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Abstract

Optical remotely sensed data are typically discontinuous, with missing values due to cloud cover. 

Consequently, gap-filling solutions are needed for accurate crop phenology characterization. 

The here presented Decomposition and Analysis of Time Series software (DATimeS) expands 

established time series interpolation methods with a diversity of advanced machine learning fitting 

algorithms (e.g., Gaussian Process Regression: GPR) particularly effective for the reconstruction 

of multiple-seasons vegetation temporal patterns. DATimeS is freely available as a powerful image 

time series software that generates cloud-free composite maps and captures seasonal vegetation 

dynamics from regular or irregular satellite time series. This work describes the main features of 

DATimeS, and provides a demonstration case using Sentinel-2 Leaf Area Index time series data 

over a Spanish site. GPR resulted as an optimum fitting algorithm with most accurate gap-filling 

performance and associated uncertainties. DATimeS further quantified LAI fluctuations among 

multiple crop seasons and provided phenological indicators for specific crop types.
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1 Introduction

Quantifying the spatiotemporal variability of the Earth has always been an essential 

requirement for many applications in remote sensing, geodesy and geodynamics (Hamblim 

and Christiansen, 2010). Improving its knowledge may help to better comprehend and 

model the global environmental change. The usage of optical remote sensing time series has 

opened the door to global-scale monitoring of seasonal changes in vegetated areas through 

their spectral properties (Reed et al., 2009; Ramachandran et al., 2011; Gutman and Masek, 

2012; Liang, 2019; Pricope et al., 2019). To achieve that, the generation of continuous 

fields in time and space starting from irregularly distributed data is of critical importance. 

Given the current viability of multiple Earth observation missions (e.g., the Sentinels), a 

growing number of monitoring agencies and Earth System sciences depend on the influx 

of continuous satellite data, i.e. gap-free data. In reality, however, the need for continuous 

data is often unfulfilled, for multiple causes (Kandasamy et al., 2013; Weiss et al., 2014): 

(1) inadequate climatic conditions (clouds, snow, dust and aerosols), (2) instrumentation 

errors, (3) losses of image data during data transmission, or (4) low temporal resolution (i.e. 

long interval needed to revisit and acquire data for the exact same location), among others. 

They degrade the availability/quality of spectral/temporal information required to retrieve 

land surface properties. Therefore, the impact of missing data on quantitative research can be 

serious, leading to biased estimates of parameters, loss of information, decreased statistical 

power, increased standard errors, and weakened of findings (Dong and Peng, 2013). For this 

reason, spatiotemporal reconstruction of areas with gaps from satellite imagery is becoming 

a crucial step for monitoring purposes (Schwartz, 2013), and for the knowledge of the life 

cycle of vegetation, i.e. vegetation phenology (White et al., 2005; Rezaei et al., 2017). 

Although a variety of gap-filling methods can perform this task (see review in Zeng et al. 

(2020)), the difficulty lies in the choice of the one that best reproduces the actual surface to 

identify the precise date when a phenological event occurs.

Vegetation phenology quantification over agricultural lands is widely used for yield 

determination, and to improve management and timing of field works (planting, fertilizing, 

irrigating, crop protection or harvesting) (Mulla, 2013; Sakamoto et al., 2005). Distinct 

phenological parameters are of interest to the scientific community, private companies, and 

farmers, such as dates of start and end of growing season (SOS and EOS, respectively), 

maximum peak, seasonal amplitude defined between the base level and the maximum 

value for each individual season, length of the season, etc (Jönsson and Eklundh, 2004). 

As reported by multiple studies (Sobrino and Julien, 2011; Richardson et al., 2013; 

Atzberger, 2013), these parameters are extremely sensitive to changes in vegetation cycles 

due to climate change, and these changes can have a profound impact in the agricultural 

production.

Time series analysis of vegetation’s phenological trends is a powerful and practical tool that 

comprises a diversity of methods for reconstructing, modeling and analyzing time series 

data (e.g. vegetation indices or biophysical variables) in order to extract meaningful statistics 

and other characteristics from the data such as autocorrelation, trend or seasonal variation 

(Tang et al., 2016). Numerous studies have dealt with the retrieval of phenological phases 

from remotely sensed data (White et al., 2009; Julien and Sobrino, 2009; Tan et al., 2011; 
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Broich et al., 2015; Berra et al., 2019). In the era of the Sentinels, where large amounts 

of data are available, these methods must be accurate, robust and fast. Hence, there is a 

compelling need to identify next-generation time series algorithms to be integrated into 

an operational processing chain. Of specific interest is the emergence of machine learning 

regression algorithms (MLRAs). MLRAs tend to behave as highly adaptive and versatile 

fitting algorithms (Verrelst et al., 2015, 2019) and can thus replace conventional fitting 

functions, e.g. for enabling more accurate estimation of phenology trends, or for identifying 

multiple seasons within a time series. However, their performances need to be evaluated 

against standard time series processing methods, such as those available in established 

software packages.

Several sophisticated time series software packages have been developed over time, with 

capabilities of identifying phenology trends or disturbances, e.g. TIMESAT (Jönsson and 

Eklundh, 2004), BFAST (Verbesselt et al., 2010), TIMESTATS (Udelhoven, 2011), SPIRITS 

(Eerens et al., 2014), BeeBox (Arundel et al., 2016), phenor (Hufkens et al., 2018), 

pyPhenology (Taylor, 2018), CroPhenology (Araya et al., 2018), FORCE (Frantz, 2019), 

Earth Engine App (Li et al., 2019), EO Time Series Viewer (Jakimow et al., 2020). In most 

cases, these packages are freely available to process time series but they also face some 

limitation such as the need to use regular time series with more than one phenological cycle, 

the absence of graphical user interface (GUI) or being merely addressed to advanced users. 

Also, these packages provide limited tools for gap-filling and smoothing purpose, and above 

all, are not yet adapted to the emergence of MLRAs.

In general, modeling phenological evolution represents a challenging task mainly because of 

time series gaps and noisy data (D’Odorico et al., 2015; Kuenzer et al., 2015), coming from 

different viewing and illumination geometries, cloud cover, seasonal snow and low temporal 

resolution (Weiss et al., 2014; Mariethoz et al., 2012). For that reason, the use of reliable 

gap-filling fitting functions and smoothing filters is frequently required for retrievals at the 

highest feasible accuracy (Chen and Boccelli, 2018; Jönsson et al., 2018). To avoid all these 

drawbacks, time series studies typically use the regular composite Normalized Difference 

Vegetation Index (NDVI) product from the MODerate resolution Imaging Spectroradiometer 

(MODIS) (e.g. Gong et al., 2015; Zhao et al., 2009).

Nevertheless, a critical aspect in time series analysis is that remote sensing products are 

generally spatially and temporally discontinuous. This implies that the ability to process 

irregular time series becomes indispensable for studying land surface phenology. Given that 

most time series data are spatiotemporally irregular, some questions arise:

1. Can we cope with this irregularity and achieve a reasonably accurate 

reconstruction of phenological stages by taking advantage of latest MLRAs?

2. How can we benefit from the new, high spatiotemporal resolution remote sensing 

data (e.g. the Sentinel constellation) to improve understanding of dynamic 

changes of land surfaces?

With ambition to tackle these questions and offer solutions to the community, in this paper 

we present a novel and generic scientific time series toolbox that serves as an alternative 

to existing toolboxes. The so-called Decomposition and Analysis of Time Series Software 
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(DATimeS) is a stand-alone image processing GUI toolbox written in MATLAB. This 

toolbox can model and analyze regular and irregular time series data from complete images, 

specific region of interest or single pixels in multiple formats (e.g., geotiff, ENVI). It 

encompasses a suite of powerful mathematical fitting algorithms such as MLRAs (e.g., 

decision trees, kernel-based methods, neural networks) as well conventional fitting methods 

such as harmonic analyses (HA) (i.e. Fourier Transform (Roerink et al., 2000; Zhou et 

al., 2012, 2015)) and non-linear least squares regression, i.e. double logistic function 

(Richardson et al., 2009). With these smoothing and fitting algorithms, spatiotemporal 

gap-filling can be achieved. DATimeS enables to perform advanced time series tasks for: (1) 

the generation of spatially continuous maps from discontinuous data, i.e. gap-filling, and (2) 

detection of heterogeneous spatial patterns of phenological indicators (i.e., crop key growth 

stages) throughout multiple seasons.

The remainder of the paper is structured as follows. Section 2 provides the general 

concept of DATimeS, section 3 outlines the modules of the toolbox and describes the 

theoretical framework of the algorithms available. Section 4 provides a demonstration 

case of reconstructing leaf area index (LAI) time series from Sentinel-2 acquisitions and 

estimating phenological indicators over crop areas. Discussion is presented in Section 5, 

whereas conclusions and future work lines are finally presented in section 6.

2 DATimeS: general aspects

The DATimeS toolbox is developed in MATLAB (version R2011b or later is required), 

which has the advantages of being easy to use and source code changes can be applied 

without much effort. Although MATLAB faces some limitations as being a commercial 

software and not as much optimized in speed as opposed to other programming languages, 

DATimeS can be either operated independently (i.e., without a license) through a runtime 

engine called the Matlab Compiler Runtime, or it can be run as part of the ARTMO 

scientific software package (Verrelst et al., 2011, 2012). Matlab is widely used by the 

science and engineering community. Its processing speed should not be considered a 

drawback since today’s computer hardware is fast enough to guarantee software efficient 

performances.

The core functioning of DATimeS involves multiple time series smoothing and fitting 

algorithms. On the one hand, the toolbox provides state-of-the-art MLRAs as well as 

conventional methods available in other distinguished time series toolboxes (e.g., TIMESAT, 

TimeStats, SPIRITS). On the other hand, its environment offers sophisticated new modeling 

techniques for vegetation phenology. Users do not need advanced processing knowledge to 

take full advantage of these capabilities since it has a friendly GUI for non-programmers.

DATimeS is primarily designed to process time series of vegetation indicators derived from 

satellite spectral measurements. However, other types of raster data such as meteorological 

index, radar data, and eddy co-variance carbon flux data or data as acquired by airborne 

sensors or drones can also be processed. Its processing firstly leads to cloud-free composite 

images for any chosen time sampling, e.g. every 10 days. Subsequently, phenology variables 

can be derived such as the start and end of a growing season.
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3 Modules

DATimeS software is structured in multiple modules. The modular architecture, which has 

been inherited from the ARTMO toolbox, offers the following advantages: (1) it guides the 

user through the processing steps, i.e. subsequent processing modules are activated once 

current module has been completed, (2) modules can be easily modified or extended without 

affecting the main architecture, (3) and new modules with new functionalities can be easily 

added to the toolbox. An overview of the DATimeS’ modules contained in this first official 

version (v.1.06) is shown in Fig. 1.

1. The first module, ”Input”, is responsible for reading the data. Time series 

processing for spatiotemporal analysis can take place either on a single pixel, 

or on a stack of images. For single pixels, a.txt file is required. Imagery can be 

entered in TIFF or ENVI format from a specific folder. When loaded, the data 

will appear sorted in the DATimeS main window (Fig. 2a).

2. The second module, ”Time Series Analysis”, is in charge of constructing 

composite images with any time step by applying the gap-filling (e.g. due to 

clouds) using a broad variety of advanced interpolation and smoothing methods. 

Besides, it enables to calculate all kinds of phenological indicators. The GUIs 

corresponding to this module are shown in Fig. 2b and c.

3. The third module, ”Post-processing”, improves the obtained maps by spatial 

interpolation and provides the possibility to create videos, thus enabling 

animation of temporal trends.

3.1 Input data

3.1.1 Single pixels—The first option that DATimeS offers is the possibility to analyze 

and process single time series. Data must be provided as.txt file accordingly to specific 

format rules: dates need to be provided in YYYYMMDD format, YYYY being the four-

digit year, MM the two-digit month and DD the two-digit day in the month. The text file can 

encompass multiple pixels, sorted as columns, so that any of these columns can be analyzed. 

The DATimeS manual (see http://artmotoolbox.com) provides a complete overview and 

more in-depth explanation of the format rules.

3.1.2 Supported image formats—Imagery can be loaded in two formats: ENVI or 

TIFF files. First, complete multiple images are loaded as long as their spatial dimensions 

match. Then, they can be completely processed. A subset within the area covered by the 

loaded images can be also defined. Two possible options are provided: (1) to apply an earlier 

created mask or, (2) to define directly a region-of-interest (ROI). In the latter case, the user 

can draw a ROI on a selected image and band (in case the loaded images contain of multiple 

bands), and create a new mask. Subsequent processing will then only take place within the 

selected region. It should be noted that the images belonging to a time series must contain 

their acquisition date. In case of ENVI format, it must be included in the header file. In 

case of TIFF, the TIFF ”DATETIME” tag will be looked for. Finally, the loaded images will 

appear into the main window, sorted according to dates (see Fig. 2a). The time evolution of 
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the mean and standard deviation of pixels within the ROI, along with the map of pixel values 

for the selected image, can be easily obtained by clicking on Plot (see Fig. 3).

3.1.3 Filtering option: cloud thresholding and masking—Regardless of the type 

of input data (i.e., single pixel time series or images), the time series data can be inspected 

on missing values, typically due to cloud cover. The first step is to identify the cloudy 

pixels and to remove by setting their weight to zero. Two ways to define cloud values are 

implemented:

1. Using a fixed value, e.g., in case clouds have been labeled with a fixed value.

2. With a thresholding filter, where the user must provide a minimum and 

maximum value to filter out pixels that fall outside these boundaries.

Once having the images loaded, an earlier-created mask can also be applied to the analysis. 

The mask can be a.mat, ENVI or TIFF file and must match the spatial size of the image 

stack. Again, the masked region can be plotted for the selected image and band by clicking 

on Plot, same as displaying a full image.

3.2 Time series analysis

After having inputted pixel or image data, the Time Series Analysis module can be activated. 

This is composed of two parts: (1) the interpolation and (2) the phenological indicators 

submodules, and described below.

3.2.1 Interpolation—The interpolation is the main processing step of DATimeS: it 

allows to perform the time series gap-filling (e.g. in case of a single pixel as loaded by 

the.txt file) and generate composite maps (in case images were loaded). In the Interpolation 

submodule (Fig. 2b), the key option is the selection of the interpolation strategy.

About 30 interpolation algorithms have been brought together and categorized according to 

the following methods: (1) machine learning regression algorithms (MLRAs), (2) harmonic 

regression methods, (3) conventional interpolation methods, and (4) others. Their complete 

list is reported below, in Table 1.

1. Machine learning regression algorithms. A suite of MLRAs have been 

implemented in DATimeS (see Table 1). For a complete overview and more in-

depth discussions of the algorithms we refer to the following publications: Smola 

and Schölkopf (2004); Camps-Valls et al. (2006); Rasmussen and Williams 

(2006); Thayananthan et al. (2006); Lázaro-Gredilla et al. (2014); Verrelst et 

al. (2019). Their source code is freely available and can be found at: https://

github.com/IPL-UV/simpleR.

Among the multiple MLRA approaches, special attention deserves the Gaussian 

processes regression (GPR) (Rasmussen and Williams, 2006). GPR carries out 

a non-parametric modeling developed in a Bayesian framework and provides 

uncertainty intervals along with the mean estimates (Verrelst et al., 2013). This 

distinct feature, which is not shared by other machine learning algorithms, can 
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open a unique source of information to assess the robustness of the predictions at 

various temporal scales.

2. Harmonic Regression methods. Four Fourier-based techniques have been 

implemented to reconstruct the seasonal leaf development (see Table 1). The 

first (and simplest) algorithm, named Fourier1, is based on the general equation 

(Roerink et al., 2000; Zhou et al., 2012):

y(t) = a0 + ∑
n = 1

N
(ancos(ωn ⋅ t) + bnsin(ωn ⋅ t)) (1)

where y is the reconstructed time series, an and bn are the amplitudes of the 

cosine and sine terms, t is the time, ωn = 2π/P is the angular frequency, P is 

the period, and a0 is a constant offset which accumulates the low-frequency part 

of the signal. Applying the method of least squares, the amplitude coefficients 

(an, bn) are estimated. The second and third approaches, named Fourier2 and 

Fourier3 (Equations (2) and (3), respectively), are similar to Equation (1), 

with the difference that linear and quadratic terms have been included into the 

algorithms.

y(t) = a0 + b ⋅ t + ∑
n = 1

N
(ancos(ωn ⋅ t) + bnsin(ωn ⋅ t)) (2)

y(t) = a0 + b ⋅ t + b ⋅ t2 + ∑
n = 1

N
(ancos(ωn ⋅ t) + bnsin(ωn ⋅ t)) (3)

In the fourth approach, named Fourier4, the estimates are obtained using a 

sliding window to account for the amplitude and phase time variability, i.e. 

changes in seasonality of vegetation variables. Essentially, the longer time series 

is divided into shorter segments of equal length (NL) and then the Fourier 

coefficients are computed separately on each shorter segment using Equation 

(1). Consequently, the tabulated epoch for each fit is the middle date of the 

window. Finally, the amplitude variation is modeled as continuous piecewise 

liner functions, which is defined to have linear variations between “nodes” at 

selected times. The length of the sliding window (NL) and the displacement 

between the subsequent fits (ND) are specified by the user and have to be 

sufficiently large to separate the main signal from the noise and high frequency 

signals (e.g. NL = 365 days, ND = 30 days). This technique provides an optimal 

tradeoff between quality and computational cost.

3. Conventional interpolation methods. Apart from the above-mentioned 

algorithms, DATimeS also includes various types of conventional interpolation 

techniques (Akima, 1970, 1974; Olivier and Hanqiang, 2012; Lepot et al., 2017) 

(see Table 1). They are favorable when speed is the main concern and not 

accuracy.
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4. Others: Double logistic curve. Finally, a double logistic curve method has 

been implemented, which is commonly used in phenology studies (Beck et al., 

2006; Hird and McDermid, 2009; Atkinson et al., 2012). This algorithm, also 

known as Sigmoid, uses a double-sigmoidal model (Richardson et al., 2009) 

by combining two regular sigmoidal functions to characterize the phenological 

metrics of different vegetation indices, as shown here:

y(t) = a + b − a
[1 + exp(c + d ⋅ t)] × [1 + exp(e + f ⋅ t)] (4)

Here, the double-sigmoidal model is uniquely determined by six parameters, two 

midpoints (c, d) and two slope parameters (d, e), a maximum value (b), and a 

base level (a). The difference between parameters b and a gives the seasonal 

amplitude. These parameters are estimated using a non-linear least squares 

regression. For this reason, DATimeS uses an iterative algorithm reducing the 

error sums of squares (SSE) to converge on a single solution. The iterations 

continue until the algorithm converges to the minimum SSE, or reaches the 

maximum number of iterations permitted. To account for the seasonal variability 

and the complex behaviour of time series, this function is divided in three 

overlapping intervals around maxima and minima: one is aligned to the left 

minimum, another is placed on the central maximum, and the latter is fixed 

to the right minimum. To guarantee the continuity and the convergence of the 

reconstructed time series, the estimate parameters are modeled as continuous 

piecewise linear functions.

3.2.2 Interpolation and smoothing processing options—Before starting the gap-

filling procedure, a compulsary step is to define the output time settings, i.e. the days to 

which data is interpolated. In this context, three options are possible:

1. Fixed time step: interpolating to a higher or low frequency (e.g., each 20 days, 

see Fig. 4a).

2. Interpolation time vector: User-defined dates as provided by a text (. txt) file.

3. Interpolation of only clouded/missing/filtered pixels: With this option only those 

pixels labeled as clouds or fitered out by the thresholding criteria will be filled 

up at the original dates. All other pixels keep their original value. An example of 

this option is provided in Fig. 4b.

A key feature of DATimeS is that multiple interpolation methods can be selected at once for 

running in a sequence fashion, so their performances can be visually compared. Information 

about processing time is also provided. The interpolation methods can be additionally 

combined with a smoothing method to facilitate the calculation of the gap-filling and 

phenological metrics, but that is not mandatory. If selected, smoothing is applied before 

the interpolation. When data collected over time include some noisy behaviour, smoothing 

techniques can be helpful to mitigate the effect of these variations. DATimeS features six 

different smoothing techniques (see description in Table 2). They are based mainly on 

moving average, locally weighted scatter plot and Savitzky-Golay algorithms (Press et al., 
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1993). The number of data points for calculating the smoothed value as a combination of 

nearby values can be controlled using the span argument (see middle panel in Fig. 2b). As 

such, the greater the value of span, the smoother the fitted curve. In case of Savitzky-Golay, 

the optimal choice of polynomial order can be controlled using the degree argument. In any 

event, it should never be bigger than span.

3.3 Phenological indicators

Spatiotemporally-explicit knowledge of vegetation phenology is critical to understand the 

change trend of natural seasonal phenomena and serve for agricultural production and 

global change studies (Yu et al., 2017; Tang et al., 2015; Ren et al., 2017). In this regard, 

this module has the capability to estimate multiple phenological indicators using primarily 

satellite remote sensing data, although likewise other type of time series data could be 

used. The estimation settings for phenological indicators can be inspected in Fig. 2c. In this 

step the user can choose among the following phenological metrics (Fig. 5): (1) amplitude 

(difference between the maximum and the average of the left and right minimum values 

per season), (2) maximum value (largest value per cycle), (3) day of maximum value (when 

the largest value per cycle occurs), (4) start of season (SOS), (5) end of season (EOS), 

(6) seasonal integral (area under the curve between SOS and EOS), and (7) length of 

season (difference between SOS and EOS). Moreover, DATimeS also provides the user with 

the freedom of choosing whether or not to incorporate smoothing prior to the parameter 

estimation. To optimize the provided gap-filling algorithms, this module is recommended to 

be applied after the interpolation step so that cloud-free composite images are created, and 

trends become evident for easy phenological metrics derivation. However, it is also possible 

to go directly to this step.

The computational strategy follows multiple steps. When running the phenological module 

for each pixel within an image it: (1) extracts time series data, (2) identifies automatically 

individual growing seasons within each year, (3) locate specific points within the growing 

season (e. g. SOS, EOS, peak), (4) calculate data value and day of year for growing season 

points of interest, (5) compute integrals and cumulative integrals, and (6) store the estimates 

in output ENVI or Tiff files.

The determination of the number of seasons (seasonal decomposition) is analogous to 

previous approaches (Araya et al., 2018; Jönsson and Eklundh, 2004; Hill and Donald, 

2003), i.e. making use of local maximum and minimum of the curve to identify the 

change of state. When three consecutive local minimum, maximum and minimum points are 

detected, one season is extracted. To be able reducing contributions from undesired artifacts 

at low frequencies, this search needs to be optimized with specific constraints. In DATimeS, 

these spurious estimates can be masked using a prominence threshold. The prominence of 

a peak is the minimum vertical distance that the signal must descend on either side of the 

peak before either climbing back to a level higher than the peak or reaching an endpoint. 

Accordingly, peaks not meeting the specified prominence value are discarded in advance as 

noise. Additionally, users can also discard the minimum/maximum peaks that are very close 

to each other. When the separation value is greater than zero, DATimeS selects the largest 
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local maximum/minimum and ignores all other local maxima/minima within the specified 

separation in time.

After the time series decomposition, each individual growing season is analyzed to detect 

specific phenological events (e.g. SOS and EOS) based on conventional threshold methods, 

analogous to Jönsson and Eklundh (2004); Lloyd (1990); Delbart et al. (2006); White and 

Nemani (2006); Wu et al. (2010); Huang et al. (2019). Three different methods have been 

implemented in DATimeS: (1) seasonal, (2) relative, and (3) absolute amplitude. In the 

former case, the SOS/EOS are identified where the left/right part of the curve reaches a 

fraction of the seasonal amplitude along the rising/decaying part of the curve. An example of 

this method is shown in Fig. 5. The second approach is similar to the previous one, but now 

a mean amplitude is estimated considering the minimum/maximum values of all seasons. 

Consequently, the SOS/EOS correspond to dates where the curve reaches a percentage of 

this relative amplitude. In the latter method, the SOS/EOS is determined when each growing 

season reaches an absolute value.

3.4 Post-processing

In the post-processing module, the following options are provided: (1) spatial interpolation, 

and (2) time series animation. The spatial interpolation module offers the option of applying 

spatial interpolation methods when the earlier-developed phenological indicators maps are 

not completely spatially resolved. In such case, the phenological metrics estimation becomes 

impossible due to noisy data, especially in case no temporal gap-filling and smoothing 

methods have been applied. Then, the post-processing step is recommended to generate 

continuous maps over space through standard spatial interpolation techniques (linear, cubic, 

nearest and natural neighbor).

In the animation option, satellite images taken over time are integrated and stitched together 

as a video, which enables users to visually detect changes, map trends, and quantify 

differences on the selected area or region. For this purpose, the use of cloud-free composite 

images, which were previously estimated in the Interpolation module, are preferable since it 

produces a smooth time lapse of cloud-free land surface phenology.

4 Demonstration cases

4.1 Study area and data

Having described the functioning of DATimeS, in this section we present two experiments 

making use of the different DATimeS modules. The ROI selected for the study is a crop 

region in Castile and Leon, in North-West of Spain. The area shown in Fig. 6 was selected 

as part of a wider validation region of Sensagri H2020 Project (Amin et al., 2018), for which 

a highly detailed land-cover map is yearly retrieved by using a random forest classifier on 

satellite imagery time series. The classifier distinguishes between 50 specific crop types, 

being 35 of them arable crops, 7 are irrigated crops and 8 for permanent crops (Gómez et 

al., 2018). The scene selected for the demonstration cases is mainly characterized by an 

intensive dryland agricultural system where the arable land comprises up to 80% of the 

available area.
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For the experiments, we used green leaf area index (LAI) generated from atmospherically 

corrected S2 imagery using the GPR model developed in the framework of SENSAGRI 

project (Amin et al., 2018). The time series consists of 127 unevenly spaced and largely 

cloud-free acquisitions between November 2015 to September 2019.

4.2 Testing interpolation fitting algorithms

First, we evaluate the performance of multiple fitting algorithms (parametric and non-

parametric regressions) in terms of reconstruction effectiveness and processing time. For 

this experiment we used a region composed essentially of wheat, barley, green peas, forage, 

potato, sunflower and oats (blue polygon in Fig. 6). The pursued approach is sketched in 

Fig. 7. First, we kept out one map from the LAI time series to be used as reference for 

assessment purposes, being the date 01-06-2017. Next, a selection of the most powerful and 

hence promising interpolation algorithms were run to reconstruct the LAI information on the 

date of the reference image. Finally, we calculated the goodness-of-fit statistics of reference 

map vs reconstructed map and also the global and per-pixel processing time performances.

It is important to point out that parametric and non-parametric algorithms have different 

modeling assumptions. By definition, parametric regression algorithms assume an explicit 

relationship between response (dependent) and explanatory (independent) variables using a 

finite number of parameters. On the contrary, for non-parametric regressions the information 

is derived from the training data without any assumption about their statistical distribution or 

variable interrelations, making the number of parameters (theoretically) infinite. Parametric 

models such as linear regression, logistic regression, and harmonic algorithms are typical 

examples of “learners” with a fixed size of parameters. Conversely, algorithms such as 

K-nearest neighbor, decision trees, or GPR are considered non-parametric since the number 

of parameters grows with the size of the training set. Therefore, the statistical assessment 

measures used in this study are: coefficient of variation R2, root mean square error RMSE 

and relative RMSE (RRMSE [%]). An overview of validation results and processing time is 

provided in Table 3.

The map reconstruction results suggest the following:

1. The error estimates (RMSE, RRMSE) provide a description of the algorithms’ 

image reconstruction capability. The most accurate reconstruction was obtained 

with GPR with a relative error of 5.9% and a R2 of 0.913. The second best 

reconstruction was obtained with the spline interpolation. The following top-

performing methods are KRR and then sigmoid; the rest of methods perform 

substantially poorer. A remark hereby is that a perfect reconstruction is virtually 

impossible to achieve, not only due to the sources of noisiness in original data, 

but also because of the smoothing effect that the fitting methods have on the 

original series (Atkinson et al., 2012).

2. The recorded processing time indicates that the Fourier and the conventional 

interpolation methods are extremely fast; processing the subset took about half a 

minute. Conversely, the accurate sigmoid took significantly longer, being about 

one thousand times slower.
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3. Taking both accuracy and processing speed into account, GPR and spline 

interpolations turn out to be the most efficient interpolators, with GPR more 

accurate but spline faster by a factor of 70.

Based on the above results, GPR resulted as the preferred method for gap-filling purposes. 

Besides, it is the only method that also provides associated uncertainties. We therefore 

used this method for subsequent calculation of the phenological indicators to fill up some 

remaining missing values.

The DATimeS maps of the phenological indicators for the year 2017 are shown in Fig. 8. 

The field-scale consistency of the result can be easily appreciated by visually inspecting the 

results. In the SOS map it can be clearly viewed that some crops started their growing season 

later. The EOS map is consistent as well, leading to homogeneous parcels in terms of length 

of season. Also, the day corresponding to the maximum value well resembles the pattern 

of the start of season. Probably of more interest are the indicators amplitude, maximum 

value and area. These indicators are usually related to crop’s productivity (Zhang and Zhang, 

2016). Also within-field variations can be observed in these maps, which is extremely useful 

for smart farming applications (Das et al., 2019), e.g. for precision fertilizing.

4.3 Phenological metrics between different crops and seasons

Keeping the most accurate interpolation method obtained in Section 4.2 in mind, in this 

second case study we use GPR to achieve a spatiotemporal reconstruction LAI maps and 

compare the phenological indicators of specific crop types throughout multiple seasons. The 

region chosen for the study corresponds to a dryland farming area containing crops of barley, 

beet, potato, rape and wheat (red polygons in Fig. 6).

The main steps of the experiment have been the following: (1) training an independent GPR 

model for each pixel of the ROI using its corresponding LAI time series, (2) providing 

interpolated LAI values with its associated uncertainty estimates for each input time t (every 

10 days) and pixel, subsequently (3) estimating the mean LAI time series and their variance 

using the interpolated values of pixels belonging to the same crop type, and finally (4) 

extracting the phenological indicators for each crop and season. The results obtained for the 

five aforementioned crop types are shown graphically in Fig. 9 and reported numerically in 

Table 4.

Although at first glance the temporal evolution of mean LAI profiles seems to indicate that 

each crop presents almost identical patterns throughout the multiple seasons, a more careful 

analysis of phenological indicators reveals that meaningful changes took place. For wheat, 

similar to barley, the dates of SOS/EOS determined from season 1 occurs roughly one month 

before those of season 2. They further show a reduction in LOS of about 15 and 35 days, 

respectively. Consequently, the areas derived from the profiles of season 2 are approximately 

15% lower than those of season 1. As for potato, mean LAI shows good agreement in SOS 

over the different seasons. Conversely, season 3 presents a slight decrease in LOS of around 

24 days. Also noteworthy is that season 2 stands out for being the year with the highest 

values of area (277.9 [m2/m2d]), LAI (5.6 [m2/m2])) and amplitude (3.9 [m2/m2])). For rape, 

the phenological metrics derived from the LAI time series changed significantly across the 3 
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seasons, specially in SOS with values ranging from 264 to 348 DOY. This crop also exhibits 

the shortest growing season (217 days) and the largest area (339.3) at season 2. Finally, the 

temporal course of beet shows good agreement in SOS/EOS, with differences less than 13%. 

Contrarily, a substantial mismatch exists in DOM where the fluctuation of measured value 

lies between 192 and 258 DOY.

The explanation of the seasonal variability of crop temporal patterns is not straightforward 

as they are deeply related to the weather evolution during each crop season in terms of 

temperature fluctuations and precipitation events. Effects from climate change are leading to 

a general increase of temperature and a reduction of the number of rain events, with extreme 

precipitations always more frequent and severe. Because of the sensitivity of agriculture to 

the variations of weather and climate conditions, they are likely to have substantial direct 

and indirect effects on crop production and yield. Therefore, easy monitoring of changes in 

vegetation phenology becomes critical to assess alteration of land ecosystem productivity 

and seasonal variations.

5 Discussion

Having outlined the key modules of DATimeS, some general reflections are worth 

mentioning. A first aspect is the streamlined, modular processing of the toolbox. The 

required steps are essentially loading the time series, drawing a subset, selecting the 

interpolation to run and choosing the date to reconstruct an image. The data filling does 

not have to be restricted to LAI or another vegetation property. Phenological studies are 

typically carried out with spectral indicators such as NDVI, but in a broader context, any 

kind of continuous data can be processed, including proximal sensing time series (Guo et 

al., 2019; Marino and Alvino, 2014) coming from flux towers (Gamon, 2015)), land surface 

temperature (Li et al., 2013) or microwave acquisitions (Marzahn et al., 2012).

Besides, the inclusion of machine learning fitting methods provides a benchmark as 

opposed to conventional gap-filling methods. Not only may it lead to more accurate 

reconstructions (Table 3), it is also adaptive towards unevenly spaced data over multiple 

seasons. Particularly GPR is of interest, as its associated uncertainty estimates provides 

per-pixel information of the gap-filling confidence. Typically, the longer the gap between 

two consecutive input samples, the higher the uncertainty. However, the provided gap-

filling techniques offer different performances. Each method has its own advantages and 

drawbacks, which depend strongly on the characteristics of the input time series (Atzberger 

and Eilers, 2011; Zeng et al., 2020), i.e. a method that fits well with some data can be 

unsuited for a different set of data points. This implies that GPR is not necessary top 

performing in all situations, and in other situations alternative gap-filling methods could 

achieve more efficient performances. For that reason, it is recommended to analyze first 

the behaviour of the fitting methods on single pixels (e.g., as detailed in section 4.2). For 

instance, conventional harmonic analysis is only suitable for stationary data, and without 

aperiodic extreme behaviors. Contrarily, MLRA algorithms are effective to account for the 

amplitude and phase time variability.
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Concerning the appropriate length of time series, even if there is no limit of amount of 

data, the accuracy of the time series reconstruction increases with the data size. The main 

limitation of the interpolation module is the high time consuming and computational cost of 

specific algorithms; especially NN but also the double logistic curve.

The toolbox is expected to be practical for a wide range of users interested in 

detecting vegetation phenology. Specifically, a comprehensive familiarity of crop dynamics 

is essential in agricultural applications whereby the phenological indicators can be 

related to essential sources of information including start of senescing, harvest day, 

productivity estimates, irrigation management, nutrient management, health management, 

yield prediction and crop type mapping (Alam et al., 2012; Jayawardhana and Chathurange, 

2016). An example of such variability has been provided in section 4.3 (Table 4 and Fig. 9), 

where fluctuations of a specific crop are evident along consecutive seasons. They are likely 

generated by changes in precipitation, insect pests, plant diseases, or even by a changing 

climate. Nonetheless, these are complex dynamics that need to be studied further.

Finally, despite that DATimeS is written in MATLAB, additional methodologies as multi-

sensor fusion (Pipia et al., 2019) based on open-source Python package (GPy, 2012) 

(Warmerdam, 2008) will be added to the Matlab-based GUI in the future release. For that, a 

basic Python distribution will be also included in the installing package.

6 Conclusions and future work

The presented DATimeS is a stand-alone toolbox for time series analysis that brings together 

versatile MLRA algorithms and conventional interpolation techniques (e.g., harmonic 

analyses, double logistic curve, among others). DATimeS aims to be a generic and 

innovative time series toolbox that provides sufficient flexibility to capture the principal 

vegetation features without imposing too heavy computational or inferential burdens, for 

gap-filling and subsequent phenological analysis. In comparison to other GUI times series 

toolboxes, DATimeS is state of the art, through the: (1) ability to process unevenly spaced 

satellite image time series, (2) possibility to select over twelve different machine learning 

fitting methods for time series prediction (some methods include associated uncertainties, 

e.g. GPR), and (3) provision and analysis of phenological indicators over multiple growing 

seasons. The preliminary assessment of the multiple interpolation methods using Sentinel-2 

LAI time series demonstrated the potential of GPR as optimum algorithm to successfully 

reconstruct vegetation indices and retrieve reliable phenological indicators.

At the same time, DATimeS keeps being improved and extended in various ways. The 

following upgrades are in the pipeline: new supported image formats (e.g. NetCDF and the 

native format of Sentinel imagery JPEG2000), more phenological indicators (e.g. growth 

rate between SOS and maximum value for each individual season), aggregated processing 

on a per-field scale when a land cover map is loaded, and latest tools related to harvest 

trends and automatic disturbances detection. We also foresee that more conventional and 

latest gap-filling methods will be implemented, such as Whittaker smoother (Eilers, 2003) 

and Multi-Output Gaussian Process regression (MOGP) (Álvarez et al., 2012) The latter 

is a cutting-edge machine learning tool which is able to stress the dependencies among 
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any kind of multiple but related data collections. It could be beneficial to establish the 

synergy between vegetation descriptors from multiple sensors, e.g. fusing Sentinel-1 with 

Sentinel-2 data (Pipia et al., 2019). We also aim to provide DATimeS in batch processing 

mode as alternative to the Matlab-based GUI. First steps towards reaching these goals 

are already underway. Finally, DATimeS is made freely available to registered users 

for scientific purposes. It can be freely downloaded from the ARTMO web page: http://

artmotoolbox.com.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Hierarchical design of DATimeS.
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Fig. 2. DATimeS graphical user interface.
a) Main window of DATimeS. b) Panel designed for gap-filling. It is divided into three 

logical areas: interpolation algorithms, smoothing methods and time settings. c) Panel for 

phenological indicators estimation.
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Fig. 3. 
Evolution of mean LAI and its standard deviation (red shadow area) along the temporal 

range (left), and map of pixels of the chosen image (right). The study area is located near 

the city of Valladolid, north-west Spain, where the landscape is characterized by an intensive 

dryland agricultural system where arable land comprises up to 80% of the available area. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

Web version of this article.)
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Fig. 4. 
Original and reconstructed time series of LAI using several gap-filling techniques. The 

example applies different time settings. Interpolated values of time series at a higher 

sampling frequency (every 20 days) (top). Interpolated values are computed only for 

embedded missing values in the input time series (bottom). The GPR uncertainties are 

shown in red shade areas. (For interpretation of the references to color in this figure legend, 

the reader is referred to the Web version of this article.)
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Fig. 5. 
Automatic identification of some seasonal patterns computed in DATimeS by using the 

reconstructed LAI curve (red line) with GPR. Red shade area shows the associated GPR 

uncertainties (standard deviation). Purple and green colors indicate the areas under the curve 

between SOS/EOS (red triangles) and the left/right minimum values, respectively. Blue 

lines show approximately the length of seasons (LOS). Maximum value (MaxV), day of 

maximum value (DOM) and amplitude (Amp) are represented with orange dashed lines. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

Web version of this article.)
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Fig. 6. 
RGB image of the crop ROIs in Castile and Leon region, Northwest Iberian peninsula, 

from Sentinel 2 capture of 2016, June 26th. Pixels inside the blue region are used for the 

interpolation experiment. Pixels inside red area are used for the phenological indicators 

analysis between different crops and seasons. (For inter-pretation of the references to color 

in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 7. Schematic diagram representing the processing steps undertaken in the interpolation 
experiment.
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Fig. 8. 
Maps of phenological indicators estimated by using reconstructed Sentinel-2 LAI images 

with GPR. Spatial interpolation was only applied for pixels with no strong seasonal signal.

Belda et al. Page 27

Environ Model Softw. Author manuscript; available in PMC 2022 September 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 9. 
Modeling LAI time series of different crop types by using GPR method. The green and blue 

colors represent the area under the curve between SOS and EOS. (For interpretation of the 

references to color in this figure legend, the reader is referred to the Web version of this 

article.
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Table 1
Interpolation methods implemented in DATimeS.

INTERPOLATION METHODS

MLRA

Bagging trees (BAGTREE)

Adaptive Regression Splines (ARES)

Boosting trees (BOOST)

k-nearest neighbors regression (KNNR)

Gaussian Process Regression (GPR)

Kernel Ridge Regression (KRR)

Locally-Weighted Polynomials (LWP)

Support Vector Regression (SVR)

Neural networks (NNIPL)

Random forests (RF2)

Boosting random trees (RF1)

Structured Kernel Ridge Regression with linear Kernel (SKRRlin)

Relevance Vector Machine (RVM)

Sparse Spectrum Gaussian Process Regression (SSGPR)

Structured Kernel Ridge Regression with RBF kernel (SKRRrbf)

Decision trees (TREE)

Variational Heteroscedastic Gaussian Process Regression (VHGPR)

Harmonic Offset + Harmonic analysis

Offset + Harmonic analysis + Linear Term

Offset + Harmonic analysis + Linear Term

Offset + Harmonic Analysis using Sliding Window

Conventional Methods Linear, Polynomial, Nearest, Next, Previous, Pchip, Spline

Othters Double Logistic curve
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Table 2

Description of different smoothing methods (Press et al., 1993) included on DATimeS. Source: MathWorks.

Filter Description

Moving A low pass filter with filter coefficients equal to the reciprocal of the span.

LOWESS Local regression using weighted linear least squares and a 1st degree polynomial model.

LOESS Local regression using weighted linear least squares and a 2nd degree polynomial model.

Savitzky-Golay A generalized moving average with filter coefficients determined by an unweighted linear least-squares regression and a 
polynomial model of specified degree. The method can accept nonuniform predictor data.

RLOWESS A robust version of ‘lowess’ that assigns lower weight to outliers in the regression. The method assigns zero weight to data 
outside six mean absolute deviations.

RLOESS A robust version of ‘loess’ that assigns lower weight to outliers in the regression. The method assigns zero weight to data 
outside six mean absolute deviations.
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Table 3
Goodness-of-fit statistics and processing time for the reference vs. LAI-reconstructed map 
as produced by the gap-filling methods for 17,218 pixels.

Methods RMSE RRMSE [%] R2 Time

Total (min) Per pixel (sec)

ARES 0.500 19.387 0.041 25.533 0.089

BAGTREE 0.482 18.661 0.572 263.050 0.917

GPR 0.153 5.940 0.913 23.100 0.081

KNRR 0.522 20.216 0.137 6.883 0.024

KRR 0.187 7.230 0.826 5.450 0.019

NN 0.248 9.628 0.696 771.824 2.689

RF1 0.341 13.199 0.836 34.049 0.119

RF2 0.539 20.872 0.684 58.397 0.204

Sigmoid 0.187 7.250 0.925 313.117 1.091

Fourier1 0.360 13.961 0.338 0.383 0.001

Fourier2 0.351 13.597 0.380 0.413 0.001

Fourier3 0.350 13.549 0.389 0.226 0.001

Next 0.539 20.872 0.684 0.317 0.001

Polyfit 0.492 19.056 0.002 0.467 0.002

Previous 0.472 18.283 0.849 0.333 0.001

Spline 0.158 6.121 0.896 0.333 0.001
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Table 4
The phenological metrics derived from the mean LAI of different crop types (wheat, 
barley, colza, beet and potato) between November 2015 to September 2019.

Crop type Season SOS EOS LOS DOM Max Value Amp Area

Wheat
1 273 (29-09-2016) 180 (29-06-2017) 273 102 (12-04-2017) 3.320 1.869 268.065

2 307 (03-11-2017) 200 (19-07-2018) 258 137 (17-05-2018) 3.627 1.936 231.180

Barley
1 268 (24-09-2016) 169 (18-06-2017) 267 102 (12-04-2017) 3.439 1.928 234.089

2 329 (25-11-2017) 196 (15-07-2018) 232 127 (07-05-2018) 3.733 1.975 198.765

Rape

1 264 (20-09-2016) 175 (24-06-2017) 276 102 (12-04-2017) 3.502 2.053 299.794

2 348 (14-12-2017) 200 (19-07-2018) 217 147 (27-05-2018) 4.121 2.483 339.334

3 309 (05-11-2018) 200 (19-07-2019) 256 152 (01-06-2019) 3.524 1.920 221.604

Beet

1 126 (05-05-2016) 333 (28-11-2016) 207 258 (14-09-2016) 5.487 3.691 507.208

2 119 (29-04-2017) 341 (07-12-2017) 222 192 (11-07-2017) 5.464 3.717 581.870

3 137 (17-05-2018) 350 (16-12-2018) 213 207 (26-07-2018) 5.126 3.278 441.477

Potato

1 158 (06-06-2016) 273 (29-09-2016) 115 208 (26-07-2016) 5.078 3.343 241.555

2 148 (28-05-2017) 261 (18-09-2017) 113 202 (21-07-2017) 5.614 3.900 277.928

3 156 (05-06-2018) 245 (02-09-2018) 90 197 (16-07-2018) 5.340 3.456 195.900
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