

based action values at session 4 (See “Explicit reports about task structure are dissociated 
from uninstructed behaviour” in Supplementary Information), providing further support 

to this idea. Furthermore, in our task, actions and states were differentiated by location 

rather than identity of visual stimuli, and these locations were fixed across trials rather 

than randomized as in the original two-step task. This allows model-free RL operating 

over spatial-motor representations, recently demonstrated in the original two-step task52, 

to contribute more meaningfully to choice. Fixed spatial-motor contingencies also permit 

use of action-outcome, in addition to stimulus-outcome, mappings for model-based control, 

with the former thought to preferentially recruit the anterior cingulate cortex, rather than 

the orbitofrontal cortex53,54. An additional consequence of using fixed stimulus locations 

is that motor-systems can predict upcoming actions. Our observation of robust reaction-

time differences following common vs rare transitions at session 1, when choices were 

model-free, suggests a dissociation between motor and cognitive systems in task structure 

learning, with motor systems learning to predict upcoming actions earlier and more readily 

than cognitive systems learn to use a model to guide choices, consistent with other recent 

reports55. Intriguingly, implicit and choice-based measures of task structure learning were 

correlated across participants, even at session 1, suggesting that this dissociation is only 

partial, with cognitive task models potentially informed by earlier motor-level learning. 

Finally, unlike the original two-step task, where model-based and model-free RL achieved 

similar reward rates43,44, here use of model-based RL positively correlated with reward rate, 

generating a desirable trade-off between performance and cognitive effort that may influence 

arbitration between strategies44.

In addition to increasing model-based control, debriefing had unexpected effects on model-

free value updates, increasing the influence of second-step state values relative to trial 

outcomes on model-free first-step action values. This effect was robust and replicated in 

both clinical groups and healthy volunteers, including in the slow-paced task version. We 

hypothesized that this was mediated by debriefing modifying internal representations of 

the task state-space. Knowledge that the reward probability depended on the second-step 

state that was reached likely made internal representation of these states more salient and 

differentiated, and hence better able to accrue value, and thus driving model-free learning 
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at the first step. Consistent with this hypothesis, participants who became more strongly 

model-based following debriefing - indicating that they had acquired a correct model of 

the task, showed larger changes in model-free value updates. This result emphasizes that 

model-free RL operates over an internal representation of the states of the external world 

that must be learnt from sometimes ambiguous experience and is malleable in the face of 

new information56. A second unexpected effect of debriefing was an increased tendency to 

repeat choices, as indexed by the RL model’s perseveration parameter. We hypothesized 

that this effect was mediated by explicit knowledge that the reward probabilities changed 

only occasionally. Consistent with this hypothesis, post-debriefing increases in perseveration 

correlated with decreases in perseveration over the course of each block. It thus seems that, 

after debriefing, participants inferred the occurrence of a reward probability reversal, and 

expected stability in the trials immediately following. These two unexpected findings show 

that the ‘model’ of a task that may be acquired through explicit information comprises not 

just the action-state contingencies that are required for model-based RL, but also beliefs 

about which distinct states of the environment are relevant for behaviour, and how the world 

may change over time, both of which can influence ‘model-free’ value learning.

It is also important to note that the most significant difference between clinical populations 

and healthy volunteers following debriefing was that, while the latter became more 

perseverative in their choices, this effect was smaller in OCD, not statistically significant 

in individuals with other mood and anxiety disorders, and we did not find significant 

correlations in either patient population with changes in perseveration from early to late in 

post-debriefing blocks. This evidence that inference based updating was impaired in OCD 

and other psychiatric diagnoses is particularly interesting given that the orbitofrontal cortex, 

which is consistently dysfunctional in OCD patients57–59, is thought to build cognitive maps 

needed to infer task states that are not directly observable from sensory input60.

We note limitations and directions for future studies. First, though analysing behaviour 

through the lens of model-based and model-free RL has yielded important insights, this 

dichotomy does not capture the full space of possible learning algorithms12,33,61, and can 

obscure their dependence on common computational primitives such as a representation of 

the task state-space62. Although standard model-free and model-based algorithms provided 

a better fit to participants behaviour than other models tested, our exploration of possible 

models was necessarily not exhaustive, and we did not attempt to model learning the 

state-space itself, nor effects of instruction on this. Second, though we used several task 

variants, they were all adaptations of the original two-step task, and share with it both 

a comparatively small state space and probabilistic action-state transitions. It therefore 

remains an open question how broadly our findings generalise to other tasks. Model-based 

control may be more advantageous in larger state spaces, but model-learning and planning 

are correspondingly harder. Given our findings suggesting instruction shaped representation 

of the state-space, it would be interesting to explore instruction effects in tasks where there 

is ambiguity about the current state, or which state features are relevant for learning63,64. 

Another question is how information given to participants about their objectives shapes 

learning and use of task models. We told subject to ‘gain as many rewards as possible’ and 

it is possible that this focussed their attention on action-reward relationships to the detriment 

of action-state learning. This might explain why in an earlier study, participants were able 
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to successfully learn a task model during exposure to transition statistics in the absence of 

reward, then use it in a subsequent reward guided task15. Finally, it would be worth looking 

parametrically at the effect of instructions as a function of the amount of uninstructed task 

experience.

Regarding our findings in clinical populations, since prior work has identified that symptom 

dimensions can be a better predictor of behavioural phenotypes than clinical diagnoses, 

applying our task with dimensional methods in large online samples could provide further 

insight into clinical differences in learning and instruction effects49. Finally, although we 

know of no study showing a positive correlation between years of education and use of 

model-based or model-free control, the small but significant difference in terms of education 

between healthy volunteers and individuals with the mood and anxiety disorders might 

limit the comparisons between these samples. We also note that we observed substantial 

heterogeneity across participants in uninstructed behaviour, and it is likely that increased 

variability is an inherent feature of uninstructed tasks that may complicate assessing group 

differences.

In summary, we developed a sequential decision task which dissociates the effects of 

uninstructed experience and explicit information on RL strategy. We found that model-free 

RL dominates initial behaviour and maintains a strong influence throughout uninstructed 

learning, with model-based RL emerging only in a subset of individuals prior to receiving 

task structure information, and to a lesser extent in individuals with OCD. Receiving such 

information strongly increased model-based control, both in healthy individuals and those 

with OCD and other mood and anxiety diagnoses. Use of this task to dissociate effects of 

implicit and explicit information on RL strategy thus offers further insight into the content of 

learning and the imbalance between RL systems in neuropsychiatric disorders.

Methods

Participants and Testing Procedures

The research protocol was conducted in accordance with the declaration of Helsinki for 

human studies of the World Medical Association and approved by the Ethics Committees of 

the Champalimaud Centre for the Unknown, NOVA Medical School and Centro Hospitalar 

Psiquiátrico de Lisboa (CHPL), and the Institutional Review Board of the New York 

State Psychiatric Institute (NYSPI). Adult non-elderly participants (ages 18-65 years) 

were eligible and written informed consent was obtained from all prior to participation. 

Clinical samples were recruited at the Champalimaud Clinical Centre (CCC), CHPL 

and the NYSPI. In each of these centres, individuals with OCD were recruited from 

clinical or research databases. A mood and anxiety disorder control group was recruited 

randomly from patient lists (CCC and CHPL), or sequentially (NYSPI), among individuals 

with the following diagnoses: major depressive episode or disorder, dysthymia, bipolar 

disorder, generalized anxiety disorder, post-traumatic stress disorder, panic disorder or social 

anxiety disorder. Healthy controls were recruited sequentially as a convenience sample 

of community-dwelling participants and tested at the same locations. Participants were 

compensated for travel expenses plus a monetary bonus, ranging from 10€ to 25€ according 
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to performance in the task. These values were increased to 15$ and 35$ for the NY groups 

due to higher cost of living.

Following consent, each participant was screened for the presence of exclusion criteria 

using a clinical questionnaire assessing history of: acute medical illness; active neurological 

illness; clinically significant focal structural lesion of the central nervous system; history 

of chronic psychosis, dementia, developmental disorders with low intelligence quotient or 

any other form of cognitive impairment and illiteracy. Active psychiatric illness, including 

substance abuse or dependence, was also an exclusion criterion, with the exception of the 

diagnoses defining inclusion in the OCD and the mood and anxiety groups. In the absence of 

exclusion criteria, each participant then performed the simplified two-step task (see below).

Participants also performed a battery of structured interviews, scales and self-report 

inventories, including the MINI Neuropsychiatric Interview65, the Structured Clinical 

Interview for the DSM-IV66, the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS)67,68 

and the State-Trait Anxiety Inventory (STAI)69. As the groups recruited in Lisbon were 

assessed using the Y-BOCS-II while the groups recruited in New York were assessed 

using the original Y-BOCS, we converted the Y-BOCS-II score into original Y-BOCS 

score by transforming each item which was scored as 6 into a score of 568,70. In the 

groups recruited in Lisbon, the Beck Depression Inventory-II (BDI-II)71 was also applied 

to assess depressive symptoms, the Corsi block-tapping task to assess working memory72 

and a Go/No-Go task to assess impulsivity73, while in New York, the Depression Anxiety 

Stress Scales (DASS)74 were applied to assess symptoms of depression, anxiety and stress. 

Group differences in sociodemographic and psychometric measures were tested using one-

way ANOVA for continuous variables (with Tukey’s HSD for multiple comparisons) and 

Pearson’s chi-squared for categorical variables. Correlations between neuropsychological 

test measures (Corsi; Go/No-GO) and the simplified two-step task measures were performed 

using Pearson’s product moment correlation coefficient.

Simplified two-step task

The simplified two-step task was implemented in MATLAB R2014b using Psychtoolbox 

(Mathworks, Inc., Natick, Massachusetts, USA). The task consisted of a self-paced 

computer interface with 4 circles always visible on the screen: 2 central circles (upper 

and lower) flanked by two side circles (left and right) (Figure 1). Each circle was coloured 

yellow when available for selection, and black when unavailable, and could be selected by 

pressing the corresponding arrow key (up, down, left or right) on the computer keyboard. 

Each trial started with both of the central circles turning yellow, prompting a choice between 

the two (Figure 1a). This first step choice then activated one of the side circles in a 

probabilistic fashion, according to a structure of transition probabilities described below 

(Figure 1b). The active side circle could be selected with the corresponding arrow key, 

resulting either in reward (indicated by the circle changing to the image of a coin) or no 

reward (indicated by the circle changing to black). The reward probabilities on the right 

and left side changed in blocks that were either neutral (p=0.4 on each side) or non-neutral 

(p=0.8 on one side and p=0.2 on the other; Figure 1c). Changes from non-neutral blocks 

were triggered based on each subject’s behaviour, occurring 20 trials after an exponential 
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moving average (tau = 8 trials) crossed a 75% correct threshold. In half of the cases this led 

to the other non-neutral block (reward probability reversals), and the other half to a neutral 

block. Changes from neutral blocks occurred with 10% probability on each trial after the 

40th trial of that block, and always led to the non-neutral block that did not precede that 

neutral block. All participants performed 1200 trials on the same day, divided in 4 sessions 

of 300 trials each.

We ran two variants of the task which differed with respect to whether the transition 

probabilities linking the first-step actions to the second step states were fixed or underwent 

reversals. In both cases these probabilities were defined such that choosing one of the central 

circles (e.g. up) would cause one of the side circles (e.g. left) to turn yellow with high 

probability (p=0.8 – common transition), while causing the other side circle to turn yellow 

only in a minority of trials, i.e., with low probability (p=0.2 – rare transition). Choosing the 

other central circle would lead to common and rare transitions to the opposite sides. In the 

Fixed task, the transition probabilities were fixed for each individual throughout the entire 

task (e.g., common transitions for up-left and down-right, and rare transitions for up-right 

and down-left). In the Changing task, the transition probabilities underwent reversals on 

50% of reward probability block changes after non-neutral blocks, such that the common 

transition became rare and vice versa (Figure 1b). In an initial group of healthy volunteers 

recruited in Lisbon, participants were randomized between the two versions of the task. In 

all clinical samples as well as healthy volunteers from New York, however, only the Fixed 

task was used.

Prior to starting the task, participants were given minimal information about task structure. 

They were only told that arrow keys could be used to interact with the screen, and that 

the image of a coin signalled accrual of a monetary reward. To test how providing explicit 

information about the task structure affected behaviour, debriefing was provided between the 

3rd and the 4th sessions in some participants, with the 4th session of the task performed 

immediately after debriefing. Among healthy volunteers recruited in Lisbon and randomized 

between the two versions of the task, debriefing was performed in 17 of the 40 participants 

performing the Fixed version and in 16 of the 42 participants performing the Changing 

version of the task. In all other samples, debriefing was performed for everyone. Please see 

“Information provided to study participants” in Supplementary information for the specific 

information provided to participants prior to the task and during debriefing.

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

[similar to/larger than] those reported in previous publications11,17–25.

20 additional healthy volunteers performed a slower pace version of the task (with fixed 

transition probabilities). In this version, a 1-second delay was implemented after the first-

step stimuli were shown, and before the participant could make the choice. The delay 

was signalled by having the upper and lower circle represented in pale yellow during the 

first second. After this time had elapsed, the circles turned bright yellow. A similar delay 

occurred at the second-step and a 1-second inter-trial interval was also implemented. In 

this version, participants performed three pre-debriefing sessions of 150 trials each and one 

post-debriefing session of 150 trials (total of 600 trials).
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Data analysis

Data analysis was performed using Python version 3.7 (Python Software Foundation, http://

python.org), SPSS (Version 21.0, SPSS Inc., Chicago, IL, USA), and R version 4.1.0 (R 

Core Team, https://www.R-project.org/). Except where noted otherwise, data are presented 

as mean (standard deviation).

Analysis of Stay Probability

The first analysis used to assess model-free vs. model-based behavioural strategies was 

an analysis of ‘stay-probability’11,17,26,27,18–25, defined as the probability of repeating 

the first-step choice on any given trial as a function of the outcome (rewarded or not) 

and transition (common or rare) on the previous trial. In addition to plotting raw stay 

probabilities, we quantified the effect of trial events on the subsequent choice using a 

logistic regression model, allowing other influences on choice such as participants biases 

and cross trial correlations (see below) to be taken into account. The outcome, transition 
and transition-outcome interaction predictors modelled the influence of the previous trial’s 

outcome, transition and their interaction on the probability of repeating the previous first 

step choice. We additionally included a bias predictor capturing bias towards the upper or 

lower circle, and a correct predictor, which modelled the influence of whether the previous 

trials choice was correct (i.e. to the high reward probability option) on the probability of 

repeating that choice. The correct predictor prevents cross-trial correlations from generating 

spurious loading on the transition-outcome interaction predictor, which can occur in two-

step tasks with high contrast between good and bad options, due to correlation between 

action values at the start of the trial and subsequent trial events43.

Bootstrap tests were used to assess whether population mean predictor loadings in the 

logistic regression analysis were significantly different from zero. An ensemble of 5000 

bootstrap resampled datasets were created by sampling participants from the original dataset 

with replacement. The logistic regression was run on each resampled dataset to estimate the 

sampling distribution of the population mean predictor loadings. The P value for predictor x 
was calculated based on this distribution as:

P = 2min M
N , 1 − M

N

Where N is the total number of resampled datasets and M is the number of resampled 

datasets for which x>0.

When describing bootstrap test results we report the population mean predictor loading, the 

95% confidence interval from the bootstrap resampled distribution, and the P value.

RL modelling

Additional analyses of behavioural strategy were obtained by fitting reinforcement learning 

models to observed behaviour. We first detail the model used for the main analyses then 

a set of alternative models that were rejected by model-comparison. The model followed 

those typically used in analysis of the original two-step task11 in combining a model-based 
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and a model-free RL component, both with value estimates contributing to behaviour. The 

model-free component maintained estimates of the values Qmf a  of the first-step actions (up 

or down), and V s  of the second step states (left and right). These values were updated as:

Qt + 1
mf a = 1 − αQ Qt

mf a + αQ λr + 1 − λ V t s

V t + 1 s = 1 − αQ V t s + αQr

Where r is the reward obtained on trial t (1 or 0), αQ is the value learning rate and λ is the 

eligibility trace parameter.

The model-based component maintained estimates of the transition probabilities linking the 

first step actions to the second step states P s2 a1 , updated as:

Pt + 1 s a = 1 − αT Pt s a + αT

Pt + 1 s′ a = 1 − αT Pt s′ a

where αT is a learning rate for transition probabilities, s is the second step state reached and 

s′ the second step state not reached on trial t.

At the start of each trial, model-based action values were calculated as:

Qtmb a = ∑
j

P sj a Qmf sj

Model-free and model-based action values were combined with perseveration and bias to 

give net action values, calculated as:

Qtnet ai = GmfQt
mf ai + GmbQtmb a + bBi + pPi

Where Gmf and Gmb are parameters controlling, respectively, the strength of influence 

of model-free and model-based action values on choice. b is a parameter controlling the 

strength and direction of choice bias, bi is a variable which takes a value of 1 for the up 

action and 0 for the down action. Positive values of b therefore generate a bias towards 

the up action and negative values towards the down action. p is a parameter controlling the 

strength and direction of choice perseveration, Pi is a variable which takes a value of 1 if 

action ai was chosen on the previous trial and 0 if it was not. Positive values of p therefore 

promote repeating the previous choice while negative values promote switching.

Castro-Rodrigues et al. Page 21

Nat Hum Behav. Author manuscript; available in PMC 2022 November 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The model’s probability of choosing action ai was given by P ai = eQnet ai

∑jeQnet aj
.

For model comparison, several reduced variants were considered. For the Model-free only 
variant the model-based component was removed such that the net action values were:

Qtnet ai = GmfQt
mf ai + bBi + pPi .

For the Model-based only variant the model-free component was removed such that the net 

action values were:

Qtnet ai = GmbQtmb s1, ai + bBi + pPi .

For the No bias variant the bias strength variable b was set to zero. For the No perseveration 
variant the perseveration strength variable p was set to zero.

We used separate weights (Gmf, Gmb) for the influence of the model-based and model-free 

systems31, rather than tying them together as Gmf = 1 − Gmb and using a separate softmax 

temperature parameter as in Daw et al. 201111.

As it has been proposed that apparently model-free behaviour in two-step tasks might in fact 

be generated by model-based strategies with incorrect beliefs33, we additionally compared 

the goodness of fit for three such models.

The first was an ‘unlucky symbol’ model33 which believed that one of the first step actions 

is unlucky and reduces the reward probability at trial outcome irrespective of which state is 

reached. To model this without making assumptions about which first step action was lucky 

and which was unlucky, we modified a standard model-based agent such that the first step 

action values for the up and down actions were given by:

Qtmb up = 2L∑
j

P sj up Qmf sj

Qtmb down = 2 1 − L ∑
j

P sj down Qmf sj

Where L is a parameter which determines how lucky one first step action is considered 

relative to the other, constrained to lie on the range 0-1. When L= 0.5 the model is identical 

to a standard model-based agent, as L approaches 0 or 1 the values for the two actions are 

scaled relative to each other.

The second incorrect model considered was the ‘transition dependent learning rate’ model of 

Silva and Hare33, which has a different learning rate for the value of the second-step action 

depending on whether the preceding transition was common or rare. We modelled this by 
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adapting a standard model-based agent to use separate parameters for the value learning rate 

at the second step following transitions estimated to be common or rare based on the agents 

current beliefs about the transition probabilities.

The third incorrect model was motivated by a reviewer’s suggestion that participants 

apparently model-free behaviour might reflect a belief that state transitions were 

deterministic but highly volatile, such that only the most recently observed transition for 

a given first-step action is informative about its transition probabilities. We modelled this 

using a version of the standard model-based agent in which the learning rate for transitions 

αT was fixed at 1.

Hierarchical modelling:

Fits of both the logistic regression model and reinforcement learning models to populations 

of participants used a Bayesian hierarchical modelling framework 75, in which parameter 

vectors hi for individual sessions were assumed to be drawn from Gaussian distributions 

at the population level with means and variance θ = μ, Σ . The population level prior 

distributions were fit to their maximum likelihood estimate:

θML = argmaxθ p D θ = argmaxθ ∏
i

N ∫ dℎi p Di ℎi p ℎi θ

Optimization was performed using the Expectation-Maximization algorithm with a Laplace 

approximation for the E-step at the k-th iteration given by:

p ℎik Di = N mik, V ik

mik = argmaxℎ p Di ℎ p ℎ θk − 1

Where N mik, V i
k  is a normal distribution with mean mik given by the maximum a posteriori 

value of the session parameter vector hi given the population level means and variance 

θk − 1, and the covariance Vi
k given by the inverse Hessian of the likelihood around mik. For 

simplicity we assumed that the population level covariance Σ had zero off-diagonal terms. 

For the k-th M-step of the EM algorithm the population level prior distribution parameters 

θ = μ, Σ  are updated as:

μk = 1
N ∑

i = 1

N
mik

Σ = 1
N ∑

i = 1

N
mik

2 + V ik − μk 2
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Parameters were transformed before inference to enforce constraints:

0 < Gmf, Gmb

0 < αQ, αT , λ < 1

95% confidence intervals on population means μ were calculated as ci = ± 1.96 −1/Hi
where ci is the confidence interval for parameter i and Hi is the i-th diagonal element of the 

Hessian at θML with respect to μ.

Parameter recovery test

To test the accuracy with which model parameters could be recovered from simulated data 

(Supplementary Figure 7), we fit the hierarchical RL model to a given behavioral dataset 

to obtain the means and variances μ, Σ  of the population level distributions for each 

parameter. Then for for each parameter P, we generated a set of simulated datasets where all 

parameters except P were drawn randomly for each subject from the fitted population level 

distributions, and P was systematically varied across the range of parameters values, e.g. for 

unit range parameters P was varied between 0.1 and 0.9 in steps of 0.1. For each value of P, 

10 simulated datasets were generated, Supplementary Figure 7 shows the mean and standard 

deviation across these repeats.

Model comparison

To compare the goodness of fit for hierarchical models with different numbers of parameters 

we used the integrated Bayes Information Criterion (iBIC) score. The iBIC score is related 

to the model log likelihood p D M  as:

logp D M = ∫ dθ p D θ p θ M

≈ − 1
2 iBIC = logp D θML − 1

2 M log D

Where |M| is the number of fitted parameters of the prior, |D| is the number of data points 

(total choices made by all participants) and iBIC is the integrated BIC score. The log data 

likelihood given maximum likelihood parameters for the prior logp D θML  is calculated by 

integrating out the individual session parameters:

logp D θML) = ∑
i

N
log∫ dℎ p Di ℎ p(ℎ θML)
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≈ ∑
i

N
log 1

K ∑
j = 1

K
p Di ℎj

Where the integral is approximated as the average over K samples drawn from the prior 

p(ℎ θML).

Permutation tests

Permutation testing was used to assess the statistical significance of learning and instruction 

effects on RL and logistic regression model fits, and the reversal analysis. To assess the 

effects of experience in the task we compared behaviour between sessions 1 and 3, while to 

assess the effects of explicit knowledge we compared behaviour between sessions 3 and 4 in 

the groups that did and did not receive instruction between these sessions.

To test for a significant difference in behavioural parameter x between conditions (e.g. 

session 1 vs 3), we evaluated the population mean value of the parameter for each conditions 

and calculated the difference Δxtrue between them. We then constructed an ensemble of 

5000 permuted datasets in which the assigments of sessions to the two conditions was 

randomised. Randomisation was performed within subject, such that the number of sessions 

from each subject in each condition was preserved. For each permuted dataset we re-ran 

the analysis and evaluated the difference in parameter x between the two conditions, to give 

a distribution of Δxperm, which in the limit of many permutations is the distribution of Δx 

under the null hypothesis that there is no difference between the conditions. The two tailed P 

value for the observed difference is given by:

P = 2 min M
N , 1 − M

N

Where N is the number of permutations and M is the number of permutations for which 

Δxperm > Δxtrue.

To assess significant differences in learning or debriefing effects between clinical groups and 

healthy controls, and for differences in the healthy controls between groups who did and did 

not receive debriefing, we tested for a significant interaction between session number and 

group. The significance of the interaction was assessed using a permutation test in which 

we evaluated the difference Δgtrue = Δxi, jA − Δxi, jB  where Δxi, jA  is the difference in behavioural 

parameter x between sessions i and j in group A, and Δxi, jB  is the difference in behavioural 

parameter x between sessions i and j in group B. We then constructed an ensemble of 5000 

permuted datasets by randomly permuting participants between groups while preserving 

the total number of participants in each group. We assessed Δgperm = Δxi, jA − Δxi, jB  for each 

permuted dataset and calculated P values for the interaction as above.
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When reporting permutation test results we indicate the observed difference in the data, the 

95% confidence interval for this difference under the null hypothesis (null 95% CI) and the 

P value.

Other statistical analyses

To explore further differences between groups, we used one-way ANOVA’s with Tukey’s 

HSD; Pearson’s Chi-squared; Sign test; Paired t-test; repeated measures ANOVA and mixed 

ANOVA. The decision on whether to use a parametric or a non-parametric test was based 

on visual inspection of the distribution and on the central limit theorem. All tests were 

two-tailed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Behavioural Task.
The simplified two-step task was presented on a computer screen with 4 circles visible 

on a grey background: 2 central circles (upper and lower) and two side circles (right 

and left). Each circle was coloured yellow when available for selection, and black when 

unavailable. Circles could be selected by pressing the corresponding arrow key on the 

computer keyboard. a) Trial events. Each trial started with the central circles turning yellow, 

prompting the first-step choice between either upper or lower circle (a1). Following this, 

one of the side circles (left or right) would turn yellow (a2), with differing probabilities 

(see b). The subject then selects the yellow side circle resulting in a probabilistic monetary 

reward, indicated by the circle changing to the image of a coin (a3 left). No reward was 

indicated by the circle changing back to black (a3 right). b) Transition probabilities linking 

first step choice (up or down) to second-step state (left or right). Each first step option 

commonly (80% of trials) led to one second-step state and rarely (20% of trials) to the 

other. In the Fixed version of the task transition probabilities were counterbalanced across 

participants, with half experiencing the type A probabilities (top) and half the type B 

(bottom). In the Changing version of the task, the transition probabilities alternated between 

type A and B in blocks. c) Reward probability blocks. The reward probabilities for the 

side circles changed in blocks that were either higher on one or other sides (p=0.8 vs 

p=0.2, non-neutral blocks) or neutral (p=0.4 for both sides). Non-neutral blocks ended when 

participants consistently chose the first-step option that most frequently led to the high 

reward probability side. Neutral blocks ended probabilistically, independent of participants’ 

behaviour (see methods). To maximize reward rate, participants must choose the first step 

action which commonly leads to the second-step state with higher reward probability, 

tracking the best option across reward-probability reversals.
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Figure 2. Uninstructed behaviour is predominantly model-free.
Analysis of uninstructed behaviour in 67 healthy volunteers. a) Session 1 stay probability 

analysis showing the probability of repeating the first step choice on the next trial as a 

function of trial outcome (rewarded or not rewarded) and state transition (common or rare). 

Error bars indicate cross subject standard error (SEM). b) Stay probability for rewarded 

and non-rewarded trials as a function of trial number in session 1. Shaded area shows 

across subject standard error. c) Stay probabilities for session 3. d) Logistic regression 

analysis of how the outcome (rewarded or not), transition (common or rare) and their 

interaction, predict the probability of repeating the same choice on the subsequent trial. 

Dots indicate maximum a posteriori parameter values for individual participants, bars 

indicate the population mean and 95% confidence interval of the mean. In this and other 

panels, blue indicates session 1 while red indicates session 3. The influence of both 

state transition (null 95% CI [-0.18,0.18], coefficient change=0.27, P=0.003, permutation 

test), and transition-outcome interaction (null 95% CI [-0.25,0.24], coefficient change=0.39, 

P<0.001) increased between session 1 and 3. e) Reaction times after common and rare 

transitions in session 1 and 3. Key-press reaction times at the second-step became faster 

overall between session 1 and 3 (main effect of session F1,66=21.1, P<0.0001, ηp
2=0.24), 

but this was more pronounced following common than rare transitions (session-transition 

interaction F1,66=21.1, P=0.008, ηp
2=0.1, repeated measures ANOVA). f) Comparison of 

mixture model fits between session 1 and session 3. Dots and bars are represented as in 

panel C. The value learning rate increased significantly between session 1 and 3 (null 95% 

CI [-0.17,0.17], parameter change=0.18, P=0.03). RL model parameters: MF: Model-free 

strength, MB: Model-based strength, αQ: Value learning rate, λ: Eligibility trace, αT: 
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Transition prob. learning rate, bias: Choice bias, pers.: Choice perseveration. In all figures 

significant differences are indicated as: * P<0.05, ** P<0.01, *** P<0.001.
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Figure 3. Impaired learning of model-based control from experience in OCD
Participants with OCD (n=46) are represented in panels a-c, those with mood and anxiety 

disorders (n=49) in panels d-f. (a, e) Stay probability analysis for session 1 (left, blue) and 

session 3 (right, red), as figure 2a. (b, f) Logistic regression analysis of stay probabilities, 

as figure 2d. In the OCD group the influence of trial outcome on stay probability increased 

between session 1 and 3 (null 95% CI [-0.35,0.36], coefficient change=0.58, P<0.001, 

permutation test). In the group with mood and anxiety disorders, the influence of outcome 

(null 95% CI [-0.33,0.35], coefficient change=0.63, P<0.001) and transition (null 95% CI 
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[-0.25,0.25], coefficient change=0.33, P=0.011) increased. (c, g) Second-step reaction times 

after common and rare transitions in session 1 and 3. In the OCD group, reaction times 

were faster following common than rare transitions (main effect of transition, F1,45=51.3, 

P<0.0001, ηp2=0.53, repeated measures ANOVA), and also in session 3 than session 1 

(main effect of session, F1,45=10, P=0.003, ηp
2=0.18). In the group with mood and anxiety 

disorders, second-step reaction times were faster following common than rare transitions 

(main effect of transition, F1,48=34.2, P<0.0001, ηp
2=0.42, repeated measures ANOVA) and 

faster in session 3 than session 1 (main effect of session, F1,48=30.5, P<0.0001, ηp
2=0.39). 

(d, h) Comparison of RL mixture model fits, as figure 2f. In the OCD group, the influence 

of model-free action values on choice increased between session 1 and 3 (null 95% CI 

[-1.36,1.32], parameter change=1.71, P=0.012, permutation test). In the mood and anxiety 

disorders group, the value learning rate increased between session 1 and 3 (null 95% CI 

[-0.21,0.21], coefficient change=0.26, P=0.011).
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Figure 4. Explicit knowledge increases model-based control.
To avoid ceiling effects, analysis of debriefing effects was assess in healthy volunteers 

who were model-free at session 3, as assessed by likelihood ratio test (debriefing group 

n=41, a-e, no-debriefing group n=16, f-j). (a, f) Per-subject likelihood ratio test for use of 

model-based strategy at session 3 (left panel) and session 4 (right panel). Colour indicates 

whether each participant’s data was better explained by a mixture of model-free and model-

based RL (green) or model-free RL only (blue), using a p<0.05 threshold for rejecting 

the simpler model. Y-axis shows difference in log likelihood between the models. (b, 
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g) Stay probability analysis showing the probability of repeating the first-step choice on 

the next trial as a function of trial outcome and state transition. In these and remaining 

panels, red indicates session 3 while yellow indicates session 4. Error bars show cross 

subject standard error of the mean (SEM). (c, h) Logistic regression analysis of how the 

outcome, transition and their interaction, predict the probability of repeating the same 

choice on the subsequent trial. Dots indicate maximum a posteriori values for individual 

participants, while bars indicate the population mean and 95% confidence interval on the 

mean. Following debriefing the influence of state transition (null 95% CI [-0.42,0.42], 

coefficient change=0.75, P<0.001; permutation test) and transition-outcome interaction 

(95% CI [-0.51,0.50], coefficient change=1.07, P<0.001) increased. (d, i) Second-step 

reaction times following common and rare transitions. Following debriefing the influence of 

transition on reaction time increased (session-transition interaction F1,40=59.6, P<0.0001, 

ηp
2=0.59, repeated measures ANOVA). (e, j) Comparison of mixture model fits. Dots and 

bars are as in panel c. Following debriefing, the influence of model-based action values on 

choice increased (null 95% CI [-0.70,0.70], parameter change=1.17, P<0.001), the influence 

of model-free action values on choice decreased (null 95% CI [-0.79,0.79], parameter 

change=-1.04, P=0.006), value learning rate increased (null 95% CI [-0.18,0.18], parameter 

change=0.29, P<0.001), the eligibility trace parameter decreased (null 95% CI [-0.16,0.17], 

parameter change=-0.23, P=0.006) and the perseveration parameter increased (null 95% CI 

[-0.75,0.76], parameter change=1.63, P<0.001). RL model parameters as Fig. 2f.
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Figure 5. Explicit knowledge increases model-based control in OCD.
Effects of debriefing in 41 individuals with OCD (panels a-e), and 37 individuals with 

mood and anxiety disorders (panels f-j), who were model-free at session 3 as assessed by 

likelihood ratio test. (a, f) Per-subject likelihood ratio test for use of model-based strategy 

at session 3 (left panel) and session 4 (right panel), as figure 4a. (b, g) Stay probability 

analysis, as figure 4b. (c, h) Logistic regression analysis of stay probabilities, as figure 

4c. In the OCD group, debriefing increased the influence of both the transition (null 95% 

CI [-0.35,0.37], coefficient change=0.56, P<0.001, permutation test) and transition-outcome 
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interaction (null 95% CI [-0.50,0.51], parameter change=0.88, P<0.001). In the group with 

mood and anxiety disorders, debriefing increased the influence of both transition (null 95% 

CI [-0.40,0.41], coefficient change=0.64, P<0.001, permutation tests) and transition-outcome 

interaction (null 95% CI [-0.57,0.59], coefficient change=1.20, P<0.001). (d, i) Second-step 

reaction times following common and rare transitions. In both the group with OCD and 

those with mood and anxiety disorders, debriefing increased differences in second-step 

reaction times between common and rare transition trials (session-transition interaction, 

OCD group F1,40=30.8, P<0.0001, ηp
2=0.43, mood and anxiety group F1,36=26.2, P<0.0001, 

ηp
2=0.42, repeated measures ANOVA (e, j) Comparison of mixture model fits, as figure 

4e. In the OCD group, following debriefing the influence of model-based action values on 

choice increased (null 95% CI [-0.63,0.64], parameter change=1.22, P<0.001), the eligibility 

parameter decreased (null 95% CI [-0.19,0.19], parameter change=-0.24, P=0.017), the 

transition learning rate decreased (null 95% CI [-0.21, 0.21], parameter change=-0.24, 

P=0.019) and the perseveration parameter increased (null 95% CI [-0.67,0.66], parameter 

change=0.77, P=0.023). In the individuals with mood and anxiety disorders, following 

debriefing the influence of model-based action values on choice increased (null 95% CI 

[-0.81,0.81], parameter change=1.63, P<0.001), the influence of model-free action values 

decreased (null 95% CI [-0.69,0.71], parameter change=-0.82, P=0.019), the value learning 

rate increased (null 95% CI [-0.17,0.18], parameter change=0.21, P=0.015), the eligibility 

parameter decreased (null 95% CI [-0.15,0.15], parameter change=-0.15, P=0.043), the 

transition learning rate decreased (null 95% CI [-0.34,0.33], parameter change=-0.38, 

P=0.024).
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Table 1
Sociodemographic and psychometric characterization of study samples

HV (n=109) OCD (n=46) MA (n=49)

Sex (% males) 33% 41% 31%

Age (years) 30.4 (7.1) 34.1 (12.4) 32.6 (13.1)

Education (years completed) 16.2 (2.5) 15.1 (2.9) 14.5 (4.1)

YBOCS total score 1.5 (3.5) 23 (6.4) 2.7 (4.8)

Y-BOCS obsessions 0.6 (1.8) 11 (3.3) 2.1 (3.7)

Y-BOCS compulsions 0.9 (1.9) 12 (3.5) 0.6 (1.9)

STAI-state score 31.5 (8.1) 47.6 (15.4) 47.9 (11.3)

STAI-trait score 30.8 (8) 56.6 (12) 53.1 (10.1)

BDI-II score
a 4 (4.8) 21.1 (16.2) 24.8 (12.1)

DASS depression score
b 1.5 (1.8) 7.8 (5.6) 7.9 (4.4)

DASS anxiety score
b 0.6 (1.2) 5.2 (4.4) 5.8 (4.3)

DASS stress score
b 2.5 (2.2) 10.4 (4.7) 8.5 (4.5)

Corsi block tapping test - total span
a 16 (3.1) 15.4 (3.9) 13.1 (2.5)

No-Go errors in Go/No-Go task (n) 11.2 (7.4) 16 (12.5) 21.2 (11.6)

Reaction time in Go/No-Go task (ms) 470 (44.4) 517 (55.1) 510 (55.1)

HV = Healthy volunteers; OCD = Obsessive-compulsive disorder; MA = Mood and anxiety disorders.

a
only in Lisbon groups

b
only in New York groups; YBOCS-II = Yale-Brown Obsessive-Compulsive Scale-II; STAI = State-Trait Anxiety Inventory; BDI-II = Beck 

Depression Inventory; DASS = Depression Anxiety Stress Scales. Data are presented as mean (standard deviation).
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