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Abstract

Background—Altered functional brain connectivity has been proposed as an intermediate 

phenotype between genetic risk loci and clinical expression of schizophrenia. Genetic high-risk 

groups of healthy subjects are particularly suited for the investigation of this proposition because 

they can be tested in the absence of medication or other secondary effects of schizophrenia.

Methods—Here we applied dFC analysis to functional MRI data in order to reveal the 

reconfiguration of brain networks during a cognitive task. We recruited healthy carriers of 

common risk variants using the recall-by-genotype design. We assessed 197 individuals: 99 
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individuals (52 female, 47 male) with low polygenic risk scores (Schizophrenia risk profile 

scores, SCZ-PRS) and 98 individuals (52 female, 46 male) with high SCZ-PRS from both tails 

of the SCZ-PRS distribution from a genotyped population cohort, the Avon Longitudinal Study 

of Parents And Children (ALSPAC) (N=8169). We compared groups both on conventional brain 

activation profiles, using the general linear model of the experiment, and on the neural Flexibility 

Index (FI) which quantifies how frequent a brain region’s community affiliation changes over 

experimental time.

Results—Behavioral performance and standard brain activation profiles did not differ 

significantly between groups. High SCZ-PRS was associated with reduced FI and network 

modularity across n-back levels. The whole-brain FI and that of the fronto-parietal working 

memory network was associated with n-back performance. We identified a dynamic network 

phenotype related to high SCZ-PRS.

Conclusions—Such neurophysiological markers can become important for the elucidation of 

biological mechanisms of schizophrenia and particularly the associated cognitive deficit.
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1 Introduction

Schizophrenia is a highly heritable and highly polygenic disorder. Liability is conferred by 

the cumulative effect of a large number of variants, most of which individually have small 

effects (1-3). Within a given population, an individual’s relative liability to the disorder can 

be described by their polygenic risk score or schizophrenia risk profile score (SCZ-PRS) 

which represents the relative, weighted burden of common risk alleles carried by that 

individual. SCZ-PRS can be estimated based on statistically significant associations found in 

genome-wide association studies (GWAS), but most commonly the threshold for capturing 

maximal liability is much less stringent (e.g. P<0.05) (4-6). The SCZ-PRS can then be 

utilized to explore the cumulative impact of genetic risk for the disease over phenotypical 

dimensions; a more powerful approach than the examination of the effects of single 

variants (7-12). The power of the polygenic model of schizophrenia is evidenced by recent 

studies using SCZ-PRS revealing association with negative symptoms and anxiety (13) and 

childhood and adolescent psychopathology (14). To identify the biological mechanisms that 

link the genetic architecture of a complex disorder to the clinical outcome, one should 

examine brain-based phenotypes via the hypothesis that these intermediate phenotypes are 

more direcly linked to the genetic mechanisms (13-15).

A characteristic cognitive finding in schizophrenia is the impairment of working memory 

function (14). Many fMRI studies have demonstrated altered prefrontal cortex recruitment 

during working memory processing in schizophrenia, particularly in the dorsolateral 

prefrontal cortex (DLPFC) (16,17) which has been closely linked to poorer functional 

outcomes (18) although alterations in several other areas of the working memory network 

have also been proposed (19,20). Recent theoretical work has related the coordination 

of temporal dynamics of BOLD activity via functional connectivity to the extraction of 
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a “community architecture” of functional brain networks (21). The framework of the 

generation of communities posits a grouping of functionally coupled to each other brain 

areas compared to the rest of the brain. These network topologies of clustered brain regions 

of interest (ROIs) can be seen as a stable representation of the functional partitioning of 

the static brain network. Research findings demonstrated increased connectivity strength 

and higher clustering coefficient in healthy controls and a high number of smaller modules 

in SZs (22,23). However, this type of analysis has been limited by the requirement to 

integrate data across long time windows, which makes it impossible to capture the dynamic 

components of functional connectivity, which are likely to be even more affected in mental 

disorders.

Recent developments in dynamic functional network neuroscience (24,25) have addressed 

this issue by introducing and validating novel methods to untangle the temporal evolution 

of community affiliations over dynamic brain networks (26,27). Unlike the static network 

analysis, dynamic network analysis allows the quantification of integrated functional 

alterations of the network community partitioning over experimental time like the cognitive 

workload over a working memory task. The dynamic network neuroscience method is 

further supported biologically for both normal and disordered brain network dynamics 

compared to the static approach (27-30). Novel results supporting this dynamic approach 

have included prediction of learning (27) and executive function (29) via the temporal 

variability of the neural community in healthy volunteers and more robust evidence for 

disconnected brain areas in schizophrenia (31,32,43). Thus, it appears that the temporal 

dynamics and the related functional connectivity across brain areas describe the capability 

of human brain connectome to reconfigure in a flexible way supporting daily cognitive 

demands. This adjustment of the brain connectome is maybe a feature that can be linked to 

the genetic risk of schizophrenia and which can only be explored with functional cognitive 

activation rather than resting state paradigms.

In this study, we apply an holistic data-driven approach to first construct dynamic functional 

connectivity brain graphs during the cognitive workload levels of the n-back task (33,34). 

The n-back task is a well-established experimental paradigm to study the neural substrates 

of the cognitive deficits in subjects with genetic risk for schizophrenia (35,36). We 

analyze neurovascular signals from brain areas (which are the nodes in a brain network 

modeled via a graph) and their time-dependent functional interactions (dynamic edges 

of a dynamic brainnetwork) to untangle spatio-temporally community partitions whose 

affiliations change during working memory performance. We quantify the abrupt changes of 

temporal communities affiliations using the network flexibility index (FI), a measure of how 

frequent a brain region changes its allegiance over time (27) (Fig. 1). We test whether these 

alterations in dynamic community structure are related to genetic liability to schizophrenia 

by comparing two healthy adult groups with low and high SCZ-PRS. We hypothesize that 

the dynamic community structure is modulated by the genetic liability for schizophrenia.
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2 Material and Methods

2.1 Participants, Data Acquisition, and Preprocessing

The protocol was approved by the Central Bristol Research Ethics Committee (13/SW/0170) 

and all participants provided written informed consent. Participant recruitment was based on 

the stratification of the Avon Longitudinal Study of Parents and Children (ALSPAC) birth 

cohort by polygenic risk for schizophrenia (37,38). We compared 197 healthy individuals 

of low (N = 99, 52 female, 47 male) or higher (N = 98, 52 female, 46 male) SCZ-PRS 

with structural and functional magnetic resonance imaging (fMRI) while performing a 

standard N-back memory task. Empirically, our SCZ-PRS low and high groups were in 

the lowest 5th and highest 10th percentiles groups, respectively and more extreme than 

87% of the sample population (area between 2 z’s, calculated with pnorm(z)). There 

was a 3 standard-deviation difference between the two groups making them extremely 

distinct from each other. Population stratification was assessed by multidimensional scaling 

analysis and compared with Hapmap II (release 22) European descent (CEU), Han Chinese, 

Japanese, and Yoruba reference populations; all individuals with non-European ancestry 

were removed. By the nature of the birth cohort study, groups were age matched, and 

we documented absence of IQ difference in our paper describing the sample and general 

procedures (39). Further details regarding the selection of these groups and WISC-III IQ 

measures can be found in our recent paper (39) and in section 1 in the Supplementary 

Material. The two groups didn’t differ at age (low SCZ-PRS 22 years and 1 month ± 10 

months, high SCZ-PRS 22 years and 2 months ± 8 months with a p-value = 0.33, Wilcoxon 

rank-sum test).

BOLD fMRI was acquired for all subjects while performing an established n-back working 

memory task (39,40). Investigators were blind to PRS status during data acquisition and 

during pre-processing stage. Details on the task, acquisition parameters, quality measures 

and pre-processing steps can be found in the Supplementary Materials.

2.2 Construction of dynamic functional connectivity graph (dFCG) and the Detection of 
Dynamic Functional Communities

For the dynamic functional connectivity analysis, we first decomposed BOLD ROI activity 

into 4 frequency scales 0.125~0.25 Hz (Scale 1), 0.06~0.125 Hz (Scale 2), 0.03~0.06 

Hz (Scale 3), and 0.015~0.03 Hz (Scale 4) and then we applied a sliding time window 

with a length of 15 volumes (41) with no gap between the windows (27,29) over the 90 

time series ( = number of ROIs of the AAL atlas) representative BOLD time series. The 

frequency decomposition of BOLD activity is important because different frequency bands 

could be sensitive to different functional interactions. Subsequently, we adopted wavelet 

coherence to estimate the functional connectivity between each pair of brain nodes using 

the MATLAB (MathWorks) package (42,27,29). For each subject, this estimation yielded 

73 functional connectivity graphs (FCGs) of dimension ROIs x ROIs [90 x 90] describing 

the functional connectivity in each time window (temporal segment or “slice”) during 

the n-back task performance yielding a dynamic functional connectivity graph (dFCG) 

with size [73 x 90 x 90] for each subject. The dFCGs were represented as multi-layer 

brain networks with interslice connections. Applying a multi-layer community detection 
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algorithm via Louvain greedy heuristic algorithm for maximizing the Q quality function, 

we partitioned the temporal nodes into temporal modules (26,27,29). For further details 

regarding the surrogates and the optimization procedure related to the detection of multi-

layer communities see supp.material. Quality Q function of modularity quantifies how 

well the nodes-ROIs are temporally connected within the same module (within scatter) 

compared to the rest of the temporal modules (between scatter) (26,27,29). The outcome of a 

graph-clustering algorithm is to divide a dFCG into modules (also called groups, clusters or 

communities) which describe a set of ROIs that are grouped together. The quality Q function 

demands the optimal selection of two parameters called γ1 and ωjir (for further details see 

p.13-18 in supp.material). After optimizing this set of variables independently per subject, 

we calculated a time-dependent network flexibility matrix (27), FI (Flexibility Index), whose 

binary elements, FIij, indicate whether a node i changes its community (1) or not (0) at 

the transition j between two consecutive time windows. We first estimated nodal FI, then a 

whole-brain network flexibility estimate by averaging across nodal FI, and finally the mean 

FI within and between five established brain networks a (see supp. materials).

We estimated the mean FI within five established brain networks. The original 90 ROIs were 

grouped into the following brain networks: Default Mode Network (DMN); Fronto-Parietal 

(FP); Cingulo-Opercular (CO); Occipital (O); and SensoriMotor (SM), according to meta-

analysis of cognitive fMRI studies (41).

2.3 Prediction of Behavioral Performance via nodal FI

We quantified the predictive power of nodal FI versus the BOLD activity (as per the GLM 

approach) to model behavioral performance. For further details see the Supplementary 

Material.

3 Results

3.1 Task Performance in N-Back Memory Task

As expected for an n-back task, we found a main effect of load condition with lower 

proportion of correct responses for higher load conditions (p = 0.00034, Wilcoxon Sign 

Rank Sum Test; see S7). We found no interaction between load (n-back levels) and group 

(low-high SCZ-PRS) (F(1,196) = 38.76, p > 0.671, 2-way ANOVA, factors: n-back levels, 

groups) and no significant group difference in percentage of correct responses between low 

and high RPS group (see supp. materials; p > 0.563, Wilcoxon Sign Rank Sum Test; see S7).

3.2 Brain Bold Activity Profile across Tasks and Groups

Fig.1 illustrates the maximum intensity projection of the absolute value of BOLD activity 

group-averaged for each working memory level. It shows the activation of the fronto-parietal 

network and the increment of the intensity from n-back level 0 to 2, using parameter 

estimates from a conventional GLM analysis (see suppl. Methods). We applied Wilcoxon 

Rank Sum Test per voxel adjusted for multiple comparisons with false discovery rate (q < 

0.05). There were no significant group differences in activation level at any of the working 

memory loads.
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3.3 Dynamic Network Community Partitioning Triggerd by Working Memory Task

For each subject, frequency sub-band and n-back memory task, the resulting dFCG 

were segmented into time-resolved functional modules employing a multilayer-community 

detection algorithm which optimizes a multi-layer version of the modularity index Qml. 

Higher values denote more cohesive temporal modules.

Group-averaged multi-slice (multi-temporal segments) temporal modularity Qml and number 

of temporal modules across n-back levels and frequency ranges are illustrated in Fig.2 and 

S8. Qml quantifies how well the clusters/modules are separated across space and time. High 

values of Qml (> 0.5) signify that the nodes within each cluster are strongly connected 

compared to nodes from different clusters/modules.

Here, the value of Qml was > 0.5 in both groups and n-back levels deviating from the 

distribution of Qml produced via the randomization of dynamic networks (p < 0.001 via 

surrogate analysis), supports the rationale of the detection of highly cohesive temporal 

modules. Furthermore, we quantified the module evolution of each ROI throughout the 

experimental time via the time-dependent FI.

The group with low SCZ-PRS demonstrated significantly higher Qml and higher number 

of temporal modules across n-back levels and frequency ranges compared to the group 

with higher RPS (Fig.2 and S8; * Wilcoxon Rank Sum Test, p < 0.0001, Bonferroni 

corrected p’ < p/12 where 12 = n-back levels x 4 frequency ranges). Both results can be 

seen as indicating more cohesive (Qml) and specialized functional brain networks (more 

temporal brain modules) for the group with low SCZ-PRS compared to the group with high 

SCZ-PRS.

3.4 Flexibility analysis

In line with our hypothesis, the dynamic network community FI during the working memory 

task was significantly lower in the high SCZ-PRS compared to the low SCZ-PRS group. 

These significant differences were observed across subnetworks,frequency ranges and n-

back levels.

Fig.3 illustrates the whole-brain group-averaged brain network FI across n-back levels 

and frequency scales. We applied a Wilcoxon Rank Sum Test between the two groups 

independently for n-back level and frequency range (p < 0.001, Bonferroni Corrected p’< 

p/12 where 12 denotes the comparisons between the four frequency scales and the 3 n-back 

levels). FI was consistently higher for group with low SCZ-PRS compared to the group 

with high SCZ-PRS. Group-differences in terms FI were consistent across various widths of 

temporal windows (see S14).

We further constrained the estimation of FI across the three subnetworks most implicated 

in working memory processes by the literature, the FP, the CO and the DMN29. Fig.4 

demonstrates the group-averaged FI for those three subnetworks for each scale frequency 

and n-back levels.
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Firstly, we applied a Wilcoxon Rank Sum Test between the two groups independently for 

n-back levels and frequency ranges. FI was consistently higher for the group with low 

SCZ-PRS compared to the group with high SCZ-PRS (p < 0.001, Bonferroni Corrected p’< 

p/12 where 12 denotes the comparisons between the four frequency scales and the three 

n-back levels).

Secondly, we applied a Wilcoxon Rank Sum Test between the n-back levels independently 

for every frequency range and separately for both groups (p < 0.001, Bonferroni Corrected 

p’< p/8 where 8 denotes the 2 comparisons between the 2 pairs of n-back levels and the 4 

frequency scales). This analysis revealed a significant effect of the cognitive workload. FI 

increased from 0-back to 1-back and from 1-back to 2-back in both groups and in frequency 

scales 1-4 (Fig.4).

Third, we further estimated the delta difference of FI (ΔFI) between 1-0 n-back level and 2-1 

n-back level independently for every subject and frequency scale and we applied a Wilcoxon 

Rank Sum Test between the two groups independently for the 2 pairs and the 4 frequency 

ranges. ΔFI was consistently higher for the group with low SCZ-PRS compared to the group 

with high SCZ-PRS from 0 to 1 n-back level and from 1 to 2 n-back level in every frequency 

scale. RPS (p < 0.001, Bonferroni Corrected p’< p/8 where 8 denotes the comparisons 

between the 4 frequency scales and 2 three n-back levels).

Conversely, as illustrated in Fig.5, group effects were weaker for the FI in the combined O 

and SM networks (significant only for frequency bands 1 and 3 for 0 n-back, bands 1 and 

3 for 1 n-back and bands 1 and 2 for 2 n-back). Importantly, there was no group effect on 

the FI increment across load levels, as demonstrated by non-significant Wilcoxon Rank Sum 

Tests for the delta differences (all p’s > 0.67).

The ROI topologies of FI for the rest of the studied frequency ranges are shown in the 

supplementary material (S.9-S.12).

3.5 Prediction of Behavioral Performance via Bold Activity and Nodal FI

Our analysis revealed whole-brain FI estimates as a better predictor of behavioral 

performance compared to BOLD activity. For further details see supp.material and STable 1. 

The range of R2 across the N-back levels of the multivariate analysis was:

1. 0.63 – 0.83 for low SCZ-PRS and 0.59 – 0.83 for high SCZ-PRS following 

a multilinear modelling of whole brain FI (nodal FI) and behavioural 
performance

2. 0.24 – 0.42 for low SCZ-PRS and 0.23 – 0.43 for high SCZ-PRS following 

a multilinear modelling of nodal FI from the FP network and behavioural 
performance

3. 0.21 – 0.42 for low SCZ-PRS and 0.20 – 0.42 for high SCZ-PRS following 

a multilinear modelling of BOLD activation levels of the whole brain and 
behavioural performance
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4. 0.14 – 0.29 for low SCZ-PRS and 0.14 – 0.29 for high SCZ-PRS following a 

multilinear modelling the FP network and behavioural performance

4 Discussion

We report working memory fMRI data from a large multi-modal neuroimaging study of 

mechanisms of genetic risk for schizophrenia, in which power was enhanced by selecting 

a subset of individuals from a large birth cohort on the basis of high or low numbers of 

risk alleles for schizophrenia. This design, based on recall-by genotype from population 

cohorts (39), is particularly suited to highly polygenic disorders such as schizophrenia. 

Importantly, the high SCZ-PRS group was comparable to the low SCZ-PRS for several 

potential confounds like the head movement and data quality measures, supporting the 

validity of our research.

We applied innovative methodologies tailored to dynamic network neuroscience applied 

to BOLD time series acquired during an n-back task. Our key finding is the alteration 

of dynamic reconfiguration of brain modules in people with high SCZ-PRS in a working 

memory task (43). Specifically, we found a lower number of dynamic modules (Fig. S8) and 

a less coherent dynamic network expressed via the lower Qml for the high SCZ-PRS group 

(Fig.2).The brain Flexibility Index (FI) across n-back tasks was defined as an index that 

measures the rate (probability) of transition of ROI assignment over consecutive temporal 

segments across experimental time. FI increases when a ROI changes its cluster assignment 

many times between consecutive temporal windows. The thus-defined FI was lower in three 

well-described brain networks and across the working memory levels in the high SCZ-PRS 

compared to the low SCZ-PRS group (Fig.3). We used a multi-linear regression analysis 

using behavioral performance as the dependent variable and both BOLD activity (Fig.1) 

and the nodal FI (S9-S12) as the independent sets. Our analysis revealed that nodal FI had 

higher predictive value compared to GLM-based analysis of BOLD activity and showed the 

importance of the whole network to this prediction compared to only the task-related FP 

network (S.Table 1.a-b vs S.Table 1.c-d).

It is important to underline here that the estimation of FI within the combined fronto-

parietal, cingulo-opercular and default mode brain networks revealed significant effects 

of increased cognitive workload. Subnetwork FI increased in both groups from 0-back to 

2-back in frequency scales 1-4 but this increment was significantly higher for low SCZ-PRS 

compared to high SCZ-PRS. Our findings support the role of the FPN, CON, and DMN in 

working memory and n-back task performance, and indicate that the subnetwork FI differs 

between low and high SCZ-PRS.

In this study of the effect of polygenic schizophrenia risk on brain function during a working 

memory task we found reduced network modularity and decreased global brain network 

flexibility for the group with high SCZ-PRS. Our data establish the first evidence that the 

genetic risk for schizophrenia can alter the reconfiguration of dynamic network communities 

in individuals with a high burden of common schizophrenia risk alleles. A previous study 

established that these temporal neural assemblies are altered in patients with schizophrenia 

during a working memory task (29).
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Aberrant oscillatory activity, temporal discoordination and altered excitatory–inhibitory 

balance of neural networks have been proposed as central mechanisms in the 

pathophysiology of schizophrenia (44). Based on the widespread alterations of topological 

brain networks observed in schizophrenia (45), we postulated that these alterations in 

the temporal functional communities in individuals carrying a high load of genetic 

risk variants would also be distributed across the brain rather than showing a regional 

impairment (44,45). This expectation was confirmed by our findings of a globally decreased 

FI in the group with high SCZ-PRS. Our findings are also in accordance with global 

electrophysiological effects (measured with MEG/EEG) in patients with schizophrenia 

(46,47). Our network-wise analytic pathway highlighted a system-wide and not a regionally 

confined decrease in whole brain network flexibility (48,49) in the high genetic risk group 

compared to the low SCZ-PRS.

A common cognitive deficit in schizophrenia is working memory impairment (50), which 

may contribute significantly to the development of thought disorder (51). A recent 

study revealed fronto-parietal modulation during a working memory task in first episode 

schizophrenia (52) but underscored the notion of brain connectivity, its dynamic changes 

and the importance of analyzing the whole brain connectivity profile and not only the 

task-related subnetwork.

The human brain is functionally organized into intrinsic networks that relatively stable 

during both resting state and task execution [53,54]. A recent large fMRI-working-memory 

(WM) study revealed two distinct functional networks that accounted for differences in 

WM performance of the individuals. A network centered at parietal brain areas, which was 

relevant to individual differences in WM task performance, and a network centered at frontal 

brain areas, which was relevant to attentional task demands [55]. A recent study following 

a similar methodology as ours, applied to effects of WM training, reported a decreased 

temporal modularity for 1- and 2-back tasks compared to the resting-state condition in the 

pre-training period [56]. A possible explanation is that network segregation lowest in high 

demanding n-back tasks compared to a less demanding task or resting-state [57,58]. This 

was also the reasoning behind our use of a demanding task to elicit dynamic connectivity 

differences between groups.

Behavioral performance was better predicted by nodal FI compared to estimates of BOLD 

activation height, revealing the functional importance of the dynamically changing network 

connectivity. This finding supports the power of dynamic connectivity analysis with the 

incorporation of network neuroscience for the understanding of mechanisms of cognition. 

Our results conform to those of several studies in healthy individuals that indicate that 

executive functions are linked to the reconfiguration of large-scale clustered brain networks 

rather than the activity of isolated brain areas (27-29).

As per the convention of quantitative neuroimaging studies we have used concepts of 

inferential statistics and significance testing. We are aware of the recent critique of these 

concepts (59), especially in the context of researcher degrees-of-freedom, which is still an 

issue in the neuroimaging literature. Furthermore, our data set came from a multimodal 

imaging study in which participants underwent a series of MRI, MEG and behavioral 
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experiments (35), which is an increasingly common scenario in the age of large imaging 

cohort studies. One way of addressing the multiple testing across series of experiments is 

through pre-specified analysis plans. The GLM analysis reported here (Results, section 3.2) 

was included in our analysis plan, but not the further analyses of community structure and 

flexibility index (sections 3.3 and 3.4). These used analytic approaches that were developed 

after the original analytic plan and should therefore be regarded as exploratory. One problem 

with the pre-specification of analysis plans in neuroimaging is that, with the rapid progress 

of analytical methods especially in the area of functional connectivity, we need to remain 

open to methodological innovation and the improved capture of the richness of fMRI time 

series information (25).

We probe connectome alterations during an n-back task following a replicated body of 

research that revealed context-dependent alterations in temporal coherence across working 

memory networks in those with familial genetic liability for SCZ (such as siblings) 

[60,61]. In the present study, we use an advanced, dynamic assessment of working memory-

dependent connectomics to study genetic risk in an unbiased, whole brain approach, taking 

into account transitory functional brain community affiliations across working memory 

loads.

SCZ-PRS are likely to reflect biological substrates that differ between and across 

participants. As PRS methodologies improve to incorporate pathway based approaches [62], 

we hope to further establish specific SCZ biological pathways (e.g. voltage-gated calcium 

channels, FMRP binding proteins, glutamate receptor complexes) that may preferentially 

influence our associations. We anticipate that these advances will enable future studies to 

parse heterogeneity in genetic risk profiles in order to establish discrete mechanisms linking 

SCZ genetic risk and downstream neurobiological processes.

5 Conclusions

We provide evidence for a novel endophenotype (63) associated with polygenic risk for 

schizophrenia, manifesting as reduced modularity and reduced flexibility of the brain’s 

functional connectome during a working memory task. Our findings suggest that these 

alterations may be risk factors related to the common genetic susceptibility associated 

with schizophrenia, rather than downstream of the clinical phenotype. These alterations of 

dynamic network properties may explain some of the clinical and cognitive vulnerability of 

high-risk groups.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Glass brain activity maps of maximum intensity projection of the absolute value of BOLD 

activity across tasks and in both groups. Colors bars represents Z-statistics for each contrast 

of parameter estimates.

Dimitriadis et al. Page 15

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 August 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2. 
Group-averages (low and high RPS groups) of the modularity Qml across n-back levels 

and frequency scales (A-D, showing scales 1 – 4: 0.125~0.25 Hz (Scale 1), 0.06~0.125 Hz 

(Scale 2), 0.03~0.06 Hz (Scale 3), and 0.015~0.03 Hz (Scale 4))

(* Wilcoxon Rank Sum Test, p< 0.01 ; Low : Low SCH RPS ; High : High SCH RPS ; 0 – 2 

denotes the 3 n-back levels)
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Fig. 3. Whole-brain network Flexibility Index (FI) estimated across nodal FI for each n-back 
level and frequency scale.
A) 0 n-back level, B) 1 n-back level, C) 2 n-back level

FI was significantly higher for the group with low SCZ-PRS compared to high SCZ-PRS 

across frequency scales and n-back levels

(* Wilcoxon Rank Sum Test, p < 0.001, Bonferroni Corrected p’< p/12 where 12 denotes the 

3 working memory levels multiplied by the 4 frequency scales

1 – 4 denotes the 4 frequency scales)
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Fig. 4. Sub-network Flexibility Index (FI) estimated across nodes within the fronto-parietal, 
cingulo-opercular and default-mode networks for each n-back level and frequency scale.
A) N-back level 0, B) N-back level 1, C) N-back level 2. FI was significantly higher for both 

groups between 0-back/1-back, 1-back/2-back and 0-back/2-back in all the frequency scales 

1-4. Both groups demonstrated significant higher increment of FI from 0-back to 1-back, 

from 1-back to 2-back and from 0-back to 2-back in all the frequency scales. This increment 

was significantly higher for the group with low SCZ-PRS compared to the group with high 

SCZ-PRS.

(* Wilcoxon Rank Sum Test, p < 0.001, Bonferroni Corrected p’< p/12 where 12 denotes the 

comparisons between the four frequency scales).
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Fig. 5. 
Sub-network Flexibility Index (FI) estimated across nodes within the occipital and 

sensorimotor networks for each n-back level and frequency scale. (same as in Fig.4)
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