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Abstract

The recently launched and upcoming hyperspectral satellite missions, featuring contiguous 

visible-to-shortwave infrared spectral information, are opening unprecedented opportunities 

for the retrieval of a broad set of vegetation traits with enhanced accuracy through novel 

retrieval schemes. In this framework, we exploited hyperspectral data cubes collected by the 

new-generation PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite of the 

Italian Space Agency to develop and test a hybrid retrieval workflow for crop trait mapping. Crop 

traits were mapped over an agricultural area in north-east Italy (Jolanda di Savoia, FE) using 

PRISMA images collected during the 2020 and 2021 vegetative seasons. Leaf chlorophyll content, 

leaf nitrogen content, leaf water content and the corresponding canopy level traits scaled through 

leaf area index were estimated using a hybrid retrieval scheme based on PROSAIL-PRO radiative 

transfer simulations coupled with a Gaussian processes regression algorithm. Active learning 

algorithms were used to optimise the initial set of simulated data by extracting only the most 

informative samples. The accuracy of the proposed retrieval scheme was evaluated against a broad 

ground dataset collected in 2020 in correspondence of three PRISMA overpasses. The results 

obtained were positive for all the investigated variables. At the leaf level, the highest accuracy 

was obtained for leaf nitrogen content (LNC: r2=0.87, nRMSE=7.5%), while slightly worse 

results were achieved for leaf chlorophyll content (LCC: r2=0.67, nRMSE=11.7%) and leaf water 

content (LWC: r2=0.63, nRMSE=17.1%). At the canopy level, a significantly higher accuracy 

was observed for nitrogen content (CNC: r2=0.92, nRMSE=5.5%) and chlorophyll content (CCC: 

r2=0.82, nRMSE=10.2%), whereas comparable results were obtained for water content (CWC: 

r2=0.61, nRMSE=16%). The developed models were additionally tested against an independent 

dataset collected in 2021 to evaluate their robustness and exportability. The results obtained (i. e., 
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LCC: r2=0.62, nRMSE=27.9%; LNC: r2=0.35, nRMSE=28.4%; LWC: r2=0.74, nRMSE=20.4%; 

LAI: r2=0.84, nRMSE=14.5%; CCC: r2=0.79, nRMSE=18.5%; CNC: r2=0.62, nRMSE=23.7%; 

CWC: r2=0.92, nRMSE=16.6%) evidence the transferability of the hybrid approach optimised 

through active learning for most of the investigated traits. The developed models were then used 

to map the spatial and temporal variability of the crop traits from the PRISMA images. The 

high accuracy and consistency of the results demonstrates the potential of spaceborne imaging 

spectroscopy for crop monitoring, paving the path towards routine retrievals of multiple crop traits 

over large areas that could drive more effective and sustainable agricultural practices worldwide.
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1 Introduction

Reliable and accurate retrievals of vegetation traits are essential in numerous ecological 

applications such as precision agriculture (Lu et al.,2020), natural resource management 

(Oliver, 2016), flux modelling (van Bodegom et al., 2012; Scheiter et al., 2013) and 

functional diversity estimation (Tagliabue et al., 2020; Schweiger et al., 2017). In the context 

of agriculture, the retrieval of vegetation traits is key for crop status and growth monitoring, 

which is paramount within the current global change scenario to ensure sufficient and 

sustainable food production worldwide (Hank et al., 2019; Migdall et al., 2018).

An effective monitoring of the crop status requires characterizing leaf biochemical traits as 

well as canopy structural traits across space and over time. At the leaf level, the amount 

of photosynthetic pigments strongly determines the use of the incoming solar radiation 

for photosynthesis. Therefore, quantifying the leaf chlorophyll a and b content (LCC) is 

critical for monitoring the photosynthetic efficiency and early detecting crop stress (e.g., 

chlorosis) (Estevez et al., 2021). Besides chlorophyll, the amount of leaf nitrogen content 

(LNC) is a critical trait because it is a proxy of the photosynthetic capacity. An optimal 

crop yield can only be obtained with a proper management of N, which in agricultural 

systems is applied through fertilisation. An insufficient N fertilisation inevitably leads to 

a decline of the crop yield in terms of quantity as well as grain quality (Wang et al., 

2021). Conversely, overfertilisation causes plant stress (Albornoz, 2016) and environmental 

pollution, since the leftover N that remains in the soil can leach into groundwater bodies 

and accumulate in surface water bodies through infiltration and run-off, with well-known 

ecological consequences (Martmez-Dalmau et al., 2021). For these reasons, improved N 

fertilisation rates are instrumental in modern agriculture to maximise the crop yield while 

reducing the environmental impact. In this respect, LNC provides invaluable information 

about the actual crop nutritional status, which can be used to drive the N fertilisation and 

ensure an optimal crop production. Analogously, the quantification of leaf water content 

(LWC) provides useful information about the plant water status, which is needed to enhance 

the water use efficiency (Torres et al., 2019) through the adoption of optimal irrigation 

schemes. A more efficient and rational use of water is pushed by the future climatic 
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scenarios, which forecast more frequent and persistent drought events and heat-waves in 

the forthcoming decades (IPCC, 2021). Beyond these key leaf level traits, the leaf area 

index (LAI), defined as the one-sided green leaf area per ground surface unit, is one of the 

most important canopy traits to quantify since it represents the fundamental descriptor of 

vegetation density (Houborg et al., 2015; Haboudane et al., 2004). Since leaves are the main 

surface for mass and energy exchange between land and atmosphere, LAI largely controls 

the carbon, energy and water fluxes in the terrestrial ecosystems (Bonan, 1993; Chen and 

Black, 1991).

Remote sensing offers incomparable possibilities for quantitatively estimating these traits 

and supporting crop monitoring and management (Weiss et al., 2020; Gamon et al., 2019). 

However, mapping such traits from Earth Observation (EO) imagery is not straightforward 

for two main reasons. Firstly, the retrieval of vegetation properties from optical data is 

notoriously ill-posed, meaning that several combinations of traits might have the same effect 

on the optical properties of the canopy (Baret and Buis, 2008; Meroni et al., 2004; Combal 

et al., 2002). Secondly, the mapping of vegetation traits such as LNC, LCC and LWC 

inevitably requires a novel data stream of spaceborne data capable of better characterising 

the canopy reflectance (Berger et al., 2020; Liu et al., 2021; Hill et al., 2019).

Recently, the availability of new generation hyperspectral sensors in space and the 

methodological advances in the retrieval schemes are forging ahead the possibility to 

obtain up-to-date information about the variability of vegetation traits across the globe. 

While a number of studies already drew attention on the potential of spaceborne hyper-

spectral imaging spectroscopy for the operational retrieval of vegetation traits (e.g., Rast 

and Painter, 2019; Nieke and Rast, 2018; Guanter et al., 2015), only a few investigated 

the actual performance of real satellite observations (Verger et al., 2011; Castaldi et al., 

2016; Abdel-Rahman et al., 2013; Coops et al., 2003; Miphokasap and Wannasiri, 2018; 

Townsend et al., 2003). This is largely due to the rather limited availability of spaceborne 

sensors capable of providing hyperspectral observations so far. For the last twenty years, 

the only hyperspectral systems in space have been ESA’s Compact High Resolution 

Imaging Spectrometer (CHRIS) on-board PROBA-1 and NASA’s Hyperion onboard Earth 

Observing-1. Both satellite missions largely outreached their expected lifetime and provided 

invaluable indication of the advantage of spectrally contiguous spaceborne observations 

for the retrieval of vegetation traits. More recently, three more hyperspectral imaging 

spectrometers were launched into space. China’s Advanced Hyper-spectral Imager (AHSI) 

onboard the Gao Fen-5 satellite and DLR’ s Earth Sensing Imaging Spectrometer (DESIS) 

onboard the International Space Station (ISS) started operating since the mid of 2018 and 

ASI’s PRe-cursore IperSpettrale della Missione Applicativa (PRISMA) was operational 

since the mid of 2019. However, barely no studies taking advantage of these new data 

streams for vegetation retrieval purposes are reported so far. To the best of our knowledge, 

only a recent study by Verrelst et al. (2021) exploited a PRISMA scene collected on 

an agricultural area in Germany to test the mapping capabilities of a canopy nitrogen 

content model developed using field spectroscopy data. In the near future, more spaceborne 

imaging spectroscopy missions such as ESA’s Copernicus Hyperspectral Imaging Mission 

for the Environment (CHIME) and FLuorescence EXplorer (FLEX), DLR’s Environmental 

Mapping and Analysis Program (EnMAP), the Italian-Israeli Spaceborne Hyperspectral 
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Applicative Land and Ocean Mission (SHALOM) and NASA’s Surface Biology and 

Geology (SBG) are expected to be launched in space, generating an unprecedented stream of 

new generation EO data.

The possibility to exploit contiguous spectral information from satellite imagery is 

particularly promising for the retrieval of leaf level traits which produce spectral changes 

in narrow regions of the electromagnetic spectrum. LNC is one of those, due to the presence 

of absorption features in the shortwave infrared (SWIR) spectral region. So far, a large 

number of studies exploiting optical data for the retrieval of the N content have estimated 

it indirectly through the relationship between N and chlorophyll content, given that these 

two traits are often correlated (Baret et al., 2007; Homolova et al., 2013). However, this 

assumption is flawed for two reasons: firstly, light harvesting complexes contain only a 

small amount of the total leaf N (~19%), while the largest amount (~70%) is contained 

in proteins (Chapin et al., 1987); secondly, the correlation between N and chlorophyll 

content does not hold across biomes and phenological stages (Berger et al., 2020; Hallik et 

al., 2009). For these reasons, LNC should be estimated through its relation with proteins 

rather than with chlorophyll molecules, as evidenced by previous studies (Berger et al., 

2020). The presence of proteins produces multiple absorption features in the SWIR part 

of the spectrum (Curran, 1989). This broadly motivates the interest in hyperspectral data 

for leaf and canopy N quantification. Beyond N, other vegetation traits may benefit the 

forthcoming data stream of spaceborne hyperspectral imagery. Leaf and canopy water 

content might be one of those, since hyperspectral observations are able to capture subtle 

reflectance changes due to the presence of water (Pasqualotto et al., 2018; Das et al., 

2017; Clevers et al., 2010). O–H bonds in water molecules in fact absorb light across 

the entire spectrum, but produce maximum absorption features at 970, 1200, 1400, 1940 

and 2500 nm (Curran, 1989; Carter, 1991). Hence, contiguous spectral bands are essential 

to resolve these features and obtain accurate water content estimates. The usefulness of 

hyperspectral data for water content quantification is proven by the number of studies 

exploiting both proximal (Zhang et al., 2018; Zhang et al., 2021; Das et al., 2017; Mirzaie 

et al., 2014; Clevers et al., 2010) and remote sensing observations (Pasqualotto et al., 2018; 

Colombo et al., 2008). Also leaf chlorophyll content might be retrieved with enhanced 

accuracy exploiting contiguous spectral information from spaceborne sensors, as a few 

previous studies suggested. De Grave et al. (2020) estimated leaf chlorophyll content with 

a good accuracy from synthetic multispectral Ocean and Land Colour Instrument (OLCI) 

data, but the model performance improved considerably when using synthetic hyperspectral 

Fluorescence Imaging Spectrometer (FLORIS) data. Navarro-Cerrillo et al. (2014) compared 

hyperspectral and multispectral satellite sensors for estimating chlorophyll content in a 

Mediterranean pine plantation and found that the hyperspectral sensors yielded better 

results than the multispectral ones. Lu et al. (2019) obtained improved estimates of leaf 

chlorophyll content of grass species using hyperspectral data compared to multispectral data. 

Conversely, Lu et al. (2019) reported only a slight improvement in the estimation of canopy 

chlorophyll content using the hyperspectral data with respect to the multispectral ones.

Along with the feasibility to capture small variations in the spectral response of plants 

which is provided by hyperspectral observations, the quantitative estimation of vegetation 

traits considerably relies on the retrieval approach. So far, the majority of the studies 

Tagliabue et al. Page 4

ISPRS J Photogramm Remote Sens. Author manuscript; available in PMC 2023 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



exploiting hyperspectral observations for the quantification of vegetation traits used 

statistical approaches, which rely on non-explicit relationships between the spectral data 

and the traits of interest (Verrelst et al., 2015). Non-parametric regression methods are 

particularly powerful and suited for hyperspectral data (jointly with a proper dimensionality 

reduction to mitigate multi-collinearity) since they leverage all the spectral information 

to build flexible models in a non-linear way. While these kinds of models are extremely 

effective, they have two major drawbacks: they require a large field dataset to properly 

train the model and they lack generalisation capacity. This second aspect is particularly 

relevant in view of future operational hyperspectral missions, since routine retrieval schemes 

have to be applicable across a wide range of vegetation types and conditions. While 

the previous studies exploiting hyper-spectral spaceborne observations provided indication 

that the retrieval of the traits of interest over large scales is possible, they all question 

the robustness and applicability of the developed statistical models in different contexts 

(Townsend et al., 2003; Coops et al., 2003; Abdel-Rahman et al., 2013). The hybrid 

approaches combine the efficiency and adaptivity of the non-parametric approaches and 

the generic properties of the physically-based methods, making them extremely promising 

candidates for the development of the processing chains for the retrieval of vegetation traits 

from satellite data (Verrelst et al., 2018).

In perspective of the upcoming operational hyperspectral spaceborne missions, the objective 

of this study was to demonstrate the feasibility to routinely retrieve a set of crop traits 

from space using a hybrid retrieval scheme. In this framework, we exploited for the 

first time multi-temporal hyperspectral imagery captured by PRISMA, which currently 

provides unparalleled opportunities to test new retrieval algorithms on spaceborne imagery. 

A set of PRISMA images acquired on an agricultural area in north-east Italy across 

the 2020 and 2021 vegetative seasons and corresponding ground validation data were 

exploited to: (i) optimise a hybrid-active learning retrieval scheme for the spaceborne 

retrieval of a complete set of leaf and canopy level crop traits; (ii) quantitatively assess 

the goodness of the developed models exploiting a broad ground dataset covering seven 

major crops; (iii) quantitatively assess the exportability of the developed models against 

an independent ground dataset collected in a different year; (iv) qualitatively evaluate the 

temporal consistency of the retrievals across the 2020 growing season and v) analyse the 

load of the spectral wavebands in the developed models and the contributing mechanisms in 

the retrieval of the investigated traits.

2 Data and methods

The steps of this work are described in the following sections. Firstly, we introduce the study 

site and field data collection occurred in 2020 and 2021. Secondly, we describe the PRISMA 

imagery acquisition focusing on the pre-processing approach used to remove artifacts and 

obtain smooth spectra. Finally, we describe the hybrid retrieval scheme used for crop trait 

mapping. The main steps of the retrieval workflow are summarized in Fig. 1.
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2.1 Study site and field data collection

The site selected for this study is a large agricultural area located in north-east Italy, in the 

town of Jolanda di Savoia, FE (44.855061 N, 11.952233 E). The area belongs to Bonifiche 

Ferraresi S.p.A., a large farm of about 3850 ha which produces durum and soft wheat, 

barley, corn, sugar beet, alfalfa, soybean, rice and medicinal plants. The farm is managed 

by IBF-Servizi company, which provided geo-spatial information on the crops’ distribution 

and on the agricultural practices. The site is characterised by a significant variability of the 

soil properties and by the massive presence of buried paleo-channels which are a testimony 

to the past of the area. The Po delta was in fact a former swamp area in which intense 

land reclamation activities were carried out in the late 1800s to expand the arable land. Fig. 

2 provides an overview of the study site as seen by the PRISMA satellite. The 2020 land 

cover map is also shown. Fig. 3 shows the crop calendar of the investigated crops across 

the 2020 season to briefly provide an outlook of the development stage of each crop in 

correspondence of the PRISMA overpasses.

Three field campaigns were accomplished in the spring and summer of 2020 to collect 

spectral measurements and plant traits for the assessment of the satellite products and 

optimisation of the hybrid models. Two additional campaigns were performed in the late 

spring of 2021 to collect plant trait measurements to test the exportability of the developed 

models across different years. Field spectral measurements were collected on 14 July 2020 

and 16 September 2020 on six homogeneous targets (i.e., soybean, alfalfa, soil and crop 

residues) using a SR-3500 spectroradiometer (Spectral Evolution, Haverhill, MA, USA) 

covering visible, near-infrared and shortwave infrared wavelengths (350–2500 nm) for 

comparison against the PRISMA reflectance. The measurements were collected under clear 

sky conditions from approximately 1 m height above the canopy. For each target, 13 spectra 

collected within an area of 90 × 90 m2 were averaged. The incident solar radiation was 

measured on a levelled, calibrated white reference panel (Spectralon; Labsphere, North 

Sutton, NH, USA) before each target measurement.

In 2020, plant traits were sampled in the field within three time windows scheduled close 

to three PRISMA acquisitions: 13–15 May (1st campaign), 1–2 July (2nd campaign) and 

14–16 July 2020 (3rd campaign). The field measurements were collected within spatially 

homogeneous sampling areas of ~90 × 90 m2 to ensure the comparability against PRISMA 

data. The sampling sites, hereafter referred to as elementary sampling units (ESUs), were 

geo-located with a commercial GPS. In total, 47 ESUs were sampled across the three 

campaigns. Six different crops (i.e., durum and soft wheat, corn, alfalfa, sugar beet, soybean, 

and pea) were sampled to ensure a wide variability of the investigated traits due to 

morphological and phenological differences. The sampling protocol for each investigated 

trait (i.e., leaf area index, leaf chlorophyll content, leaf water content, leaf nitrogen content) 

is described in the following paragraphs.

The leaf area index (LAI) was measured in the field using a LAI-2200 plant analyser 

(LI-COR Biogeosciences, Lincoln, NE, USA). In each ESU, four LAI-2200 readings were 

collected across four 10 m-transects (i.e., starting from the center towards each corner of the 

ESU) with a ABBBBA sequence of above canopy (A) and below canopy (B) measurements. 
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The average LAI values were calculated using the dedicated FV2200 software (LI-COR 

Biogeosciences, Lincoln, NE, USA).

The leaf level traits were obtained from destructive measurements performed on leaf disk 

samples collected in the field using a 0.635 cm diameter leaf punch. In each ESU, we 

collected two sets of five Eppendorf tubes containing 12 leaf disks each. The first set was 

used for leaf chlorophyll content (LCC) extraction, while the second was used for leaf water 

content (LWC), leaf mass per area (LMA) and leaf nitrogen content (LNC) quantification. 

All the Eppendorf tubes were frozen and stored at –80 °C until the laboratory analysis.

For LCC quantification, the leaf disks contained in each Eppendorf tube (Areatot=3.8 cm2) 

were homogeneised in 5 ml of ice-cold methanol for 1 min (Ultra-Turrax; IKA-Werk, 

Staufen im Breisgau, Germany). The homogenate was kept at – 20 °C for 20 min. After 

centrifugation (4500 g, 10 min, 4 °C), the supernatant was recovered and kept at – 20 

°C. The pellet was re-extracted in 5 ml of ice-cold methanol, kept at – 20 °C for 10 min 

and centrifuged. This operation was repeated twice. Finally, the three supernatants were 

merged, and 2 ml were filtered (0.45 μm PTFE syringe filter) and immediately analyzed 

for LCC quantification. The chlorophyll a (Chla) and b (Chlb) concentrations (μg) were 

determined through spectrophotometry (V-630 UV–vis, Jasco, Pfungstadt, Germany) in a 

100% methanol extract at 665.2 and 652.4 nm, respectively, while the turbidity was checked 

by measuring the absorbance at 750 nm. The Chla and Chlb concentrations were calculated 

using the extinction coefficients proposed by Lichtenthaler and Buschmann (2001). The 

LCC content (μg cm–2) was then calculated as LCC= (Chla+Chlb)/Areatot. All preparations 

and analyses were performed at low temperature and dim light.

For LWC and LMA quantification, the leaf disks were fresh and dry (after oven-drying at 

80 °C for 48 h) weighted using an analytical balance with 0.0001 g sensitivity. The LWC 

(g cm−2) and LMA (g cm−2) were calculated according to the equations: LWC=(Weightfresh-

Weightdry)/Areatot; LMA=Weightdry/Areatot.

The total N content (%) was determined by dry combustion with a N elemental analyzer 

(Flash EA 1112 NC-Soil; Thermo Fisher Scientific, Waltham, MA, USA). The LNC (g 

cm−2) was then calculated as LNC=(N %/100) × LMA.

A summary of the descriptive statistics of the 2020 field data is provided in Table 1.

In 2021, we measured the same plant traits during two field campaigns performed on 25–27 

May (4th campaign) and 22–24 June 2021 (5th campaign). During these two campaigns 

we sampled a total of 41 ESUs of four different crops, including rice, soybean, sugar beet 

and wheat. The plant traits were collected using the same protocol adopted in 2020 except 

for LCC, which was only measured indirectly in 2021. We used a MC-100 chlorophyll 

meter (Apogee Instruments Inc., Logan, UT, USA) which is factory-calibrated to measure 

chlorophyll concentration in leaves with units of μmol m−2. For each ESU, a total of 

60 MC-100 readings were performed on 15 fully expanded leaves drawn randomly. A 

conversion factor of 0.09 was applied to convert from μmol m−2 to μg cm−2 as proposed 

by Parry et al. (2014). Sugar beet was excluded from the analysis for leaf and canopy 
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chlorophyll content estimation since no calibration coefficients were available for this crop 

(Parry et al., 2014).

2.2 PRISMA imagery acquisition and pre-processing

In this study we exploited the newly available spaceborne hyper-spectral imagery captured 

by the PRISMA satellite of the Italian Space Agency (ASI), launched on 22 March 2019. 

PRISMA is a push broom imaging spectrometer featuring 240 spectral bands in the visible 

(VIS), near-infrared (NIR) and shortwave infrared (SWIR) spectral regions (400–2500 nm), 

with a nominal spectral sampling interval <11 nm and a bandwidth <15 nm. The 240 bands 

are resolved on 1000 across-track pixels with a 12-bit radiometric resolution. PRISMA has a 

ground spatial resolution of 30 m and a swath width of 30 km. The system is capable of off-

nadir observations which are obtained through across-track or along-track roll operations. A 

recent study by Cogliati et al. (2021) performed a first analysis of the performance of the 

instrument, concluding that the results match the mission requirements and that the images 

are suitable for scientific applications.

Eight 30 × 30 km2 PRISMA spot-images centered on Jolanda di Savoia fields were acquired 

between April and September 2020 (i.e., 7 April, 11–17-23 May, 26 June, 14–31 July, 

16 September 2020) to cover the entire phenological cycle of the investigated crops. Two 

additional PRISMA images were collected in the summer of 2021 (i.e., 23 May and 21 

June 2021) to be used as independent validation. The L2D PRISMA reflectance cubes 

(i.e., geocoded at-surface reflectance) were downloaded from the PRISMA mission portal 

in HDF5 format and read using the prismaread tool (Busetto and Ranghetti, 2020). 

Due to atypical atmospheric conditions on 31 July 2020, the PRISMA image acquired 

on this date was re-processed using the ATCOR-3 software (ReSe Applications GmbH, 

Zurich, Switzerland). The atmospheric correction was performed on the L1 cube (i.e., top-

of-atmosphere spectral radiance in physical units) setting the atmosphere type and aerosol 

model to midlatitude summer and rural aerosol, respectively.

All at-surface reflectance cubes were then pre-processed in order to remove artifacts and 

obtain smooth spectra. The pre-processing was performed pixel-wise in R (R Core Team, 

2020). Firstly, the spikes occurring along-track at specific wavelengths were removed 

using the findpeaks function implemented in the pracma package (Borchers, 2015) 

with a threshold of 0.018. Secondly, the spectral regions around the atmospheric gaseous 

absorptions presenting anomalous spikes and dips likely related to the spectral shift of the 

instrument were systematically excluded based on the comparison against top-of-canopy 

reflectance spectra collected in the field near simultaneously to PRISMA acquisitions 

(i.e., 535–550, 755–780, 755–775, 810–855, 885–970, 1015–1050, 1080–1165, 1225–1285, 

1330–1490,1685–1700, 1725–1750, 1780–1960, 1990–2030 nm). The remaining spectral 

bands were spline-smooth interpolated using the SplineSmoothGapfilling function 

included in the FieldSpec-troscopyCC package (Wutzler et al., 2016) with 60 degrees of 

freedom. Finally, the atmospheric water absorption regions (i.e., 1350–1510 and 1795–2000 

nm) and the last portion of the SWIR (i.e., 2320–2500 nm) were excluded. The resulting 

PRISMA spectra feature 170 smooth spectral bands from 400 to 2320 nm. An example of 
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the PRISMA spectra before and after the spline interpolation is displayed in Fig. 4, together 

with the corresponding field-based spectra acquired nearly simultaneously.

2.3 Hybrid retrieval of crop traits

The retrieval of crop traits from PRISMA imagery was based on hybrid modelling. The 

hybrid retrieval scheme relies on the use of physically based radiative transfer models for the 

forward simulation of a set of spectral responses as a function of the model input variables, 

and on the use of machine learning regression algorithms to learn the relationships between 

the simulated spectra and the model input variables (Berger et al., 2021; Berger et al., 2020; 

Verrelst et al., 2020). The model trained on the simulated dataset is finally applied to the real 

spectra for estimating the traits of interest.

For the generation of the simulated dataset we used the leaf level PROSPECT-PRO radiative 

transfer model (Feret et al., 2021) coupled with the canopy level 4SAIL model (Verhoef 

and Bach, 2007). PROSPECT-PRO is the latest development of the PROSPECT model 

(Jacquemoud and Baret, 1990), that includes the separation between the nitrogen-based 

(Cp) (i.e., proteins) and the carbon-based components (CBC) (i.e., cellulose, hemicellulose, 

lignin, starch and sugars) which constitute the leaf dry matter content (or leaf mass per area, 

LMA). This refinement allows the retrieval of a complete set of leaf level traits, including 

the CBC and the LNC, which can be estimated from the Cp using a protein-to-nitrogen 

factor of 4.43 proposed by Yeoh and Wee (1994) as previous studies suggested (Wang et 

al., 2018; Berger et al., 2020). The coupling with the 4SAIL model allows simulating the 

radiative transfer within the turbid medium canopy layer, thus providing a set of simulated 

reflectance spectra as a function of leaf (e.g., leaf chlorophyll content, leaf water content, 

leaf protein content) as well as canopy-level (e.g., leaf area index, average leaf angle) 

model input variables. The parameterisation of the coupled PROSPECT-PRO-4SAIL model 

is synthesized in Table 2. The model was run in forward mode to simulate a Look-Up 

Table (LUT) of 1000 spectra as a function of 1000 model input combinations drawn 

randomly with a uniform distribution within the specified ranges. The 1000 simulated 

spectra generated using the PROSPECT-PRO-4SAIL model and the corresponding model 

input variables were used to train a Gaussian processes regression (GPR) model. GPR is a 

powerful non-parametric probabilistic model based on the Bayesian theory (Rasmussen and 

Williams, 2006). GPR relies on Gaussian processes, which are described by a mean and 

covariance and essentially represent probability distributions over all the possible functions 

that are consistent with the observed data. As all the Bayesian approaches, the GPR starts 

with a prior distribution which is updated as more data points are observed, producing a 

posterior distribution. This characteristic allows the GPR to provide a standard deviation 

of the estimate together with the predictive mean. These two metrics allow the calculation 

of the coefficient of variation (CV) (i.e., standard deviation/ mean×100), which provides a 

measure of the uncertainty of the retrieval and can be used as a criterion to exclude uncertain 

pixels. Another valuable feature of GPR is its capacity to provide information about the band 

relevance within the non-linear regression model which is built. The hyperparameter sigma 

of the GPR covariance function can in fact be interpreted as the inverse of the information 

content of each input band (Rasmussen and Williams, 2006). Hence, low sigma values 

indicate a high relevance of the considered band and vice versa.
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The model was trained using as input the first 15 synthetic bands obtained through a 

Principal Component Analysis (PCA) in order to remove band collinearity and spectral 

information redundancy, as previous studies suggested (Rivera-Caicedo et al., 2017; De 

Grave et al., 2020). Besides the dimensionality reduction in the spectral domain, the 

reduction in the training sample size through active learning (AL) algorithms was explored 

as a tool for maximising the retrieval performance and speed. The AL helps reduce the 

size of the initial set of simulated data by extracting only the most explanatory spectra 

while discarding the unrealistic ones with respect to the real world conditions. Still, the 

model is built exclusively on the simulated data. The in situ data are only needed to select 

the best performing model out of the thousand models which are tested while reducing 

the dimensionality of the initial LUT. As a next step, the developed models were further 

tested on a completely independent field dataset in order to investigate their transferable 

capacity. A recent review from Berger et al. (2021) examined the studies exploiting AL 

techniques for optimising the training dataset in hybrid retrieval frameworks. Since different 

studies showed different convergence patterns depending on the investigated variable, both 

uncertainty (i.e., variance-based pool of regressors (PAL) and residual regression active 

learning (RSAL)) and diversity (i.e., Euclidean distance-based diversity (EBD), angle-based 

diversity (ABD) and clustering-based diversity (CBD)) based AL criteria were tested. For 

the optimisation of the training dataset through AL, an initial pool of 20 spectra (2% of 

the LUT) was drawn randomly from the LUT. Then, a new training sample was added to 

the initial pool according to the selected AL criterion, and the retrieval performance was 

evaluated against the 2020 ground dataset in terms of root mean square error (RMSE). If 

the added training sample reduced the RMSE, the training sample was kept, otherwise it 

was discarded. This process was repeated iteratively for each AL criterion 1000 times in 

order to ensure the evaluation of all the training samples of the LUT. The goodness-of-fit 

metrics for each added sample were recorded for each AL algorithm and trait to evaluate 

the sensitivity of the different AL algorithms to the investigated traits. The machine learning 

step of the hybrid workflow, including the evaluation of the AL criteria on the hybrid model 

performance, was performed within the Automated Radiative Transfer Models Operator 

(ARTMO) machine learning regression algorithms toolbox (https://artmo-toolbox.com) 

(Caicedo-Rivera et al., 2014).

The performance of the hybrid models in the retrieval of the traits of interest exploiting both 

the 2020 and 2021 datasets was evaluated in terms of standard goodness-of-fit statistics: 

coefficient of determination (r2), RMSE, normalised RMSE (nRMSE) (i.e., RMSE/range 

of measured values), bias (i.e., mean of estimated values - mean of measured values) and 

relative bias (rbias) (i.e., bias/mean of measured values) between measured and estimated 

values.

2.4 PRISMA multi-temporal mapping

The best performing models in terms of r2 and RMSE were applied to the PRISMA dataset 

to map the spatio-temporal variability of the crop traits across the growing season. The 

output consisted of eight PRISMA maps for each investigated trait with the associated 

pixel-by-pixel uncertainty expressed in percentage as CV.
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To check the model transferability and robustness when applying it to different conditions, 

the temporal evolution of the traits of the main crops in the farm was examined. At this 

purpose, the shapefile of the 2020 land cover provided by IBF-Servizi was used to extract 

from all fields the pixels belonging to the same crop type (i.e., alfalfa, wheat, sugar beet, 

corn and soybean) on each date. An inner buffer of 60 m (i.e., 2 PRISMA pixels) was 

applied to each field to avoid mixed pixels at the edges. The fields presenting bare soil, crop 

residues or low vegetation fractional cover were masked based on a threshold of 0.4 on the 

Normalised Difference Vegetation Index (NDVI) (Rouse et al., 1974). In addition, the fields 

presenting clouds or cloud shadows were excluded from the analysis. The multi-temporal 

distribution of the crop traits was then analysed in relation to the expected behaviour of each 

crop based on its management practice and seasonal development.

2.5 Analysis of the contribution of different spectral regions in the retrieval of the crop 
traits

To understand the importance of the different spectral regions in the retrieval of the 

examined traits, we delved into the contribution of each waveband in the developed models. 

This analysis was carried out exploiting the information encompassed in the sigma values 

provided by the GPR. For each model, the eigenvectors of the 15 PCA used as input of the 

machine learning regression were normalised by the inverse of the sigma values rescaled 

between 0 and 1. In other words, each PCA was multiplied by a coefficient proportional 

to its importance in the model (i. e., the PCA with the highest informative contribution 

was multiplied by 1, the one with the lowest informative contribution was multiplied by 0). 

Then, the normalised eigenvectors were summed for each wavelength and averaged across 

three spectral domains: VIS (i.e., 400–750 nm), NIR (i.e., 750–1300 nm) and SWIR (i.e., 
1300–2500 nm).

3 Results

3.1 Crop trait retrievals from PRISMA imagery

The scatter plots showing the measured data against the estimates obtained from the 2020 

PRISMA hyperspectral dataset with the hybrid GPR-AL model are displayed in Fig. 5. The 

summary of the goodness-of-fit statistics between the measured and estimated 2020 data are 

reported in Table 3. For each investigated trait, the best performing AL algorithm is reported 

together with the corresponding goodness-of-fit metrics.

A positive and statistically significant correlation was found for all the investigated 

traits. Among the leaf level traits, the best results were obtained for LNC (r2=0.87, 

nRMSE=7.5%), while slightly worse results were obtained for LCC and LWC (r2=0.67, 

nRMSE=11.7% and r2=0.63, nRMSE=17.1%, respectively). LAI was estimated accurately 

(r2=0.82, nRMSE=10.3%). Among the canopy level traits, CNC and CCC were retrieved 

with higher accuracy than the corresponding leaf level traits (r2=0.92, nRMSE=5.5% 

and r2=0.82, nRMSE=10.2%, respectively). Conversely, comparable results between LWC 

and CWC were observed (r2=0.61, nRMSE=16%). The rbias was below 3% for all the 

investigated variables, evidencing the accuracy of the retrievals also in terms of absolute 

values.
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Respect to the AL algorithm used for optimising the training dataset, the best results were 

obtained using different AL algorithms for the different traits, however in most cases other 

AL criteria yielded only slightly worse results. In general, the diversity based AL algorithms 

performed better than the uncertainty based ones. The only exceptions were CCC and CWC, 

but in both cases the results obtained using EBD and CBD were alike.

The results obtained applying the hybrid GPR-AL models optimised on the 2020 dataset on 

the independent data collected in 2021 are shown in Fig. 6. Also in this case the correlations 

between the measured and estimated plant traits were positive and statistically significant 

for all the considered traits. The retrieval accuracies were mostly comparable to the ones 

obtained in 2020, despite in 2021 the in situ data were not used to optimize the LUT used in 

the models. In particular, solid results were obtained for LAI (r2=0.84) and for all the canopy 

level traits (r2=0.79, r2=0.62 and r2=0.92 for CCC, CNC and CWC, respectively). At the 

leaf level, the results were accurate for LWC (r2=0.74), while modest for LCC (r2=0.62) and 

poor for LNC (r2=0.35). For LCC, the coefficient of determination was in line with the one 

obtained using the 2020 data (r2=0.67), however a general overestimation of the estimated 

values was observed, especially for low LCC values. The retrieval accuracy of LNC is 

inferior to the one obtained in 2020, however a lower range of variation of the measured 

trait is also observed. The summary of the goodness-of-fit statistics calculated between the 

measured and estimated 2021 data is reported in Table 4.

3.2 Multi-temporal crop trait maps from PRISMA imagery

The multi-temporal crop trait maps obtained applying the hybrid GPR-AL models to 

PRISMA imagery are displayed in Fig. 7 and Fig. 8. On each date, the fields with bare 

soil or crop residues (i.e., winter crops after harvesting, summer crops before germination 

or alfalfa fields after mowing), clouds or cloud shadows were masked in order to extract 

only the vegetated fields. The maps show reliable patterns with a range of variation of the 

retrieved traits similar to the expected one. The interfield variability related to the presence 

of different crops and management practices is evident. A strong intra-field heterogeneity 

is also well observable on the maps. This variability is strongly related to the presence of 

buried paleo-channels and to the influence of the soil properties (Crema et al., 2020).

For each crop, the trait value distributions were extracted and plotted to analyse their 

temporal evolution across the 2020 phenological season. Fig. 9 shows the temporal course of 

LCC, LNC, LWC and LAI in the eight PRISMA dates for the main crops in the farm.

LAI (Fig. 9d) increases in wheat fields reaching its relative maximum on DOY 132, then 

it starts decreasing due to the incoming senescence stage (Fig. 3). Sugar beet fields show 

increasing LAI values from DOY 132 up to DOY 178, while they slightly decrease on DOY 

196. The bimodal distribution observable in sugar beet is related to the presence of a small 

sugar beet field where the plants grew poorly. Corn fields are not mapped on DOY 132, 

138 and 144 due to the very low signal related to the low fractional cover (i.e., NDVI<0.4), 

while they are already at the maturity stage when captured on DOY 178 and 196. After that, 

they show decreasing LAI values on DOY 213 due to the plant drying before harvesting. In 

soybean fields, the LAI increases along with the plant growth until the plateau on DOY 196, 

then it declines due to senescence. Alfalfa fields are characterised by swinging LAI values 
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due to the mowing practices which happened four times across the season, on DOY 122, 

165, 209 and 254. In general, the highest LAI values are observed around the peak of the 

development of the winter (i.e., mid of May) and summer crops (i.e., mid of July), while the 

lowest LAI values are observed at the transition between winter and summer crops and at the 

end of the vegetative season.

LCC (Fig. 9a) shows more stable values respect to LAI. The LCC values are relatively stable 

across the season within the same crop, while the main differences are observed among 

crops. Sugar beet, which presents bright green leaves, shows the lowest LCC values (i.e., 

25–40 –g cm−2). In particular, very low LCC values (i.e., ~25 μg cm−2) were observed in 

the poorly grown field, where the leaves appeared yellowish. Wheat and corn, which present 

dark green leaves, are characterised by the highest LCC values (i.e., 50–60 μg cm−2). Sugar 

beet and soybean show a clear temporal evolution, with increasing LCC values from DOY 

178 and 196, respectively. Conversely, wheat presents a slight decrease in LCC values over 

time due to the progressive degradation of chlorophyll pigments.

LWC (Fig. 9c) is quite similar among the different crops, with gaussian distributions 

centered around 0.006–0.01 g cm−2. The only exception is represented by sugar beet, which 

shows a significantly higher water content compared to the other crops (i.e., ~0.02 g cm−2). 

Within the single crops, some temporal trends can be observed, for example wheat shows 

decreasing values from DOY 132 to DOY 144, which are due to the gradual wheat drying 

during the reproductive stage (Fig. 3).

LNC (Fig. 9b) is also fairly similar among the crops, with some exceptions. The highest 

LNC (i.e., ~0.00025 g cm−2) is observed in wheat fields. The other crops show similar LNC 

distributions, with lower values (i.e., ~0.00018 g cm−2) for corn and intermediate values 

for alfalfa and soybean (i.e., ~0.00020 g cm−2). Wheat shows decreasing LNC values over 

time, which are related to the nitrogen translocation happening in cereals during the maturity 

stage.

At the canopy level, the value distributions mirror the behaviour observed in the 

corresponding leaf level traits scaled by LAI.

Table 5 reports the average (±standard deviation) coefficients of variation of the estimates 

on the different PRISMA dates for the different traits. The CVs appear relatively stable 

over time, indicating that the model is consistent and robust across the phenological season. 

LCC presents CV values which are the lowest among the leaf level traits and similar to LAI 

values. Overall, the highest CV values are observed on DOY 260 for all traits. This is likely 

due to the influence of senescent vegetation and bare soil, for which the model was not 

properly trained.

3.3 Contribution of the spectral domains in the hybrid models developed

Fig. 10 shows the contribution (%) of the spectral domains in the retrieval of LAI, LCC, 

LNC and LWC through hybrid models. The VIS spectral region is critical for the retrieval 

of LCC, while the NIR and SWIR spectral regions are more relevant in the estimation of 

LAI and LNC. In particular, the SWIR region appears determining in the quantification of 
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LNC. NIR and SWIR are almost equally important for the estimation of LWC. The opposed 

contribution of the VIS and SWIR spectral regions to the quantitative estimation of LCC 

and LNC is shown more in detail in Fig. 11. The plot shows the load of each single spectral 

waveband in the LCC and LNC models, respectively. The contribution of the SWIR bands is 

consistently higher in the LNC model across the entire SWIR spectral domain. Conversely, 

the LCC model is characterised by a higher contribution of the VIS bands, though some 

influence of the VIS is also observed in the LNC model.

4 Discussion

4.1 Performance of crop trait retrievals from PRISMA imagery

Our study showed that spaceborne hyperspectral imaging spectroscopy can be used to track 

the temporal evolution of vegetation traits in agricultural ecosystems across a range of crop 

types and phenological stages. An unprecedented multi-temporal hyperspectral spaceborne 

dataset composed of eight images captured in 2020 by the newly available PRISMA satellite 

and of corresponding field measurements was exploited to retrieve a set of leaf and canopy 

level traits which are key in the context of crop monitoring and management.

LNC and CNC were estimated with the highest accuracy (r2 of 0.87 and 0.92 and nRMSE 

of 7.5% and 5.5%, respectively) among all the investigated traits. The explained variance 

obtained in N retrieval is remarkably increased compared to the one reported in previous 

studies exploiting satellite data (i.e., r2=0.62-0.78) (Coops et al., 2003; Abdel-Rahman et 

al., 2013; Miphokasap and Wannasiri, 2018) and analogous or increased respect to the one 

obtained exploiting systematic ground-based measurements (Berger et al., 2018; Vigneau et 

al., 2011; Zhou et al., 2018), in which the influence of potentially disturbing factors such 

as the atmosphere and the observation geometry is minimised. In addition, it must be noted 

that most studies targeted single crops (mainly winter wheat, rice and corn) in which the N 

variability was either induced with ad hoc fertilisation treatments or related to the growing 

phase (e.g., Berger et al., 2018; Zhou et al., 2018; Liang et al., 2018). This biases the model 

performance towards generally higher accuracy and strongly hinders the applicability of the 

developed models over other land covers regardless of the retrieval approach adopted (Lee 

et al., 2004; Townsend et al., 2003). Furthermore, it is well known that the variability of the 

biochemical traits at the canopy scale is mostly driven by the LAI variation related to the 

phenological development (Schiefer et al., 2021; Vohland et al., 2010; Sehgal et al., 2016). 

In our study instead, the model performance was assessed over seven different crop types 

grown in real conditions and representing some of the most widespread crops worldwide in 

order to ensure a better evaluation and applicability of the model.

Leaf and canopy water content were estimated with r2=0.63, nRMSE=17.1% and r2=0.61, 

nRMSE=16%, respectively. These were the most challenging variables to retrieve, leading 

to the least accurate results among the investigated traits. However, it must be noted that 

the distribution of the ground data is skewed, with a low range of variability of LWC. All 

the sampled crops in fact present LWC values between 0.0058 and 0.0123 g cm−2, while 

only three ESUs sampled on pea and nine ESUs sampled on sugar beet show higher LWC 

values, ranging between 0.0131 and 0.0254 g cm−2. This is partly related to the fact that 

the study site is an irrigated farming system that aims at maximising the crop production by 
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minimising potential water stresses. For this reason, no extreme LWC values are observed. 

Previous studies exploiting both proximal (Zhang et al., 2018; Zhang et al., 2021; Das 

et al., 2017; Mirzaie et al., 2014; Clevers et al., 2010) and remote sensing observations 

(Pasqualotto et al., 2018; Colombo et al., 2008) obtained different degrees of accuracy. 

Although a proper comparison among those studies is difficult due to different experimental 

conditions and retrieval approaches, the r2 between measured and estimated water content 

values range between 0.59 and 0.84 for leaf water content and between 0.51 and 0.94 for 

canopy water content. While our results are in line with most of the studies conducted at 

satellite scale, the moderate r2 and the higher coefficients of variation obtained indicate that 

the retrievals of LWC and CWC still need to be improved to become operational.

Conversely, leaf and canopy chlorophyll content were estimated accurately (r2=0.67, 

nRMSE=11.7% and r2=0.82, nRMSE=10.2%, respectively). The accuracy is higher for 

canopy chlorophyll content likely due to the compensating effect of LAI (Estevez et al., 

2021; Xie et al., 2019), but the retrievals are also accurate at the leaf scale. This is further 

proved by the spatial patterns within the maps, by the temporal evolution of the investigated 

crops and by the low coefficients of variation of the estimates obtained. Previous studies 

exploiting hyper-spectral data acquired at different scales yielded diverse results. As an 

example, Doktor et al. (2014) retrieved leaf chlorophyll content of summer barley from 

field spectral measurements with r2=0.89, Lu et al. (2019) estimated the leaf and canopy 

chlorophyll content of grass species from airborne data with r2=0.45, RMSE=3.32 μg 

cm−2 and r2=0.85, RMSE=12.4 μg cm−2, respectively, Tagliabue et al. (2019) estimated 

leaf chlorophyll content of mixed broadleaf species from airborne data with r2=0.65, 

RMSE=5.66 μg cm−2 and Navarro-Cerrillo et al. (2014) estimated leaf chlorophyll content 

of mediterranean pine from satellite images with r2=0.56–0.65 depending on the sensor 

considered. Consistently with our findings, the leaf level retrievals were generally less 

accurate than the canopy level ones.

4.2 Hybrid retrieval scheme

The large majority of the studies exploiting real satellite observations for the retrieval 

of vegetation traits used non-parametric regression methods. Although these models are 

notably powerful, they severely lack transferable capacity therefore they can hardly be 

exploited in an operational framework. Conversely, hybrid models endow the exportability 

of the physically based models as well as the strength of statistical models, thus being ideal 

candidates for the implementation within operational retrieval schemes. This is of paramount 

importance in preparation of the forthcoming availability of hyperspectral data streams from 

new satellite missions, which will demand generic, robust and computationally fast models 

for producing high quality vegetation trait maps at the global scale.

Overall, the results obtained in this study using a hybrid approach are in line or improved 

compared to previous studies, depending on the considered trait. Most literature testing 

hybrid approaches focused on the retrieval of LAI, with r2 ranging between 0.63 and 

0.89 and RMSE ranging between 0.37 and 0.73 m2 m−2 (Brown et al., 2019; Schlerf 

and Atzberger, 2006; Upreti et al., 2019; Verger et al., 2011; Doktor et al., 2014; Pipia 

et al., 2021; Estevez et al., 2021). Two studies also examined the use of AL algorithms 
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for the hybrid estimation of LAI: Upreti et al. (2019) tested different AL criteria for 

the retrieval of winter wheat LAI from Sentinel-2 data (r2=0.78, RMSE=0.68 m2 m−2) 

and Pipia et al. (2021) used Sentinel-2 data to estimate the LAI green of various crops 

(r2=0.63, RMSE=0.73 m2 m−2). Some studies also exploited hybrid approaches for the 

retrieval of LCC and CCC from satellite data. Zhou et al. (2020) used Landsat-8 data to 

estimate LCC of winter wheat through Gaussian processes regression trained on PROSAIL 

simulations (RMSE=12.43–16.44 μg cm−2), Upreti et al. (2019) used Sentinel-2 data to 

estimate LCC of winter wheat using a hybrid AL approach (r2=0.26, RMSE=8.88 μg cm−2) 

and Estevez et al. (2021) exploited top-of-atmosphere Sentinel-2 data to retrieve LCC of 

corn and winter wheat using PROSAIL simulations and Gaussian processes regression 

(r2=0.47, RMSE=6.48 μg cm−2). In case of LCC, our retrieval scheme based on hybrid 

AL modelling applied on PRISMA imagery yielded largely improved results compared to 

previous literature (r2=0.67, RMSE=5.88 μg cm−2). Instead, our CCC retrievals (r2=0.82, 

RMSE=0.36 g m−2) are in line with previous studies exploiting hybrid approaches (r2=0.69–

0.85, RMSE=0.39–0.52 g m−2) (Brown et al., 2019; Upreti et al., 2019; Estevez et al., 2021). 

Only a few studies exploited hybrid approaches for the retrieval of water content. Estévez et 

al. (2021) estimated LWC and CWC of corn and winter wheat from S2 images with r2=0.23, 

RMSE=0.0074 g cm−2 and r2=0.82, RMSE=139 g m−2, respectively, and Trombetti et al. 

(2008) used MODIS data to retrieve the CWC of various vegetation canopies with r2=0.7 

and RMSE=0.0063 g cm−2. In this case, the retrievals we obtained from PRISMA data were 

superior at the leaf scale and poorer at the canopy scale.

4.3 Model exportability

The results obtained in the studies exploiting hybrid approaches for the retrieval of 

vegetation traits evidence that they are in some cases less performing than the pure 

machine learning approaches (Zhou et al., 2020). The use of AL techniques enhances the 

effectiveness of the hybrid models due to the fact that only the most informative spectra 

are pooled out of larger LUTs which may contain redundant information and unrealistic 

combinations (Berger et al., 2021). Though, the increase in the retrieval accuracy has the 

natural drawback of a decrease in the model exportability, since ground data are required 

for an optimal sample selection. Within this study, a broad ground dataset including several 

crop types at various development stages was gathered. Future operational retrieval schemes 

can build upon this and other similar datasets to become more and more flexible and reliable 

on a broad variety of vegetation types and conditions. In our study, the model exportability 

was investigated in two ways: i) a quantitative assessment was performed by applying 

the developed models on an independent dataset collected in 2021 and ii) a qualitative 

assessment was performed by applying the model on multi-temporal images collected in 

2020 at different phenological stages of the target crops. In both cases the models appeared 

to be fairly robust and exportable. Positive results were obtained applying the models to 

the 2021 dataset for all the investigated traits (r2=0.35–0.92). Especially promising results 

were obtained for the canopy level traits, while the leaf level ones (e.g., LNC) still present 

room for improvement. It is worth noting that the 2021 dataset also includes rice, which 

was not present in the 2020 dataset used for the model optimisation. This further suggests 

that the developed models are not much dataset dependent. Additionally, the analysis of 

the temporal evolution of the investigated crops across the 2020 season showed consistency 
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with the expected behaviour based on the crop management and consequent phenological 

development. This happens although the models were optimised based on the ground data 

collected in correspondence of just three out of the eight PRISMA images captured over the 

site in 2020. The consistency of the retrievals across all the images is also proved by the 

fact that the uncertainties (i.e., the coefficients of variation of the estimates) for the different 

traits are relatively stable over time for the different crops (Table 5). This indicates that the 

retrieval is neither sensitive to the different scene conditions (i.e., sunsensor geometries, crop 

phenological stage, atmospheric conditions) nor related to the presence of ground data for 

the AL tuning on specific dates. Yet, from an operational perspective, the ground dataset 

should be further broadened by including more vegetation types and conditions in order to 

build more generic and solid models which may be applied at larger spatio-temporal scales.

4.4 Spectral information in the developed hybrid models

The analysis of the contribution of the different spectral domains in the developed hybrid 

models enlightened some of the mechanisms underlying the remote assessment of the 

investigated crop traits. The contribution of the SWIR spectral region is key for the 

quantitative estimation of the LNC, which is in line with recent literature about the retrieval 

of nitrogen from remotely sensed data (Perich et al., 2021; Féret and de Boissieu, 2020; 

Berger et al., 2020). Instead, the VIS part of the electromagnetic spectrum was the most 

relevant in the LCC model, as well established in literature (Gitelson et al., 2003; Van 

Wittenberghe et al., 2014). The contrasting behaviour we found in the developed LCC and 

LNC models (i.e., highest information content in the VIS for LCC, lowest information 

content in the VIS for LNC and the other way round in the SWIR, see Fig. 10 and Fig. 

11) suggests that the retrieval of LNC is effectively driven by the protein rather than by the 

pigment content. The former in fact mostly absorbs in the SWIR due to the N-H bonds in the 

amino acids (Curran, 1989), while the latter influences the VIS due to the electron transition 

in the chlorophyll a and b molecules (Curran, 1989). This strongly evidences the need to 

exploit the SWIR region for the quantitative estimation of LNC and elucidates the advantage 

of hyperspectral imaging spectroscopy.

The contiguous spectral information provided by the hyperspectral sensors also facilitates 

the retrieval of the water content (Van Witten-berghe et al., 2014), which produces 

absorptions from 970 up to 1940 nm (Curran, 1989). Indeed, the analysis of the spectral 

information content in the LWC model evidenced that the wavebands located in the NIR and 

SWIR spectral regions are the ones the retrieval is most sensitive to (Fig. 10).

5 Conclusions

In this study we exploited for the first time multi-temporal images collected by the PRISMA 

hyperspectral satellite to develop and test novel approaches for the large-scale mapping 

and monitoring of key traits in agriculture. The comparison between the estimates and 

the ground data collected near simultaneously three PRISMA acquisitions confirmed the 

powerfulness of the hybrid approaches in the retrieval framework. All the investigated 

traits were in fact estimated accurately (r2=0.61–0.92, nRMSE=5.5–17.1%). Moreover, the 

application of the developed models on a completely independent dataset collected in the 
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following year allowed to verify their transferability in different conditions (r2=0.35–0.92, 

nRMSE=14.5–28.4%). The consistency of the temporal courses extracted with respect to 

the expected phenology of the investigated crops suggested a high reliability of the models 

across a wide range of vegetation and environmental conditions. These promising results 

demonstrate that the retrieval of a broad set of leaf and canopy traits from space using 

hybrid retrieval schemes is feasible. This paves the way for future algorithms for the routine 

mapping of vegetation traits from operational spaceborne sensors such as CHIME, which 

is expected to provide global products in support of agriculture and natural ecosystem 

management.
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Fig. 1. Flowchart summarizing the main steps of the plant trait retrieval workflow.
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Fig. 2. 
a) False colour composite (R=854.9 nm, G=650.5 nm, B=546.3 nm) of the PRISMA image 

captured over Jolanda di Savoia site on 31 July 2020. The map projection is UTM zone 32N 

with datum WGS84; b) Location of the study site in north-east Italy (red dot); c) Land cover 

of the Bonifiche Ferraresi farm in 2020.
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Fig. 3. 
Crop calendar of the investigated crops across the 2020 season (DOY=Day Of the Year). 

The vegetative stage refers to the period from the crop emergence to the maximum 

development stage. The reproductive stage refers to the period from the maturity to the 

harvesting. The vertical gray bars indicate the PRISMA overpasses over the study area.
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Fig. 4. 
Examples of PRISMA spectra acquired on a) soybean and b) crop residues before and after 

the smoothing. The PRISMA spectra were extracted from regions of interest of 3 × 3 pixels 

centered on the sites where the Spectral Evolution (SE) measurements were performed. 

The dots mark the wavelengths which were used for the spline interpolation. The shaded 

coloured areas indicate the standard deviation of the PRISMA (number of samples=9) and 

SE (number of samples=13) reflectance spectra for each wavelength. The shaded grey areas 

indicate the spectral regions that were excluded after the smoothing to obtain the final 

PRISMA spectra.
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Fig. 5. 
Scatter plots displaying the ground measured traits against the estimates obtained from 

PRISMA hyperspectral data using a hybrid GPR-AL model: a) leaf chlorophyll content 

(LCC), b) leaf nitrogen content (LNC), c) leaf water content (LWC), d) leaf area index 

(LAI), e) canopy chlorophyll content (CCC), f) canopy nitrogen content (CNC), g) canopy 

water content (CWC). The points are coloured according to the crop type. The number of 

samples (n) for each crop is also reported in the legend.
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Fig. 6. 
Scatter plots displaying the 2021 ground measured traits against the estimates obtained from 

PRISMA hyperspectral data by applying the hybrid GPR-AL model optimised on the 2020 

dataset: a) leaf chlorophyll content (LCC), b) leaf nitrogen content (LNC), c) leaf water 

content (LWC), d) leaf area index (LAI), e) canopy chlorophyll content (CCC), f) canopy 

nitrogen content (CNC), g) canopy water content (CWC). The points are coloured according 

to the crop type. The number of samples (n) for each crop is also reported in the legend.
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Fig. 7. 
Multi-temporal crop trait maps obtained from PRISMA hyperspectral imagery using a 

hybrid Gaussian processes regression model. RGB=PRISMA false colour composition 

(R=854.9 nm, G=650.5 nm, B=546.3 nm), LCC=Leaf chlorophyll content (μg cm−2), 

LNC=Leaf nitrogen content (g cm−2)×103, LWC=Leaf water content (g cm−2). In the crop 

trait maps, only the cloud-free vegetated fields are mapped. The map projection is UTM 

zone 32N with datum WGS84
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Fig. 8. 
Multi-temporal crop trait maps obtained from PRISMA hyperspectral imagery using a 

hybrid Gaussian processes regression model. LAI=Leaf area index (m2 m−2), CCC=Canopy 

chlorophyll content (g m−2), CNC=Canopy nitrogen content (g m−2), CWC=Canopy water 

content (g m−2). In the crop trait maps, only the cloud-free vegetated fields are mapped. The 

map projection is UTM zone 32N with datum WGS84.
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Fig. 9. 
Density plots showing the temporal evolution of the traits of the five main crops in the study 

site across the growing season (DOY=Day Of the Year): a) leaf chlorophyll content (LCC), 

b) leaf nitrogen content (LNC), c) leaf water content (LWC), d) leaf area index (LAI). Each 

density curve represents the values extracted for each crop from all pure PRISMA pixels 

within the farm.
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Fig. 10. 
Bar plot showing the contribution (%) of the visible (VIS), near-infrared (NIR) and 

shortwave infrared (SWIR) spectral regions in the retrieval of Leaf Area Index (LAI), Leaf 

Chlorophyll Content (LCC), Leaf Nitrogen Content (LNC) and Leaf Water Content (LWC).
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Fig. 11. 
Contribution of the spectral bands in the retrieval of Leaf Chlorophyll Content (LCC) 

and Leaf Nitrogen Content (LNC). The vertical black dotted lines located at 750 nm and 

1300 nm indicate the boundaries between the visible, near-infrared and shortwave infrared 

spectral regions.
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Table 1

Descriptive statistics of the data collected in the field in 2020. For each variable (LCC=Leaf Chlorophyll 

Content, LNC=Leaf Nitrogen Content, LWC=Leaf Water Content, LAI=Leaf Area Index, CCC=Canopy 

Chlorophyll Content, CNC=Canopy Nitrogen Content, CWC=Canopy Water Content), the unit, minimum 

(Min), maximum (Max), average (Avg) and standard deviation (Sd) are reported.

Variable Unit Min Max Avg Sd

LCC ig cm−2 14.47 70.34 43.77 10.96

LNC g cm−2 0.000110 0.000290 0.000187 0.000037

LWC g cm−2 0.005835 0.025361 0.011559 0.005475

LAI m2 m−2 1.03 6.60 3.47 1.33

CCC g m−2 0.42 3.99 1.59 0.87

CNC g m −2 1.74 19.12 6.64 3.43

CWC g −2 79.18 1086.10 409.01 256.39
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Table 2

Parameterisation of the coupled PROSPECT-PRO-4SAIL model for the generation of the simulated dataset. 

Within the specified range (min–max), the values were generated randomly with a uniform distribution.

Model Variable Unit Range

PROSPECT-PRO N Leaf structural parameter - 1.2-1.8

LCC Leaf chlorophyll content μg cm−2 10-70

Ccx Leaf carotenoid content μg cm− 0-20

Canth Leaf anthocyanin content μg cm− 0

Cbp Brown pigment content μg cm− 0

cp Leaf protein content g cm− 0.0001-0.0015

CBC Carbon-based constituents g cm−2 0.001-0.006

LWC Leaf water content g cm−2 0.001–0.05

4SAIL LAI Leaf area index m2 m–2 0–7

ALA Average leaf angle deg 30–60

hots Hot spot parameter m m−1 0.01

α soil Soil scaling factor - 0.1–0.5

skyl Fraction of diffuse radiation - 0.1

SZA Sun zenith angle deg 27

OZA Observer zenith angle deg 0

rAA Relative azimuth angle deg 0
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Table 3

Summary of the goodness-of-fit statistics calculated on the 2020 dataset between measured and estimated 

values for each trait. Variable (LCC=Leaf Chlorophyll Content, LNC=Leaf Nitrogen Content, LWC=Leaf 

Water Content, LAI=Leaf Area Index, CCC=Canopy Chlorophyll Content, CNC=Canopy Nitrogen 

Content, CWC=Canopy Water Content); Active Learning algorithm (AL) (ABD=Angle-based diversity, 

EBD=Euclidean distance-based diversity, CBD=Clustering-based diversity, PAL=Variance-based pool of 

regressors); number of samples (n); coefficient of determination (r2); p-value; root mean square error (RMSE); 

normalised RMSE (nRMSE); bias and relative bias (rbias)

Variable AL n r 2 p-value RMSE nRMSE bias rbias

LCC ABD 47 0.67 <0.001 5.88 μg cm−2 11.7% -1.08 μg cm−2 -2.43%

LNC EBD 47 0.87 <0.001 0.000013 g cm−2 7.5% -0.000001 g cm−2 -0.50%

LWC CBD 47 0.63 <0.001 0.003337 g cm−2 17.1% 0.000189 g cm−2 1.63%

LAI CBD 47 0.82 <0.001 0.57 m2 m−2 10.3% -0.01 m2 m−2 -0.23%

CCC PAL 47 0.82 <0.001 0.36 g m−2 10.2% -0.02 g m−2 -1.29%

CNC EBD 47 0.92 <0.001 0.96 g m−2 5.5% -0.03 g m−2 -0.40%

CWC PAL 47 0.61 <0.001 160.76 g m−2 16% 8.28 g m−2 2.03%
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Table 4

Summary of the goodness-of-fit statistics calculated on the 2021 dataset between measured and estimated 

values for each trait. Variable (LCC=Leaf Chlorophyll Content, LNC=Leaf Nitrogen Content, LWC=Leaf 

Water Content, LAI=Leaf Area Index, CCC=Canopy Chlorophyll Content, CNC=Canopy Nitrogen Content, 

CWC=Canopy Water Content); number of samples (n); coefficient of determination (r2); p-value; root mean 

square error (RMSE); normalised RMSE (nRMSE); bias and relative bias (rbias).

Variable n r 2 p-value RMSE nRMSE bias rbias

LCC 36 0.62 <0.001 10.78 μg cm−2 27.9% 8.66 μg cm−2 22.1%

LNC 41 0.35 <0.001 0.000039 g cm−2 28.4% 0.000021 g cm−2 12.7%

LWC 41 0.74 <0.001 0.0041 g cm−2 20.4% -0.0032 g cm−2 −26.7%

LAI 41 0.84 <0.001 0.95 m2 m−2 14.5% 0.06 m2 m−2 1.6%

CCC 41 0.79 <0.001 0.66 g m−2 18.5% 0.41 g m−2 26.4%

CNC 41 0.62 <0.001 3.5 g −2 23.7% 1.54 g m−2 21.8%

CWC 41 0.92 <0.001 276.92 g −2 16.6% -179.01 g −2 −33.8%
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Table 5

Coefficients of variation (CV) of the estimates on each PRISMA date. The values are expressed in percentage 

as average ± standard deviation. DOY=Day Of the Year, LCC=Leaf Chlorophyll Content, LNC=Leaf Nitrogen 

Content, LWC=Leaf Water Content, LAI=Leaf Area Index.

DOY CVLCC CVLNc CVLWc CVLAI

098 23.8±1.3% 40±2.8% 38.4±6.7% 19.7±3.2%

132 22.5± 3.9% 38.2±5.8% 30.5±6.4% 22±5.3%

138 27.6± 4.7% 44.7±5.5% 48.4±13.3% 30.9±7.8%

144 20.7± 5.9% 38.9±7.4% 41.8±10.3% 25.5±8.1%

178 28± 3.5% 44.1 ±3.9% 52.9±8.0% 27.8±7.1%

196 19± 1.9% 38.9±3.5% 46.5±7.5% 17±2.8%

213 16.2± 1.6% 37.8±2.8% 23.9±2.9% 16±1.9%

260 32.6± 3.4% 53±6.1% 29.4±7.1% 36.3±5.3%
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