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Abstract
Chronic hepatitis B, C and D virus (HBV, HCV and HDV) infections are a major cause of liver disease and cancer worldwide. 
Despite employing distinct replication strategies, the three viruses are exclusively hepatotropic, and therefore depend on 
hepatocyte-specific host factors. The sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein 
highly expressed in human hepatocytes that mediates the transport of bile acids, plays a key role in HBV and HDV entry 
into hepatocytes. Recently, NTCP has been shown to modulate HCV infection of hepatocytes by regulating innate antiviral 
immune responses in the liver. Here, we review the current knowledge of the functional role and the molecular and cellular 
biology of NTCP in the life cycle of the three major hepatotropic viruses, highlight the impact of NTCP as an antiviral target 
and discuss future avenues of research.
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Introduction

Every year, viral hepatitis is estimated to cause around 1.3 
million deaths worldwide, mainly through chronic liver dis-
ease and hepatocellular carcinoma (HCC). Approximately, 
95% of these deaths are caused by hepatitis B and C viruses 
(HBV, HCV) [1]. Despite the availability of an effective vac-
cine for HBV, 250 million people are chronically infected by 
the virus worldwide [2]. An estimated 5% of HBV patients 
are co-infected with hepatitis D virus (HDV), a satellite 
virus hijacking HBV envelope proteins to assemble its infec-
tious viral particles. HDV co-infection worsens the outcome 
of HBV infection, and treatment of HBV–HDV co-infected 
patients is less effective [3, 4]. Moreover, around 70 million 

people are living with chronic HCV infection and, despite 
the existence of effective curative strategies, the incidence 
of HCV is still increasing [3].

Remarkable progress has recently been made for treat-
ment of HCV infection. The development and approval of 
direct acting antivirals (DAAs) specifically targeting viral 
proteins now allows for HCV cure, but these therapies 
remain inaccessible for the majority of HCV patients [5]. 
For chronic HBV infection, two therapeutic approaches 
are used to suppress viral replication: pegylated interferon 
and nucleos(t)ide analogues (NUCs). While these treat-
ments allow control of HBV infection, viral eradication is 
rare and, in most cases, lifelong therapy is required [6]. For 
patients with chronic HBV/HDV co-infection, the current 
treatment options are limited to interferon-alpha (IFNα) 
and its pegylated derivative. Furthermore, although current 
antivirals decrease the risk of HCC, they are not sufficient 
to eliminate the risk [7, 8]. To effectively combat these hepa-
totropic viruses, it is necessary to improve existing therapies 
and uncover new strategies for prevention and treatment of 
viral hepatitis.

Alternative strategies against chronic HBV and HCV 
infection include host-targeting agents (HTA), which target 
host cell factors required for viral replication. HTAs have 
been shown to be promising candidates for the prevention 
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and treatment of infections by various pathogens, includ-
ing HBV and HCV [9–11]. This approach requires a pro-
found understanding of the viral life cycle and the virus-
host interactions involved. Indeed, the identification of the 
human sodium taurocholate co-transporting polypeptide 
(NTCP) as a functional receptor for HBV/HDV infection 
[12, 13] opened perspectives for new antiviral strategies. 
Several entry inhibitors for treatment of HBV infection 
targeting NTCP are now in development [14–19]. Further-
more, this crucial discovery has allowed the development of 
novel infectious model systems that will enable an improved 
understanding of the complete HBV/HDV viral life cycle 
[20]. However, the regulatory role of NTCP in HCV host 
cell infection, and its potential immunomodulatory activities 
in hepatocytes, should not be overlooked. The aim of this 
review is to summarize what is known about the interactions 
of NTCP with three major hepatitis viruses during infection, 
to describe the molecular mechanisms, and to highlight pos-
sible applications in research and therapy.

Sodium taurocholate co‑transporting 
polypeptide, a bile acid transporter

The circulation of bile and bile components between human 
intestine enterocytes and liver parenchymal cells is known 
as the enterohepatic circulation (EHC) [21]. In the liver, bile 
acids are mainly involved in cholesterol metabolism and 
elimination of toxic compounds [22]. Interestingly, bile acids 
have also been shown to inhibit interferon (IFN) signaling 
pathways, resulting in reduced expression of IFN-stimulated 
genes (ISG) [23, 24]. In hepatocytes, bile acid homeostasis 
is maintained by the interplay between uptake, synthesis and 
secretion of bile acids. The major hepatic uptake transporter 
for conjugated bile acids in humans is sodium taurocholate 
co-transporting polypeptide (NTCP) [25]. NTCP is predomi-
nantly expressed at the hepatic basolateral membrane and is 
involved in the recycling of bile acids from portal blood to 
hepatocytes in a sodium-dependent manner  [21]. NTCP is 
a member of the solute carrier family SLC10 and is encoded 
by SLC10A1 [26, 27]. SLC10A1 mRNA is translated into a 
349 amino acid glycosylated phosphoprotein with seven or 
nine transmembrane domains [21, 28–31]. While the exact 
function of some SLC10 family members remains unknown, 
all of them are thought to be sodium-dependent transporters 
[21]. Interestingly, bile acid transport through NTCP can 
be blocked by small molecules already in clinical use, such 
as cyclosporine A (CsA, an immunosuppressive drug used 
in transplantation) or ezetimibe (used for hypercholester-
olemia) [16, 32].

Hepatic bile acid metabolism is tightly regulated, includ-
ing at the transcriptional level (see Fig. 1) [33]. Upon bile 
acid activation, the nuclear factor Farnesoid X Receptor 

(FXR) indirectly downregulates several target genes through 
transcriptional induction of the small heterodimer partner 
(SHP) [34, 35], including the first and rate-limiting enzyme 
in bile acid biosynthesis, cholesterol 7α-hydroxylase 
(CYP7A1) [36, 37]. FXR also directly activates the expres-
sion of the bile salt export pump (BSEP, ABCB11), which 
is expressed at the apical membrane and secretes conjugated 
bile acids into the bile canaliculus in an ATP-dependent 
manner [38, 39]. FXR does not directly interact with the 
promoter of human SLC10A1 but induces the expression 
of different factors to indirectly repress slc10a1 expression 
in rat and mouse, although mechanisms of transcriptional 
regulation of human NTCP remain unknown [40–42]. In 
hepatic inflammation, the cytokines tumor necrosis factor 
alpha (TNF-α), interleukin (IL)-1β, and IL-6 downregu-
late mRNA levels of SLC10A1 and reduce the transporter 
protein expression [43–45]. The downregulation of NTCP 
expression in the human liver has been implicated in several 
cholestasis pathologies. The reduction of NTCP expression 
could explain impaired hepatic bile acid uptake, resulting 
in cholestasis and jaundice. Several studies have shown a 
downregulation of bile salt transporters in primary biliary 
cirrhosis [46, 47]. Interestingly, a recent study showed a sup-
pression of NTCP expression via cyclin D1 in hepatocellu-
lar carcinoma (HCC) [48]. These data may explain the low 
expression level of NTCP in HCC-derived cell lines, such 
as Huh7 and clones or HepG2.

The localization and membrane expression of NTCP is 
controlled by post-translational mechanisms [49]. For exam-
ple, cyclic adenosine monophosphate (cAMP) plays a role in 
stimulating the dephosphorylation and membrane transloca-
tion of NTCP (see Fig. 1) [50–52]. Sequencing analysis of 
NTCP revealed the existence of several ethnic-dependent 
single nucleotide polymorphisms (SNPs) which may alter 
NTCP activities [53]. For example, mutation S267F, found 
in 7.5% of allele frequencies in Chinese Americans, is asso-
ciated with an almost complete loss of bile acid uptake func-
tion. However, no pathologies have been described resulting 
from these NTCP polymorphisms and their clinical roles 
remain controversial [54]. Besides its major role in the bile 
acid uptake system, Yan et al. described the crucial role of 
NTCP on HBV and HDV entry [12]. For the time being, 
NTCP remains the only described HBV and HDV entry 
receptor.

NTCP is a host factor for HBV/HDV infection

Hepatitis B virus is the prototypic member of the Hepad-
naviridae family of small-enveloped hepatotropic DNA 
viruses. Its envelope consists of three different forms of the 
HBV surface protein (HBsAg)—the small (S), middle (M) 
and large (L) proteins. Importantly, the preS1-domain of 
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L envelope protein is known to bind to the hepatocyte cell 
surface and is required for HBV and HDV entry [55]. The 
HBV capsid is comprised of HBV core protein (HBcAg) 
and encapsidates a partially double-stranded relaxed circular 
DNA (rcDNA) genome of 3.2 kilobases. Upon infection of 
hepatocytes, genomic rcDNA is converted into covalently 
closed circular DNA (cccDNA), a minichromosome-like 
structure that persists in the nucleus as a central transcription 
template for all viral RNAs [56]. The presence of cccDNA 
in the nucleus is thought to be responsible for viral rebound 
after withdrawal of NUC therapy that targets reverse tran-
scription, a late step in the HBV life cycle. Therefore, 
removal of cccDNA from HBV-infected hepatocytes will 
be essential to achieve the goal of HBV cure [57].

HDV is a defective hepatotropic virus which depends 
on HBV surface proteins for assembly of infectious virions 
and viral entry [58]. The HDV genome is a negative single-
stranded circular RNA of nearly 1700 nucleotides contain-
ing one functional open reading frame, which encodes the 

hepatitis delta protein (HDAg) expressed in small and large 
form. Replication of HDV RNA and transcription of HDAg 
mRNA in the nucleus depends on host cell polymerases, 
including DNA-dependent RNA polymerase II. Both forms 
of the delta protein are then produced and reimported in 
the nucleus where they bind to genomic RNA to form the 
ribonucleoprotein (RNP), which is then exported into the 
cytoplasm and is associated with HBV envelope proteins to 
form a mature HDV virion [59]. Thus, HDV enters hepato-
cytes using the same pathways as HBV, and depends on the 
same host factors for host cell binding and entry. HDV is 
therefore a useful surrogate model for HBV entry.

The first step of viral infection is virion binding to attach-
ment factors and receptors at the host cell surface. This 
specific interaction between viral surface proteins and host 
entry receptors often determines the tissue tropism and host 
range of the virus [60]. HBV and its satellite virus HDV 
share HBV envelope proteins and are known to exclusively 
infect human, chimpanzee and tree shrew (Tupaia belangeri) 

Fig. 1  Model of the functional role of NTCP in hepatic bile acid 
transport and metabolism. Transport of bile acids from portal blood 
into hepatocytes via NTCP depends on a sodium gradient and is 
inhibited by CsA or ezetimibe. Secretion into the bile canaliculus via 
bile salt export pump (BSEP) in an ATP-dependent manner and syn-
thesis from cholesterol are regulated by bile acid-mediated activation 

of FXR. cAMP mediates dephosphorylation and membrane translo-
cation of NTCP. NTCP sodium taurocholate co-transporting polypep-
tide, BSEP bile salt export pump, FXR Farnesoid X Receptor, SHP 
small heterodimer partner, CYP7A1 cholesterol 7α-hydroxylase, BA 
bile acid, TJ tight junction, CsA cyclosporin A, cAMP cyclic adeno-
sine monophosphate
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hepatocytes, suggesting the involvement of species- and 
liver-specific cell surface factors in the common entry pro-
cess of these viruses [20]. Two elements of the HBV enve-
lope proteins are necessary for interaction with these factors. 
One determinant of infectivity resides in the surface-exposed 
cysteine-rich antigenic loop (AGL), a polypeptide located 
in the S domain of all three envelope proteins [61, 62]. The 
second known infectivity determinant is a receptor-binding 
site in the N-terminal pre-S1 domain of the L-HBsAg [55]. 
This domain is post-translationally modified by addition of 
myristic acid [63], and this myristoylation is essential for 
virion infectivity [64, 65]. A synthetic myristoylated peptide 
comprising the N-terminal amino acids 2–78 of the pre-S1 
domain prevents HBV infection [66].

As for many viruses [67, 68], HBV/HDV infection 
requires the initial attachment to the glycosaminoglycan 

(GAG) side chains of heparan sulfate proteoglycans 
(HSPGs) [69]. Both the antigenic loop of all HBV envelope 
proteins and the preS1-region of HBsAg-L are involved in 
this interaction [69, 70]. Indeed, glypican-5 (GPC5), a mem-
ber of the glypican family of HSPGs, acts as an entry factor 
for HBV and HDV (see Fig. 2) [71]. After this initial step 
of HBV/HDV attachment to HSPGs, the virions bind to a 
high-affinity receptor via the preS1-domain [72], allowing 
uptake into hepatocytes. Despite the discovery of several 
preS1-interacting proteins that did not affect HBV infec-
tivity [73–78], the identity of the HBV/HDV entry recep-
tor remained unclear until 2012, when Yan et al. identified 
NTCP as a functional receptor for HBV and HDV infection. 
Using a labeled preS1 peptide as a bait in Tupaia hepato-
cytes, a mass spectrometry purification of preS1-bound pro-
teins, and validation in human hepatocytes, it was shown that 

Fig. 2  Model of interactions between NTCP and the entry of HBV, 
HDV, and HCV in hepatocytes. After initial attachment to HSPG 
including GPC5, HBV and HDV virions bind to the receptor NTCP 
through the preS1-domain of the large envelope protein. NTCP inhib-
itors CsA and ezetimibe block viral entry like preS1-derived MyrB 
and CsA-derived SCY995. NTCP modulates HCV infection by inter-
fering with innate immune responses. Bile acids interfere with the 
IFN signaling pathway and thereby favor HCV entry. Inhibition of 
NTCP-mediated bile acid import into hepatocytes promotes inhibition 
of HCV entry through the upregulation of ISGs including IFITMs. 

HBV hepatitis B virus, HCV hepatitis C virus, HDV hepatitis D 
virus, HSPG heparan sulfate proteoglycan, GPC5 glypican-5, NTCP 
sodium taurocholate co-transporting polypeptide, MyrB myrcludex 
B, CsA cyclosporin A, SCY995 synthesized CsA derivative 995, IFN 
interferon, IFNAR IFN-α/β receptor, JAK Janus kinase, STAT  signal 
transducer and activator of transcription, IRF9 Interferon regulatory 
factor 9, ISRE IFN-sensitive response element, ISG IFN-stimulated 
gene, IFITM IFN-induced transmembrane protein, CLDN1 Claudin 1, 
CD81 cluster of differentiation 81, BA bile acid, TJ tight junction
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NTCP specifically interacts with the HBV receptor-binding 
domain preS1, allowing viral entry [12]. Zhong et al. showed 
that Tupaia NTCP mediates entry of woolly monkey HBV, 
indicating that NTCP orthologs act as a common cellular 
receptor for known primate hepadnaviruses [79]. Differential 
gene expression patterns between non-susceptible undiffer-
entiated and susceptible differentiated HepaRG cells vali-
dated the role of NTCP as a specific receptor for HBV and 
HDV [13]. Moreover, silencing of NTCP in primary Tupaia 
hepatocytes (PTH) or differentiated HepaRG cells inhibits 
HBV and HDV infection [12, 13]. Exogenous expression 
of NTCP directly renders non-susceptible hepatoma cell 
lines susceptible to HBV and HDV infection, while entry 
inhibitors derived from the preS1 peptide efficiently inhibit 
this infection [12]. In addition, the S267F mutant of NTCP, 
conferring a loss of bile acid uptake function, is signifi-
cantly associated with resistance to chronic hepatitis B and 
decreased risk of cirrhosis and liver cancer development, 
supporting the role of NTCP as cellular receptor for HBV 
in human infection [80–82]. However, S267F homozygote 
patients can still be infected by HBV, suggesting the exist-
ence of alternative receptors allowing viral entry in the 
absence of functional NTCP [83].

Interestingly, expression of human (but not mouse) NTCP 
in non-susceptible hepatocarcinoma cells confers limited 
susceptibility to infection. For robust infection, addition of 
dimethyl sulfoxide (DMSO) to culture medium is essential 
[13]. The fact that human hepatoma cell lines HepG2 and 
Huh7 are not susceptible to HBV and HDV infection without 
exogenous expression of NTCP is consistent with reports 
that NTCP expression is reduced in human hepatocellular 
carcinoma cells [48, 84]. NTCP expression rapidly decreases 
over time following isolation of cultured PTHs, which sup-
ports observations that primary human hepatocytes (PHH) 
remain susceptible to HBV infection in vitro only for a few 
days after isolation [12, 85]. Considering the predominant 
expression of NTCP in the liver, this receptor is likely to 
contribute to the hepatotropism of both viruses [12]. In 
addition, NTCP protein sequences vary among mamma-
lian species, which might contribute to the narrow species 
tropism of HBV and HDV infection. For example, monkey 
NTCP does not support HBV and HDV infection despite a 
high protein sequence homology to human NTCP. Replac-
ing amino acids 157–165 of nonfunctional monkey NTCP 
with the human counterpart conferred susceptibility to both 
HDV and HBV infection [12]. The fact that hepatocytes 
from cynomolgus and rhesus macaques and pigs become 
fully susceptible to HBV upon hNTCP expression indicates 
that NTCP is the key host factor limiting HBV infection in 
these species [86].

As a key host factor enabling HBV and HDV infec-
tion in vitro, the discovery of NTCP has been crucial for 
the development of novel animal models supporting virus 

infection. Indeed, only chimpanzees and tree shrews can 
experimentally support HBV and HDV infections [87]. The 
state-of-the-art mouse model for the study of HBV/HDV 
consists of liver-engrafted humanized chimeric uPa/SCID 
or FRG mice, which support virus entry and replication, 
but lack an efficient immune system, limiting the study 
of virus–host interactions [87]. The recent development 
of human NTCP-expressing transgenic mice opened per-
spectives for the development of novel immune-competent 
animal models for the investigation of HDV infection and 
HDV-induced pathogenesis in vivo [88]. As HBV infection 
is limited in mouse cells expressing hNTCP, probably due 
to the lack of a key host factor [89], it should be noted that 
hNTCP-transgenic mice are not susceptible to HBV infec-
tion. Recently, an elegant study demonstrated that vector-
mediated expression of hNTCP in the hepatocytes of rhesus 
macaques conferred susceptibility to HBV infection, pro-
viding a robust and relevant model for the study of HBV 
infection, including its interaction with adaptive immunity 
and the understanding of viral clearance [90].

Overall, NTCP was identified as the long-sought preS1-
specific HBV receptor contributing to HBV liver tropism and 
species specificity [13]. Targeting the interactions between 
the HBV preS1-domain and its receptor NTCP required for 
HBV/HDV entry is a promising strategy to block viral entry 
for both viruses.

NTCP as a therapeutic target for HBV/HDV 
infection

Even before the identification of NTCP as HBV/HDV 
receptor, entry inhibitors derived from the HBV preS1 
were shown to efficiently inhibit HBV infection in vitro and 
in vivo [91, 92]. One of these compounds, the myristoylated 
preS1-derived peptide (also called Myrcludex B or MyrB), 
efficiently prevents HBV dissemination in vivo and hin-
ders amplification of the cccDNA pool in infected human 
hepatocytes [14]. MyrB is the first HBV/HDV entry inhibi-
tor targeting NTCP to reach clinical trials [93], where it was 
shown to have a good safety profile with a mild and revers-
ible elevation of serum bile acid salts [93, 94]. Phase IIa 
clinical studies revealed a marked antiviral effect of MyrB, 
as measured by HDV RNA, HBV DNA and improvement 
of biochemical disease activity (ALT), when used in com-
bination with IFN therapy, although there was no significant 
decrease in HBsAg levels. In monotherapy, however, MyrB 
did not show significant antiviral activity [94]. Further stud-
ies are necessary to confirm these results obtained in small 
patient cohorts [95].

Importantly, the identification of NTCP as the first HBV/
HDV entry receptor has accelerated the discovery and devel-
opment of several new potential entry inhibitors. Binding of 
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myristoylated preS1-derived peptide to NTCP was shown 
to interfere with the physiological bile acid transport func-
tion of NTCP, indicating that NTCP-inhibiting drugs might 
be able to block HBV infection [96]. In a study evaluating 
FDA-approved therapeutics with documented inhibitory 
effect on NTCP cellular function against HDV entry, three 
of these molecules (irbesartan, ezetimibe, and ritonavir) 
inhibited HDV infection in vitro [97]. The inhibitory effect 
of ezetimibe on HBV infection had already been described 
previously without understanding its interactions with NTCP 
[98]. In 2014, Watashi et al. evaluated the effect of com-
pounds on the early phase of the HBV life cycle to identify 
cyclosporine A as an HBV entry inhibitor targeting NTCP 
[15]. In the same year, Nkongolo et al. characterized the 
effect of cyclosporine A, a cholestasis-inducing drug inhib-
iting NTCP bile acid transport [32, 97, 98], against HBV/
HDV infection and found that inhibition of entry resulted 
from interference with the NTCP receptor [16]. The screen-
ing of FDA/EMA-approved drugs or small molecules for 
interaction with NTCP allowed the identification of several 
additional potential HBV/HDV entry inhibitors targeting 
NTCP [18, 19]. All of these NTCP-targeting HBV/HDV 
entry inhibitors concomitantly inhibit the transporter func-
tion of NTCP and impair bile acid uptake into hepatocytes, 
increasing the risk of adverse effects. NTCP-deficient mice 
and a patient with NTCP deficiency were shown to exhibit 
an elevated level of serum bile acids and to develop related 
pathologies including growth retardation and hypercholane-
mia [101, 102].

Two different strategies to selectively inhibit HBV entry 
without impairing bile acid uptake have been suggested 
recently. Shimura et al. showed that cyclosporine A deriva-
tives SCY450 and SCY995 inhibit HBV/HDV entry without 
interfering with the NTCP transporter activity (see Fig. 2) 
[17]. Tsukuda et al. identified an oligomeric flavonoid, 
proanthocyanidin (PAC) and its analogs, as a new class of 
entry inhibitors, which directly target the preS1-domain 
of the HBV large envelope protein and thereby prevent its 
attachment to NTCP. By directly targeting HBV particles, 
PAC impairs HBV infectivity without affecting the NTCP-
mediated bile acid transport activity [103]. Further studies 
are required to determine if these novel inhibitory strate-
gies will show efficacy in vivo and in clinical studies in co-
treatment with NUC therapy.

NTCP is a host factor for HCV infection

Hepatitis C virus is an enveloped single-stranded posi-
tive-sense RNA virus in the Flaviviridae family. The host-
cell-derived lipid envelope contains the two viral enve-
lope glycoproteins, E1 and E2 [104]. Within the envelope, 
an icosahedral capsid contains the RNA genome of 9.6 

kilobases. Like HBV and HDV, attachment of HCV to 
hepatocytes is mediated by HPSGs on the host cell sur-
face [105–107]. Following attachment, the envelope gly-
coprotein E2 mediates interactions with a series of specific 
cellular entry factors, including CD81 and claudin-1 (see 
Fig. 2) [108–111]. HCV is internalized via endocytosis 
in a clathrin- and dynamin-dependent process [112]. Fol-
lowing fusion with early endosomal membranes, the HCV 
genome is released into the cytosol, where it is translated 
into a polyprotein cleaved by viral and host proteases. 
The HCV genome is replicated directly into RNA without 
passing through a DNA intermediate [113]. Therefore, 
HCV entry and replication steps are very distinct from 
those described for HBV/HDV. Nonetheless, the mutual 
hepatotropism of these three viruses mediated by tissue-
specific factors suggests a possible overlap in usage of 
common hepatocyte-specific host factors like NTCP.

Following establishment of the pivotal role of NTCP 
for HBV and HDV entry into hepatocytes, a recent study 
identified a role for NTCP in HCV infection (see Fig. 2). 
Exogenous overexpression or silencing of NTCP increased 
or decreased HCV infection in vitro, respectively [114]. 
Unlike HBV, however, no direct interaction between HCV 
envelope proteins and NTCP was identified. Instead, the 
bile acid transporter function of NTCP was found to be 
important for HCV entry [114]. Bile acids are known to 
modulate cellular antiviral responses by inhibiting inter-
feron (IFN) type I signaling and thereby decreasing the 
expression of IFN-stimulated genes (ISGs) [23, 24]. NTCP 
was shown to regulate HCV infection by inducing the bile 
acid-mediated repression of ISG expression in hepato-
cytes, including IFITM1, IFITM2 and IFITM3 [114]. 
These transmembrane proteins are known to restrict the 
entry of several viruses, including HCV [115]. IFITM1 
blocks the interaction between HCV and its receptors 
[116], whereas IFITM2 and IFITM3 inhibit entry at a 
post-endocytosis step by blocking the release of virions 
into the cytoplasm [117]. NTCP facilitates HCV infec-
tion by modulating innate antiviral responses via its bile 
acid transport function. As bile acids have been shown 
to enhance HCV replication [118], it is likely that NTCP 
expression and activity modulates HCV infection through 
a multimodal mechanism of action. Interestingly, MyrB-
mediated inhibition of NTCP blocks the import of bile 
acids, which in turn stimulates the expression of ISGs, 
inhibiting HCV entry and infection [114]. However, it still 
needs to be determined whether the inhibition of NTCP-
mediated bile acid entry affects the HBV life cycle through 
similar mechanisms as described for HCV. The potential 
of NTCP-targeting antivirals to enhance innate antiviral 
responses and to engage the host immune system to clear 
infection may be a useful property for the treatment of all 
hepatotropic viruses, including HBV, HCV and HDV.
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Conclusions

The discovery of NTCP as the first HBV/HDV receptor 
was a milestone in the study of the life cycle of these 
viruses. This landmark discovery enabled significant pro-
gress in understanding HBV/HDV entry and virus–host 
interactions. Moreover, based on this discovery, novel 
infectious model systems based on transduced cell lines 
stably expressing NTCP have been developed which allow 
detailed study of the early steps of the viral life cycle. 
By allowing the study of authentic infection in cell lines, 
these model systems will help to understand the formation 
and degradation of HBV cccDNA, which is a key target 
to achieve the ultimate goal of HBV cure. Robust human 
NTCP-expressing animal model systems will enable the 
in vivo validation of virus–host interactions and antivi-
ral therapies. Moreover, NTCP has been established as an 
antiviral target, and several molecules targeting NTCP are 
in clinical development with the goal to improve current 
therapies in the future. The recent discovery of NTCP as a 
host-dependency factor in HCV infection underscores its 
essential role in virus–hepatocyte interactions.
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