Skip to main content
. Author manuscript; available in PMC: 2022 Sep 7.
Published in final edited form as: Environ Model Softw. 2020 Mar 10;127:104666. doi: 10.1016/j.envsoft.2020.104666

Table 1. Interpolation methods implemented in DATimeS.

INTERPOLATION METHODS
MLRA Bagging trees (BAGTREE)
Adaptive Regression Splines (ARES)
Boosting trees (BOOST)
k-nearest neighbors regression (KNNR)
Gaussian Process Regression (GPR)
Kernel Ridge Regression (KRR)
Locally-Weighted Polynomials (LWP)
Support Vector Regression (SVR)
Neural networks (NNIPL)
Random forests (RF2)
Boosting random trees (RF1)
Structured Kernel Ridge Regression with linear Kernel (SKRRlin)
Relevance Vector Machine (RVM)
Sparse Spectrum Gaussian Process Regression (SSGPR)
Structured Kernel Ridge Regression with RBF kernel (SKRRrbf)
Decision trees (TREE)
Variational Heteroscedastic Gaussian Process Regression (VHGPR)
Harmonic Offset + Harmonic analysis
Offset + Harmonic analysis + Linear Term
Offset + Harmonic analysis + Linear Term
Offset + Harmonic Analysis using Sliding Window
Conventional Methods Linear, Polynomial, Nearest, Next, Previous, Pchip, Spline
Othters Double Logistic curve