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Abstract

All organisms are subjected each day to changes in the light intensity generated by the Earth’s 

rotation around its own axis. To anticipate this geo-physical variability, and to appropriately 

respond biochemically, most species, including mammals, have evolved an approximate 24-hour 

endogenous timing mechanism known as the circadian clock (CC). The ‘clock’ is self-sustained, 

cell autonomous and present in every cell type. At the core of the clock resides the CC-oscillator, 

an exquisitely crafted transcriptional-translational feedback system. Remarkably, components of 

the CC-oscillator not only maintain daily rhythmicity of their own synthesis, but also generate 

temporal variability in the expression levels of numerous target genes through transcriptional, 

post-transcriptional and post-translational mechanisms, thus, ensuring proper chronological 

coordination in the functioning of cells, tissues and organs, including the liver. Indeed, a 

variety of physiologically critical hepatic functions and cellular processes are CC-controlled. 

It is not surprising then, that the modern lifestyle (e.g. travel and jet lag, night and rotating 

shift work), which force ‘circadian misalignment’ have emerged as major contributors to global 

health problems including obesity, non-alcoholic fatty liver disease (NAFLD) and steatohepatitis 

(NASH). Here, we provide an overview of the CC-dependent pathways which play critical roles 

in mediating several hepatic functions under physiological conditions and, whose deregulations are 

implicated in chronic liver disease including NASH and alcoholic liver disease (ALD).

Introduction

The word circadian is Latin in origin, and translates to ‘about a day’, hence, oscillations of 

~24 hours are referred as circadian rhythms. These rhythms are generated by the Earth’s 

24 hours rotation, which, in turn drives the light-dark cycle. This daily change in the light 
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intensity leads to overt rest-activity and feeding-fasting cycles, e.g. human beings are diurnal 

and conduct most of their activities during the day and rest at night. Teleologically, these 

rhythms have allowed organisms to anticipate changes in the external environment (e.g. 

the light-dark cycle), and to respond by adjusting CC-driven physiological functions, e.g. 

metabolism (1–7). Accordingly, the CC-controlled behavioral synchronization with feeding-

fasting cycles generates diurnal variations in metabolic activities, which, in turn, ensures 

energy homeostasis. Recent investigations have established that, in mammals, the expression 

of numerous genes in different organs (including the liver) display circadian rhythmicity, 

which enables regulation of both anabolism and catabolism (1–6). Indeed, hepatocyte 

activities such as nutrient uptake, processing, assimilation and detoxification exhibit 

remarkable diurnal variations, which enable their alignment with food availability and 

energetic demand. Physiologically these ‘metabolic rhythms’ are generated and maintained 

by the dynamic interactions between the CC and timing cues e.g. light and food (time of 

eating and its quality). However, our modern lifestyle (jet lag, shift-work, energy-dense 

foods etc.), which often ‘misaligns’ CC functioning has recently emerged as prominent 

contributors to different metabolic diseases and carcinogenesis (8–13).

Here, we focus on how the CC regulates hepatic metabolism to maintain homeostasis and, 

also provide an overview of how deregulation of CC-controlled pathways could lead to the 

development of non-alcoholic fatty liver (NAFL) and its progression to NASH. Furthermore, 

we also discuss evidences linking the CC and alcohol-induced liver disease (ALD).

The anatomic and molecular organization of the mammalian CC-system

Retinal photoreceptors (rods and cones) transform photic energy to electrical impulses and 

convey them to the brain through retinal ganglion cells (RGC). A subset of RGCs expressing 

the photopigment melanopsin are intrinsically sensitive to the visible spectrum and directly 

relay the photic signal to a hypothalamic region called the suprachiasmatic nucleus (SCN) 
(7–8). Hence, anatomically, the mammalian circadian system is hierarchical, whereby the 

light-entrained SCN is the ‘central’ CC. In turn, the SCN-CC by utilizing humoral and 

neuronal mechanisms communicates the ‘time cue’ (a. k. a; ‘Zeitgeber’; ZT) to other organs, 

thereby enabling the synchronization of peripheral CCs (PCCs) (1–8).

At the molecular level, the components of the central SCN and PCCs are the same and 

are identically organized in multiple transcriptional-translational feedback systems (Figure 

1) and generate a cell autonomous self-sustained CC-oscillator with a periodicity of ~24 

hours (1–6). The heart of this oscillator is constituted by a heterodimer of transcription factors 

(TFs), the Brain and Muscle ARNTL-Like protein1 (BMAL1) associated with the Circadian 

Locomotor Output Cycles Kaput (CLOCK), which activate genes containing E-Box DNA 

Binding Sequences (DBS) in their promoter-enhancer regions, including those of Period 
(Per1, Per2) and Cryptochrome (Cry1, Cry2) genes. In turn, PER1/2 and CRY1/2 proteins 

heterodimerize to inhibit the transcriptional activity of the BMAL1/CLOCK-complex (the 

first-loop of the oscillator), thereby eventually suppressing their own expression (Figure 

1). BMAL1/CLOCK-also binds to the E-Box DBSs present in the genes of the nuclear 

receptors Rev-Erbα and Rev-Erbβ to activate their transcription, while the presence of 

RORE DBSs in the Rev-Erbα/β genes mediate their autorepression. REV-ERBs also 
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inhibit (through RORE DBSs) the transcription of their activators Bmal1 and Clock, thus 

constituting the second-loop of the CC-oscillator. At the beginning of the active phase, 

levels of REV-ERBs (which are repressors of transcription) decrease, while simultaneously 

protein levels of transcriptional activators RORα/γ increase, which then bind to RORE 

DBSs present in Bmal1 and Clock and activate their transcription, thereby initiating the 

next round of CC oscillation. Additionally, BMAL1/CLOCK-induces expression of the 

transactivator D-Box binding protein (Dbp). The DBP activator and the E4BP4 repressor 

(which is activated by RORα/γ and repressed by REV-ERBα) competes for binding to 

D-Box DBSs present in several CC-controlled genes (CCGs).These inter-connected feed-

back loops generate circadian oscillations of the expression of ~20% of the genome, 

such that CCGs containing RORE DBS are transcribed during the active phase, while 

E-Box and D-Box DBS-bearing genes are expressed during the rest phase(1–6,14). Moreover, 

post-translational modifications of CC-components also aids in further fine-tuning of the 

CC-oscillator functioning. Thus, utilizing multiple mechanisms the CC-oscillator drives a 

temporally-restricted gene expression pattern, which lies at the core of generating distinct 

biochemical outputs in individual organs.

Feeding cycles and peripheral clocks

Establishment of feeding cycles as the prominent zeitgeber for peripheral tissues, including 

the liver (15–16), has revealed the existence of extensive cross-talk between metabolism 

and the CC, and the list of mechanisms through which metabolic signals influence CC 

functioning and, vice versa, are increasing rapidly (1–5). The dominance of feeding cycles 

on the liver-clock was demonstrated in ‘arrhythmic’ Cry1/2 mutant mice, in which an 

imposed feeding regime recovered ‘rhythmicity’ in circadian gene expression pattern 
(17). Furthermore, changing the feeding time from active to rest phases in mice shifts 

the PCCs by ~12 hours (15–16), driven by metabolic alterations acting through PPARα 
and CREB (18). Notably, high-fat diet (HFD)-induced ‘reprogramming’ of the hepatic 

CC (19) can be prevented by restricting HFD feeding during the active phase (20). 

One physiological example of CC-metabolism crosstalk is provided by BMAL1/CLOCK-

dependent transcription of the nicotinamide phosphoribosyl transferase (NAMPT) gene, 

which is involved in NAD+ synthesis (21–22). CC-dictated NAMPT expression ensures not 

only a rhythmicity in NAD+ synthesis but also regulates the activities of NAD+ -dependent 

proteins (1–5), e.g. the SIRT1 deacetylase and the ADP-ribosyltransferase PARP-1. In turn, 

SIRT1 determines: (i) the activity of BMAL1/CLOCK-complex towards their target genes 

and, (ii) the stability of PER2 protein, which together maintain CC-oscillator functioning 
(1–5). Akin to NAD+, feedback regulation between the CC and heme biosynthesis has also 

been demonstrated (23–24). Thus, by controlling metabolite sensors (NAD+, heme etc.), the 

CC gauges the cellular energetic and redox status to reset the oscillator with metabolism. 

Altogether, these investigations have established metabolism as a critical modulator of 

PCCs.

Circadian regulation of hepatic functions

Given the centrality of the liver in maintaining whole-body physiology, several 

high-throughput circadian time-course studies have been performed in mouse models 

investigating cistrome (25–28), transcriptome (29–30), proteome (31–33), and lipidome (34–35). 
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Circadian transcriptome analyses have revealed two broad crests of transcription in liver, 

corresponding to the transition between successive active and rest phases (1–5). Cistromic 

analyses (25–28) revealed that these two distinct mRNA repertoires are generated due to the 

rhythmicity of the CC-oscillator, which enables periodic recruitment/removal of TFs and 

coregulators to epigenetically alter the chromatin landscape of CCGs. Cellular processes 

like DNA repair, ribosome biogenesis, autophagy, ER-stress are also subjected to circadian 

regulation, but mainly at the post-translational level (31–33). Altogether, these investigations 

have revealed an unprecedented level of CC-control on hepatic physiology (Figure 2). 

Importantly. deregulation of these CC-regulated pathways/processes has been shown to 

contribute to the development of NAFLD and other diseases.

The circadian clock and pathophysiology of NAFLD and NASH

Over the last decades, life-style changes have shifted health care priorities world-wide from 

infectious to metabolic diseases (36–38). In the context of liver disease, vaccination can now 

prevent hepatitis B virus (HBV) infection and antivirals can control chronic HBV infection 
(39–40,43), and recently developed direct-acting antivirals can cure chronic hepatitis C virus 

in a large majority of infected patients (41–43). In contrast, the prevalence of metabolic 

liver diseases such as NAFL and NASH are increasing dramatically in conjunction with 

obesity and type II diabetes (36–38,44). NAFLD, is a continuous spectrum of disease initiated 

by excessive triglyceride (TG) accumulation in the liver. In the absence of concomitant 

inflammation and hepatocytic injury, this state is largely benign and commonly referred 

as nonalcoholic fatty liver (NAFL) or simple steatosis (36–38, 45). However, chronic NAFL 

usually drives simple steatosis to steatohepatitis (NASH), which is typified by concomitant 

presence of both lobular inflammation and hepatocellular damage (ballooning). Moreover, 

NASH predisposes to fibrosis, progressing to cirrhosis and hepatocellular carcinoma (HCC) 
(36–38). Like every other aspect of the metabolic syndrome, development of NAFLD and 

NASH is highly complex which has been reviewed extensively elsewhere (36–38,46–48). 

Almost two decades earlier the ‘two-hit’ theory (49) was posited to explain NASH 

pathogenesis. This theory proclaimed that unrestrained TG deposition in the liver (first-

hit; NAFL) leads to ‘secondary hits’ such as oxidative stress, which ultimately leads to 

NASH. However, with increasing knowledge of metabolism and associated pathologies, 

NAFLD is now considered as a multi-factorial systemic metabolic disorder (36–38). Indeed, 

investigations have revealed crucial roles for intestine, adipose tissue and muscle in NAFLD 

development. Importantly, insulin resistance also plays a critical, if not indispensable role in 

NAFLD (36,38,45).

Systemic energy homeostasis is maintained by communications between numerous intra- 

and inter-organ signaling networks and at the core of NAFLD pathogenesis lies the inability 

of the liver to effectively metabolize carbohydrates and fatty acids (36–38, 50). The pathology 

of NAFLD is generally initiated by perturbations in free fatty acid (FFA) metabolism, 

which drives excessive TG accumulation in hepatocytes (36–37). Increased FFA release from 

adipocytes due to insulin resistance (51) and conversion of excess carbohydrates to FFA 

via hepatic de novo lipogenesis (DNL) (52) are two major sources of TG deposition during 

NAFLD development, in addition to excess caloric intake. In hepatocytes, FFA can either 

undergo β-oxidation or be re-esterified as TG. In turn, this pool of TG can either be exported 
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as VLDL particles or stored in lipid droplets (36–38). The capacity to metabolize FFA 

through either β-oxidation or TG formation when overwhelmed (perturbation of dynamic 

lipid fluxes), leads to the accumulation of lipotoxic species. This buildup of lipotoxic 

molecules in turn damages hepatocytes through several pathways; e.g. enhanced ERand 

oxidative-stress, a dysfunctional unfolded protein response (UPR), and inflammosome 

activation to finally lead to NAFLD development (37,50,53–54). In the subsequent sections 

we describe some of these hepatic functions and processes which show diurnal variations 

and whose deregulation could predispose towards NAFLD/NASH (Figure 3).

Circadian control of glucose metabolism

The liver is the principal gluconeogenic organ in mammals, and participates, along with 

several other organs, to maintain homeostatic blood glucose levels. The CC sustains 

the physiological levels of blood glucose by synchronizing tissue-specific mechanisms 

of glucose metabolism. Accordingly, the SCN-clock controls the feeding/fasting rhythms, 

while PCCs (liver, pancreatic β-cells, skeletal muscles) drive temporally coordinated gene 

expression programs to maintain physiological levels of glucose in blood (55).

One of the first studies indicating a role for the liver-CC-oscillator in glucose metabolism 

showed that Bmal1 ablation in hepatocytes reduced expression of the glucose transporter 

(Glut2), leading to a decreased post-absorptive glucose uptake in mutant mice (56). Post-

hepatocytic entry, glucose is phosphorylated to glucose-6-phosphate (G6P), which can be 

either used (through glycolysis or hexose monophosphate pathway) or stored (glycogen 

synthesis). Remarkably, the CC influences all these processes (2,6). For example, the 

hepatic expression of glucokinase (Gck), which controls both glycolysis and glycogen 

synthesis is rhythmic reaching its zenith during the transition from the rest-phase to the 

active-phase (17, 57) and temporally matches the surge of postprandial insulin secretion 

from the pancreas. This increase in insulin secretion also leads to a pulsatile glycogen 

synthase kinase 3 (GSK3) activity in liver (17), which, in turn, determines: (i) the enzymatic 

activity of glycogen synthase, (ii) the activity of the glycosylating enzyme O-linked N-

acetylglucosamine transferase (OGT), thereby, generating rhythmicity in the glycosylation 

levels of numerous proteins (58) and, (iii) the stability of REV-ERBα (2,4), which in turn 

dictates the expression of many CCGs. By controlling the expression of trans-activators 

Klf10 (59) and Hnf4α (60), the liver-CC further dictates transcription of several genes, which 

are involved in glucose metabolism.

The CC also controls glucagon-induced gluconeogenesis in liver by regulating the duration 

of hepatic cAMP production (61). It was demonstrated that the interaction of the CC-

component CRY1 with the regulatory α-subunit of the glucagon receptor blocks hepatic 

cAMP accumulation during the circadian active phase, thus leading to a temporally-

restricted (between rest- and active-phases) activation of the gluconeogenic transcription 

factor CREB (55,61). Moreover, BMAL1-regulates the expression of the Pgc1α gene (62), 

which is a coactivator of the gluconeogenic transcription program (2–4). Thus, by employing 

multiple strategies the CC controls diverse mechanisms which co-operate to maintain 

physiological glucose levels (1–5, 55).
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Circadian regulation of liver lipid metabolism

In a seminal study, Turek et al. (63) demonstrated that Clock mutant mice are obese and have 

increased blood levels of cholesterol and TG. Since then, multiple genetic studies in mice 

models have established the CC as a critical regulator of lipid metabolism (64–66). Indeed, 

plasma levels of FFA, TG and cholesterol display diurnal variations, and are altered upon 

mutations of CC-components. Notably, the liver plays a crucial role in generating these 

variations in blood levels. Indeed, hepatocyte-specific ablation of Rev-Erbα/β was found to 

increase plasma levels of FFA, TG and cholesterol (27,66)· In this regard, a lipidomic study 

revealed that TG, phosphatidyl inositol and phosphatidyl choline preferentially accumulate 

in mouse liver during the rest phase (35). Mechanistically, the CC controls enzymes that are 

critically involved in regulating various steps of lipid metabolism. As example, expression 

of the enzyme ATP citrate lyase, which drives mitochondrial export of acetyl Coenzyme A 

(acetyl CoA), is maximal at the beginning of the active phase (17). Cytosolic acetyl CoA is 

carboxylated by acetyl CoA carboxylase (ACC1) to generate malonyl CoA an essential step 

in fatty acid synthesis. It is well known that AMPK inactivates ACC by phosphorylation 
(2–4), and CCs by controlling AMPK ‘temporally gate’ ACC activity (67). Furthermore, 

the liver CC by controlling the transcription of Elovl3, Elovl6, Fas etc. ‘times’ fatty acid 

synthesis (2–6). Moreover, the expression of enzymes regulating β-oxidation (Cpt1/2) and 

ketone-body production (Hmgcs2) (68–69), as well as their transcriptional regulators PPAR α 
and δ are also circadian in nature (60).

Hepatic TG synthesis from glycerol-3-phosphate is a multistep process and expression of 

several genes (Gpat2, Agpat1/2, Lipin1/2 and Dgat2) that regulate successive steps of TG 

synthesis is circadian in nature (35). Importantly, by controlling the transcription of Pnpla3 
the CC also regulates lipid droplet dynamics (35). Altogether, in ad libitum fed mice livers, 

a prominent crest and trough of TG levels are observed during the rest (~ZT8) and active 

phases (~ZT2O). Additionally, REV-ERBα-controlled expression of Insig2 regulates the 

activity of SREBP1c, thereby leading to CC-command over lipogenesis (70).

Clock and metabolism of bile acids

Intestinal absorption of lipids requires bile acids (BA), which are synthesized in hepatocytes. 

Besides lipid absorption, recent evidences have established BA as signaling molecules 
(71–72). BA are physiological ligands for FXR and the G-protein coupled receptor TGR5 

and can activate signaling modules such as the MAPK-pathway (71–72). By regulating these 

diverse signaling networks, BA not only control their own levels but also those of TG, 

cholesterol and glucose homeostasis (71–72). BA synthesis is controlled by a transcriptional 

feed-back loop consisting of the nuclear receptors FXR and SHP and hormone FGF15 

(FGF19 in humans) (38,73). Hepatic expressions of both FXR and SHP (60) and the intestinal 

secretion of FGF15 are ‘clock’-gated (74), which, together, drive the circadian transcription 

of cholesterol 7α-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classical BA 

synthesis pathway. Moreover, the CC-output regulator DBP controls Cyp7a1 transcription 

to restrict its temporal expression (75). Additionally, by regulating the transcription of both 

E4BP4 and SHP, REV-ERBα directly regulates the expression of Cyp7a1. (76) Altogether, 

these mechanisms cooperatively generate diurnal rhythmicity in BA levels (Figure 3), which 

is also observed in humans (77).
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Clock-controlled cellular processes and NAFLD

Along with controlling systemic metabolism (2–5), several investigations have indicated a 

critical role for the CC-machinery in regulating autophagy, ER stress and oxidative stress 
(78–80), all of which may participate in NAFLD and in its transition to NASH (36–37). 

For example, in murine livers, expression of key genes controlling different steps of the 

autophagic process display circadian rhythms, thereby leading to an overall diurnal rhythm 

in autophagic activity (78–79). Consistently, hepatocytic mutation of Bmal1 impairs the entire 

autophagic process in murine liver. The CC also modulates the ER stress-induced activation 

of the UPR-driven gene expression program (78,80). Physiologically, the UPR is necessary 

to restore cellular secretory capacity following an accumulation of misfolded proteins 

in the ER and functions by degrading unfolded proteins and activating the expression 

of chaperones which enable protein folding (81). The CC by generating ultradian (lesser 

than a day) rhythms in the expression of UPR master regulators i.e. the inositol-requiring 

enzyme1α (IRE1α) and the X-box binding protein1 (XBP1) controls the expression of 

several genes within the UPR pathway (78,80). Moreover, by regulating activation of the 

transcription factor CREBH (82) and expression of the deadenylase CPEB4 (83), the CC 

extends control over the ER-stress response pathway. Deregulation in reactive oxygen 

species (ROS)production and scavenging have been implicated in the development of 

NAFLD and NASH. To avoid the dangers of excessive ROS levels, cells are dependent 

on anti-oxidant enzymes. Interestingly, expressions and activities of several enzymes, e.g. 

glutathione reductase, superoxide dismutase, glutathione peroxidase and peroxiredoxins 

display CC-controlled diurnal rhythms (84–85). Consistently, in peripheral tissues levels of 

ROS as well as peroxidized lipids/proteins vary per the light-dark cycle (86). Thus, it is 

evident that the ‘clock’ plays a remarkable role in regulating several cellular processes 

where deregulation have been strongly implicated in chronic liver diseases (Figure 3).

Circadian clock, nuclear receptors (NRs) and NAFLD

The nuclear receptor (NR) superfamily which comprises 48 members in humans, control 

diverse aspects of physiology including metabolism (87–89). NRs are transcription factors, 

which upon ligand (natural and synthetic) binding drive gene expression programs, amongst 

whom are pathways controlling metabolism. Investigation of the circadian expression 

patterns of all NRs in four mice tissues, including, the liver (60), revealed that at least 

20 of the 41 transcribed NR in the murine liver are expressed in a circadian manner 

thereby providing a possible molecular link between the clock, NRs, and metabolism. 

In the liver, NRs control a broad range of crucial hepatic functions and are prominently 

implicated in NAFLD development (38,88–89). Here, we briefly discuss a few of these NRs 

that are not only known to be regulated by the ‘clock’ but also have emerged as therapeutic 

targets for NAFLD (see below). PPARα regulates β-oxidation and ketogenesis (90) and 

plays a prominent role in inflammation by trans-repressing NF-κB and AP-1 pathways 
(91). Importantly, genetic studies in mice indicate that through this trans-repressive activity 

PPARα can prevent fibrosis development which is a crucial event in NASH pathogenesis 
(91). Ligand activation of PPARβ/δ (which plays a prominent role in lipid catabolism) 

also prevents hepatic fibrogenesis (92). The Liver X receptors (LXRs) are transcriptional 

regulators of cholesterol metabolism and hepatic lipogenesis, and LXR activation lowers 

atherosclerosis by enhancing reverse cholesterol transport (89). Whereas LXR could be a 
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possible antifibrotic target (93), LXR-activation enhances lipogenesis due to LXR-induced 

activation of SREBP1c activity (93). Lastly, with the establishment of pleiotropic roles of 

BAs in metabolic regulation, FXR has gained considerable attention as a therapeutic target 

for NAFLD (see below). Indeed, hepatic FXR activation reduces lipogenesis and improves 

fibrosis (72).

Clock, gut microbiota and NAFLD

Besides liver-restricted functions and processes, extrahepatic tissues also play a crucial role 

in NAFLD. Obesity-associated alterations in the gut microbiota (i.e., dysbiosis) composition 

and their interactions with the host (intestinal epithelial cells; IEC) have been implicated 

as an etiological agent in the pathogenesis of metabolic diseases, including NAFLD (94–97). 

A mechanism through which changes in gut microbiota composition may promote NAFLD 

is through increased LPS production and delivery to the liver via the portal circulation 
(98–99). In turn, microbiota-derived LPS can perturb hepatic lipid metabolism by modulating 

the production of short-chain fatty acids and altering the BA pool composition (99), which 

may influence intestinal and hepatic FXR activity, thus affecting both glucose and lipid 

homeostasis (99). Remarkably, the CC by regulating the expression of microbial pattern 

recognition receptors (e.g. TLRs, NOD2) provides a ‘temporal window’ during which 

microbiota-signals regulate gene expression to maintain homeostasis (100). Interestingly, the 

gut microbiota also displays ‘clock’-controlled diurnal rhythmicity (101–102). Consistently, 

circadian perturbations (mutation of CC-components or jet lag) lead to dysbiosis and 

development of metabolic pathologies (101). Furthermore, mutation of innate immune genes 

(Tlr5, Nlrp6, Nlrp3) which play pivotal roles in sensing gut microbiota, modulate metabolic 

pathologies, including NAFL(95).

Chronopharmacology: detoxification, pharmacokinetics, and dynamics

Considering its overall influence on physiology, it is hardly surprising that clinically relevant 

pharmacological aspects, e.g. pharmacokinetics (PK) and pharmacodynamics (PD), of many 

drugs are also governed by the ‘clock’, thereby introducing circadian variations in drug 

metabolism/detoxification and efficacy (84,103). One of the most prominent examples of 

circadian control over pharmacology emerges from its ability to regulate almost every 

step of xenobiotic detoxification in the liver, including absorption, biotransformation and 

elimination (84,103–104). Notably, in humans, hepatic absorption of lipophilic drugs occurs 

more swiftly in the morning than in the evening (103). Consistently, expression of several 

transport proteins which mediate xenobiotic uptake e.g. cationic and anionic transporters 

(Oct-1, Oatp1, Oatp1a4 etc.) display circadian rhythmicity (103). Classically, xenobiotic 

metabolism is grouped into three (I, II, and III) phases. Phase I involves biochemical 

modification of substrates by the CYP450 superfamily of enzymes. Importantly, transcript 

levels of several members (Cyp2a4, Cyp2a5, Cyp2b10, Cyp2e1, Cyp3a11 etc.) of this family 

are rhythmic, attaining in mouse liver their peak during the rest phase (84,104). In phase II, 

xenobiotics are rendered hydrophilic by conjugation to various small molecules.

Notably, phase II controlling genes (Sult1c1, Sult1d1, Gsta1, Gsta2 etc.) are also 

expressed in a circadian manner. The excretion of xenobiotics (phase III) is controlled 

by different transporter proteins, and several of them (Mrp2, Mdr2, Abcg2, Abcc2 etc.) 
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oscillate rhythmically in the mouse liver. This pervasive circadian control of all these 

phases is molecularly achieved by hepatic CC-driven regulation of TFs, enzymes and 

transport proteins participating in the detoxification process (84,104). Hepatic expression 

of TFs (PXR, CAR and AhR), which bind and metabolize xenobiotics, is rhythmic (60). 

Moreover, CC-components (RORα/γ) and CC-output regulators (DBP, HLF and TEF) 

also transcriptionally regulate the detoxification process (105–106). Accordingly, mice with 

ablation of the Dbp, Hlf and Tef genes exhibit widespread deficiencies in both basal and 

inducible detoxification processes (106).

Circadian control of ‘pharmacology’ extends beyond the liver and has been reviewed 

elsewhere (84,107). ‘Timing’ is of crucial but less-appreciated factor in drug efficacy. Indeed, 

56 of the top 100 best-selling drugs in the USA target the product of a circadian gene (108). 

However, most of them are yet to be associated and dosed as per the circadian rhythm. 

Importantly, clock perturbations resulting from HFD feeding can be rescued by ‘properly-

timed’ pharmacological interventions (109). Taken together, recent studies (although many 

in rodent models) suggest that it will be highly prudent to investigate the mechanistic basis 

of circadian variations in PK/PD, in order to include a ‘circadian’ component for better 

therapeutic outcomes (84,107).

Therapeutic impact: CC and pharmacological targeting of NAFLD

While licensed pharmacological therapies are not yet available(36–38), a larger number of 

approaches and compounds are in preclinical and clinical development. Most therapeutic 

strategies aim to decrease inflammation, fibrosis, and metabolic substrate availability or 

to increase their disposal from the liver. Weight loss management or bariatric surgery 

not only improves NASH, but can also induce fibrosis regression (38, 110). Considering 

the key impact of CC-control in regulation of metabolism, it is likely that the molecular 

targets of several drug candidates are CC-regulated. For example, obeticholic acid (INT-747) 

which activates FXR, reverses histological features of NASH (111) and the CC is well 

known to control BA metabolism. Interestingly, FGF19 which is rhythmically secreted 

from intestine (post-feeding) has efficacy in murine models of NASH (112). Importantly, 

treatment with the FGF19 analog NGM282 reduces hepatic fat content in NASH patients 
(113). The CC-regulated NRs PPAR-α/β are activated by elafibranor (currently in phase 

3 trial), which enhances lipid metabolism, insulin sensitivity and reduces inflammation 
(114). Furthermore, FGF21, a direct transcriptional target of PPARα reduces steatosis (37). 

Significantly, some other potential NASH-modulating compounds (37–38), e.g. resveratrol 

(SIRT1-agonist), inhibitors of acetyl-CoA carboxylase (ACC) and FAS, further strengthen 

the CC-connection to therapeutics.

The intimate relationship between metabolism and the CC, as well as the amenability of the 

CC-oscillator to a variety of ‘resetting’ signals (1–7), has spurred investigations to explore 

the potential of ‘clock’ modulating small molecules as a possible treatment for metabolic 

disorders (115–118). Using high-throughput phenotypic screening or medicinal chemistry 

approaches several molecules affecting the affect circadian period, phase and/or amplitude 

have been identified (115–118). Consistent with the molecular-genetic studies revealing a 

regulatory role for PERs and CRYs in CC-functioning, several compounds have been found 
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to affect their levels and alter (mostly lengthening) circadian periods (115–117). One such 

compound, KL001 was found to bind CRY proteins which prevented their ubiquitination and 

proteasomal degradation (116,119). Consistent with the known role of CRYs in suppressing 

gluconeogenesis, KL001 administration was shown to improve glucose tolerance in diet-

induced obese (DIO) mice (116,120). Recent investigations have also identified several 

modulators of CC-components RORα/γ and REV-ERBα/β with therapeutic potential in 

animal models of metabolic disorders (116–118). In this regard, agonists of REV-ERBs; e.g., 

SR9009 and SR9011 (121), and an inverse ROR agonist of (SR1555) (122) were found to 

improve several metabolic parameters in DIO mice. Amongst identified ROR modulators 

nobiletin (NOB) was demonstrated to enhance the amplitude of the CC, reduce weight 

gain, improve energy homeostasis and metabolic parameters in both DIO and genetically 

diabetic (db/db) mice (116–118, 123). Taken together, these small molecule modulators of 

CC-components provide an opportunity to further reveal regulatory networks in circadian 

functioning which could be targeted, alone or in combination, to treat metabolic liver 

disease.

CC and alcohol-induced liver disease (ALD)

Like NAFLD, pathogenesis of alcohol-induced liver disease (ALD) is complex and arises 

from interactions between metabolic, environmental and genetic risk factors in heavy 

alcohol consumers. In the context of alcohol-related disease, the CC has largely been 

investigated from a neurobehavioral perspective, noting CC disruption in alcohol use 

disorders and addiction (124–125). For example, rotating shift-workers have increased alcohol 

intake and tendencies to engage in binge drinking (126). Genetic variants in some clock 

genes are also associated with alcohol dependence and increased drinking in humans 
(127–128). Finally, transcript levels of CC genes are significantly lower in peripheral blood 

mononuclear cells from alcohol-dependent patients compared with healthy control subjects 
(129). Together, these studies suggest that CC alterations could promote alcoholic disorders 

and excessive alcohol consumption.

Investigations using Per2::Luciferase knock-in mice demonstrated that alcohol consumption 

misaligns peripheral clocks from the master SCN clock (130–131). Additionally, in liver, 

chronic alcohol consumption disrupts rhythmic oscillations of several CC components 

and CC-controlled output genes involved in regulating glucose, glycogen, cholesterol, BA 

and FFA metabolism (130, 132). For example, chronic alcohol intake in mice alters the 

diurnal rhythm in hepatic glycogen content due to dampened and/or shifted oscillations 

in glucose and glycogen metabolism genes (57, 132) Moreover, liver-specific BMAL1 

deletion and chronic alcohol abolish day-night differences in hepatic glycogen content 
(132). Alcohol consumption also disrupts rhythmic oscillations in the cofactor NAD+ (130) 

required for numerous metabolic functions in the liver, including pathways regulated by 

SIRT1 and PARP-1. Furthermore, CC disruption (mutation or disrupting the lightdark cycle) 

enhances alcohol-induced tissue injury in mice. For example, alcohol-induced steatosis is 

higher in livers of Clock-mutant mice as compared to wild-type mice (133). Liver-specific 

deletion of BMAL1 also increases hepatic steatosis in mice treated with chronic plus 

binge alcohol (134). Moreover, CC-disruption through weekly 12-h shifts in the light-dark 

cycle, increases gut leakiness and liver injury in alcohol-fed mice (135). Importantly, whole 
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gut and colon permeability is enhanced in night-shift but not in day-shift workers who 

consumed moderate amounts of alcohol (0.5 g/kg/day) for only one week (136). Collectively, 

these studies suggest that CC disruption may increase risk for liver disease in alcohol 

consumers. Importantly, as key mechanisms and linkages among alcohol-mediated CC 

disruption, metabolic dysregulation, and tissue injury emerge, it may become possible to 

pharmacologically target the CC in ALD patients.

Conclusion and future perspectives

The pathogenesis of NAFL and its progression to NASH, the most-prevalent noninfectious 

liver disease, is complex and multifactorial. Both genetic factors as well as the environment 

have been shown to play important functional roles. Perturbations in FFA metabolism, 

which lies at the core of NAFLD could potentially arise from deregulation of several 

distinct mechanisms. Remarkably, under physiological conditions most of these processes 

are governed by the CC-machinery. Consistently, in mice models, either mutation 

of CC-components (1–5) or change in the feeding time (137) are closely associated 

with a range of metabolic diseases including NAFL. Importantly, recent investigations 

have categorically established that in humans ‘circadian misalignment’ has adverse 

metabolic and cardiovascular consequences (138–139). Furthermore, epidemiologically, single 

nucleotide polymorphisms (SNPs) in the Clock gene (140) and in several CC-controlled 

transcriptional regulators (e.g. Pparγ, Stat3, Ppargc1α) (88) and the enzyme Pnpla3 
(141) are associated with the development of obesity, metabolic syndrome, NAFLD and 

NASH. Most significantly, our nouveau life-style (nutrient-dense foods, timing of eating 

and activity) which continuously interferes with endogenous circadian rhythms is also 

epidemiologically correlated with increasing incidences of all the hallmarks of metabolic 

syndrome including, NAFLD (8–12). Given the socio-economic realities in modern societies, 

it is difficult to avoid circadian disruption. Thus, in addition to life-style modification, CC-

targeting approaches may provide therapeutic opportunities overcoming these challenges. 

Furthermore, comprehensive systems level investigations of the circadian system elucidating 

physical- and genetic-interaction networks will reveal novel targets to prevent and treat 

chronic liver disease.
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Figure 1. The molecular architecture of the Circadian Clock (CC)-oscillator
The recruitment of BMAL1/ CLOCK-heterodimer to the E-Box DBS present in 

the promoter-enhancer elements of numerous CCGs, including Periods (Per1/2) and 

Cryptochromes (Cry1/2) augment their expression during the rest phase. Following 

accumulation, PERs and CRYs proteins dimerize and translocate to inhibit BMAL1/

CLOCK-dependent transcription during the active phase. Next, post-translational 

modifications including ubiquitination induce proteasomal degradation of PERs and CRYs, 

thus, initiating the next circadian cycle. In the second loop, BMAL1/CLOCK-dependent 

expression of Rev-Erbα/β during the rest phase, leads to the trans-repression of several 

RORE-DBS-containing CCGs including, Bmal1, Clock and E4BP4. In the active phase, the 

reduction in REV-ERBs levels permit the RORα/γ-dependent RORE-mediated activation 

of CCGs including Bmal1 and Clock, which enables the turning of the circadian clock. 

Furthermore, DBP expression during the rest phase activates D-Box DBS containing CCGs, 

which are transcriptionally repressed by E4BP4 during the active phase. These coupled 

transcriptional-translational regulatory circuits are ubiquitously present in almost all cell 

types and directly control the expression of a vast number of mammalian genes.

CCG-Clock Controlled Genes. E-CCGs: E-Box DBS-containing CCGs, R-CCGs: RORE-

containing CCGs, D-CCGs: D-Box-containing CCGs.
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Figure 2. The clock controls the physiology of liver
Light-entrained central SCN-clock synchronizes peripheral tissue clocks including that of 

liver. The ‘clock’ machinery in turn drives the expression of several key transcription 

factors, rate limiting enzymes and transport proteins to spatiotemporally regulate several 

biochemical processes, which, together maintain physiological homeostasis. The ‘clock’-

connections to some of these processes and their connections to NAFLD and NASH have 

been discussed in detail.
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Figure 3. Multidimensional connections of the ‘clock’ to the pathogenesis of fatty liver
Model representing a global view of how alterations in circadian clock-controlled ‘rhythmic’ 

functions/pathways and processes could predispose to non-alcoholic fatty liver disease. 

Knowledge of the mechanisms through which the ‘clock’-system influences all these 

systems and essential pharmacological parameters, in turn, could be utilized to develop 

novel chronotherapeutics. Green arrowheads represent activation and red bar-heads represent 

inhibition. See text for details.
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