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Abstract

Segmentation of organs or lesions from medical images plays an essential role in many clinical 

applications such as diagnosis and treatment planning. Though Convolutional Neural Networks 

(CNN) have achieved the state-of-the-art performance for automatic segmentation, they are often 

limited by the lack of clinically acceptable accuracy and robustness in complex cases. Therefore, 

interactive segmentation is a practical alternative to these methods. However, traditional interactive 

segmentation methods require a large number of user interactions, and recently proposed CNN-

based interactive segmentation methods are limited by poor performance on previously unseen 

objects. To solve these problems, we propose a novel deep learning-based interactive segmentation 

method that not only has high efficiency due to only requiring clicks as user inputs but also 

generalizes well to a range of previously unseen objects. Specifically, we first encode user-

provided interior margin points via our proposed exponentialized geodesic distance that enables 

a CNN to achieve a good initial segmentation result of both previously seen and unseen objects, 

then we use a novel information fusion method that combines the initial segmentation with 

only a few additional user clicks to efficiently obtain a refined segmentation. We validated our 

proposed framework through extensive experiments on 2D and 3D medical image segmentation 
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tasks with a wide range of previously unseen objects that were not present in the training set. 

Experimental results showed that our proposed framework 1) achieves accurate results with fewer 

user interactions and less time compared with state-of-the-art interactive frameworks and 2) 

generalizes well to previously unseen objects.
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1 Introduction

Accurate and robust segmentation of organs or lesions from medical images plays an 

essential role in many clinical applications such as diagnosis and treatment planning (Zhao 

and Xie, 2013; Masood et al., 2015). Although automatic segmentation methods have been 

studied for many years, it remains challenging for them to obtain a consistently precise 

segmentation in cases with large anatomical variation and complex pathologies (Wang et 

al., 2018b). This is mainly due to the inherent limitations of medical images, such as low 

contrast, different imaging and segmentation protocols, and variations among patients (Wang 

et al., 2018b). In contrast, interactive segmentation methods, which leverage the user’s 

knowledge and experience to obtain a more accurate and robust result, are more practical 

and widely used in clinical applications (Zhao and Xie, 2013; Masood et al., 2015; Wang et 

al., 2018b).

A desirable interactive segmentation tool should 1) achieve accurate segmentation results 

with as few user inputs as possible, leading to reduced burdens on the user; 2) have high 

efficiency so that the user can get real-time response, even when dealing with volumetric 

data; 3) generalize well to different objects so that it is ready-to-use for new objects or image 

modalities. However, existing interactive segmentation methods rarely satisfy all these often 

competing requirements. Many traditional interactive methods use low-level features (e.g., 

gray level or color distribution) for image segmentation (Hu et al., 2019), such as Graph 

Cuts (Boykov and Jolly, 2001), ITK-SNAP (Yushkevich et al., 2006), GeoS (Criminisi 

et al., 2008), Random Walks (Grady, 2006) and GrowCut (Vezhnevets and Konouchine, 

2005). As low-level features cannot effectively distinguish the object from the background 

in many situations with low contrast (Hu et al., 2019), these methods often require a large 

amount of user interactions and long user time to obtain reliable results. To reduce the 

amount of annotations required from the user to build an adequate foreground/background 

model, machine learning has been widely used to perform interactive segmentation. For 

example, SlicSeg (Wang et al., 2016b) and DyBaORF (Wang et al., 2016a) use an Online 

Random Forest (ORF) to segment the placenta from Magnetic Resonance Imaging (MRI) 

volume. GrabCut (Rother et al., 2004) uses Gaussian Mixture Models (GMMs) to estimate 

the foreground and background distributions. It obtains an initial result by a user-provided 

bounding box around the region of interest and allows additional interactions for refinement. 

In Wang et al., 2014, active learning is used to actively select candidate regions for querying 

the user to obtain much informative user feedback and thus reduce user interactions. These 

algorithms perform better than traditional methods without machine learning, but they are 
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limited by the use of hand-crafted features (Wang et al., 2018a; 2018b). As a result, they still 

require a considerable amount of user interactions for accurate segmentation.

Recently, with the ability to learn high-level semantic features automatically, deep learning 

with Convolutional Neural Networks (CNNs) has achieved state-of-the-art performance for 

image segmentation (Shen et al., 2017; Litjens et al., 2017). To take advantage of the good 

representation ability of CNNs and overcome the limited accuracy and robustness of the 

automatic CNNs, some deep learning-based interactive segmentation tools (Hu et al., 2019; 

Maninis et al., 2018; Rajchl et al., 2016; Wang et al., 2018a,b; Xu et al., 2016; Sakinis, 

Milletari, Roth, Korfiatis, Kostandy, Philbrick, Akkus, Xu, Xu, Erickson) have recently been 

proposed. The methods of Hu et al. (2019) Xu et al. (2016) and Maninis et al. (2018) 

are designed to segment 2D RGB images interactively and lack evaluation on medical 

images with low contrast and ambiguous boundaries. Castrejon et al. (2017) and Acuna 

et al. (2018) integrated reinforcement learning and graph neural networks into a unified 

polygon-based interactive segmentation framework, where the user is allowed to drag a point 

on the polygon for refinement, but its ability to deal with objects with complex shapes and 

3D medical images is limited.

In contrast, DeepIGeoS (Wang et al., 2018b), IFSeg (Sakinis et al., 2019), DeepCut (Rajchl 

et al., 2016) and BIFSeg (Wang et al., 2018a) are specially designed to segment medical 

images. DeepCut (Rajchl et al., 2016) uses a set of user-provided bounding boxes as 

sparse annotations to train CNNs for the segmentation of fetal brain and lung from fetal 

MRI. Roth et al. (2019, 2020) combined extreme points (Maninis et al., 2018) with 

random walkers (Grady, 2006) for weakly supervised 3D medical image segmentation. 

Even though this method and DeepCut (Rajchl et al., 2016) reduced the annotation cost 

significantly, they were designed for weakly supervised model training over a large dataset 

rather than interactively editing a single segmentation result at test time. Raju et al. (2020) 

further used extreme points in a user-guided domain adaptation method for pathological 

liver segmentation. DeepIGeoS (Wang et al., 2018b) performs user-friendly interactive 

segmentation by combining CNNs and user-provided scribbles, where a CNN is used to 

obtain an initial segmentation and another CNN accepts additional user interactions for 

refinement. However, DeepIGeoS can only deal with objects present in the training set 

and lacks adaptability to previously unseen objects. Following Xu et al. (2016), IFSeg 

(Sakinis et al., 2019) takes user clicks and the raw image as input for interactive medical 

image segmentation. Despite the fact that the framework is easy to use, it generalizability 

was only validated with a single previously unseen structure, and the ability to deal with 

various unseen objects in different modalities was not shown. BIFSeg (Wang et al., 2018a) 

exploits user-provided bounding boxes and image-specific fine-tuning to segment some 

unseen objects, but it is limited by dealing with only few unseen objects in the same 

image modality or similar context and requiring time-consuming fine-tuning for each test 

image. Therefore, novel interactive frameworks for medical image segmentation with higher 

efficiency and generalizability is highly desirable.

Besides, a practical problem for CNN-based interactive segmentation methods is to 

effectively encode user interactions, as different encoding strategies have a large impact on 

the interactive segmentation performance. Most of existing works encode user interactions 
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by transforming them into a cue map, such as Euclidean distance map (Benenson et al., 

2019; Hao et al., 2019; Hu et al., 2019; Li et al., 2018; Xu et al., 2016), Gaussian 

heatmap (Maninis et al., 2018; Wang et al., 2019), and iso-contours derived from user 

clicks (Khan et al., 2019). However, these encoding methods do not take the image context 

information into account. In contrast, the geodesic distance transform is spatially smooth 

and contrastsensitive to encode user interactions (Criminisi et al., 2008; Bai and Sapiro, 

2009; Price et al., 2010). DeepIGeoS (Wang et al., 2018b) uses geodesic distance transform 

with a specially designed threshold to deal with user-provided interactions. However, it is 

time-consuming to find an appropriate threshold value to truncate the generated geodesic 

distance map when dealing with different objects. We assume that a context-aware and 

parameter-free encoding method is helpful for improving the segmentation accuracy and 

generalizability.

To tackle the above-mentioned challenges, we propose a new generalizable framework for 

more intelligent and accurate interactive segmentation of 2D and 3D medical images, which 

aims at not only obtaining high performance and efficiency for segmentation of previously 

seen objects, but also achieving high generalization to a range of previously unseen objects. 

Our method takes advantage of CNNs and only requires few clicks as user interactions. 

We present a new way to encode user interactions based on Exponentialized Geodesic 

Distance (EGD) transform, which is context-aware and parameter-free and helps to improve 

the segmentation obtained by the CNN. We also propose an information fusion method 

that efficiently fuses additional user clicks with the initial segmentation to obtain a refined 

segmentation. Differently from existing interactive medical image segmentation frameworks 

(Wang et al., 2018a; 2018b; Rajchl et al., 2016), our method is more efficient as it only 

works on a sub-region of the image and does not need to train an additional CNN on the fly 

for the refinement. Moreover, we validate the effectiveness of this framework with a large 

range of previously seen and unseen objects. The superiority of our method over existing 

interactive segmentation methods is validated with five types of 2D unseen objects and four 

types of 3D unseen objects from different types of image contexts and modalities.

2 Methods

The proposed Minimally Interactive Deep learning-based Segmentation framework is 

referred to as MIDeepSeg and illustrated in Fig. 1. It consists of two stages. In the first 

stage, the user provides few clicks near the boundary (i.e., interior margin point) of the 

target object. These points are used to infer a relaxed bounding box to crop the input image. 

Based on the cropped image, all user-provided interior margin points are converted to a cue 

map based on our proposed EGD transform. Then, the cue map is concatenated with the 

cropped input image as the input of a CNN to obtain an initial segmentation result. In the 

second stage, the user provides some additional clicks to indicate mis-segmented regions, 

and a refined result is obtained by our proposed Information Fusion followed by Graph Cuts 

(IF-GC). At test time, the refinement step can run several times until the result is accepted 

by the user. After training with a small set of objects, our framework is ready to use for 

the segmentation of previously unseen objects without the need for fine-tuning or re-training 

that is time-consuming and requires additional annotations.
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2.1 User interaction based on interior margin points

Many existing CNN-based interactive segmentation frameworks use scribbles (Wang et al., 

2018a) or bounding boxes (Rajchl et al., 2016) or both (Wang et al., 2018b) as interactive 

cues. They need the user to drag the cursor carefully, which requires a lot of user’s efforts 

(Maninis et al., 2018; Papadopoulos et al., 2017). Using clicks as user interactions is a more 

user-friendly and effective way as demonstrated by previous works (Maninis et al., 2018; 

Papadopoulos et al., 2017; Wang et al., 2019; Xu et al., 2016). Recently, Maninis et al., 

2018 proposed a framework that only needs the user to provide clicks for extreme points 

(i.e, left-, right-, top- and bottom-most pixels) of an object for RGB image segmentation, 

which reduces the amount of user interactions substantially. However, in medical images, the 

accurate extreme points are hard and time-consuming to find, which increases the burden on 

the user, since the target organs or lesions have large variability in the size and shape across 

different patients or imaging protocols, especially in 3D volumetric data. In addition, for 

irregular and concave shapes, extreme points are not enough to capture the main shape of the 

object (as shown in Fig. 2), which can limit the performance of the CNN. To alleviate these 

limitations, we propose to use interior margin points as user interactions, where the user 

only needs to provide some clicks that are in the inner side and close the boundary of the 

target. Compared with DEXTR (Maninis et al., 2018) that uses at most four extreme points 

and optionally with one extra point, our interior margin points can provide more shape 

information for different types of organs with complex and irregular shapes. In addition, 

putting clicks exactly on the object boundary and even extreme points is hard for users at 

test time, and relaxing the clicks to the inner side of the boundary makes the interactions 

more friendly and convenient to implement, which tolerates inaccurate clicks. We relax these 

points towards the inside region because an exponentialized geodesic distance transform of 

these interior margin points can be a good approximation of the saliency map of the target 

object, as shown in Fig. 3. Therefore, interior margin points bring potential advantages in 

guiding CNNs to deal with different types of unseen objects as well.

During training, all interior margin points for each object were automatically simulated 

based on the ground truth mask and edge detector (Harris et al., 1988). The interior margin 

points are generated based on two rules: First, these points should be located in the object 

and near the boundary. Second, a relaxed bounding box determined by these points should 

cover the entire object region. Therefore, we simulate the user interaction for a training 

image in two steps. 1) To ensure that the relaxed bounding box covers the whole region of 

interest, few points on the ground truth boundary (three or four for 2D objects, five or six 

for 3D objects) close to the extreme points (Maninis et al., 2018) of the target object are 

selected. Then, we randomly sample n points from remaining boundary points of the target 

to provide more shape information, where n is a random number from 0 to 5. 2) To simulate 

real user clicks that may not be accurately positioned on the object boundary, all these points 

obtained in step 1 are slightly moved towards the inner side of the boundary by several 

pixels/voxels to obtain our interior margin points. We moved simulated points towards the 

inner side of the target object as the users are asked to put the interior margin points in the 

inner side of the boundary as well. And then, the bounding box determined by these points is 

relaxed by several pixels/voxels to include some background region. Examples of simulated 

2D interior margin points and relaxed bounding boxes on training images are shown in 
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Fig 2. In the test stage, the user is required to provide the interior margin points in such 

a way that they satisfy the above two rules. The relaxed bounding box determined by user 

interactions is expanded with a small margin to include some contextual information.

2.2 Exponentialized geodesic distance transform

It is critical for CNN-based interactive methods to encode user interactions efficiently. 

A desirable encoding method should take image context into account and can be 

combined with CNNs directly without any manually designed parameters. However, existing 

interaction encoding methods such as Euclidean distance transform (Li et al., 2018; Xu 

et al., 2016), Gaussian heatmap (Maninis et al., 2018; Wang et al., 2019), iso-contours 

(Khan et al., 2019) and geodesic distance transform (Wang et al., 2018b) do not have 

these merits at the same time. To deal with this problem, we propose a context-aware 

and parameter-free encoding method: Exponentialized Geodesic Distance (EGD) transform, 

which is a combination of geodesic distance transform and exponential transform.

Suppose Ss represents the set of pixels/voxels belonging to the simulated interior margin 

points in the training stage or user-provided interior margin points in the testing stage. Let i 
be a pixel/voxel in the input image I, then the unsigned EGD from i to Ss is:

EGD i, SS, I = min
j ∈ SS

e−Dgeo(i, j, I)
(1)

Dgeo (i, j, I) = min
p ∈ pi, j

∫
0

1
∥ ∇I(p(n)) ⋅ v(n) ∥ dn (2)

where Pi,j is the set of all paths between pixels/voxels i and j. p is one feasible path and 

it is parameterized by n ∈ [0, 1]. v(n) = p′(n)/ p′(n)  is a unit vector that is tangent to the 

direction of the path. Note that the EGD here is defined for scalar images but can easily be 

extended to vector-valued (i.e., multi-channel or multi-modal) images. Fig. 3 shows some 

examples of cue maps obtained by different encoding methods applied to some interior 

margin points. It can be observed that EGD-based cue map differentiates the foreground 

from the background better than those based on the other encoding methods. Therefore, it 

has the potential to provide more shape, position and context information to guide the CNN 

to obtain a good initial segmentation result.

2.3 Initial segmentation based on cue map and CNN

In this paper, we focus on designing an efficient and general framework to deal with seen 

and unseen objects from different types of images. Therefore, our framework does not rely 

on a specific design of CNN structure. To demonstrate its utility, we use adapted 2D-UNet 

(Ronneberger et al., 2015) and 3D-UNet (Çiçek et al., 2016) for 2D and 3D segmentation, 

respectively. We replace the batch normalization layers with instance normalization layers 

that has a better adaptability to different kinds of images, and reduce the feature channel 

numbers by four times to balance the performance, memory cost, and time consumption. In 

the training stage, all interior margin points and relaxed bounding boxs are automatically 

simulated based on the ground truth label, as described in Section 2.1. Then all interior 
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margin points are con-verted into a cue map that is concatenated with the cropped input 

image as the input of the CNN, as shown in Fig. 2. In the testing stage, the user is 

asked to provide interior margin points for a given target. Then, the CNN can give an 

initial segmentation result. To correct the mis-segmentation, we use a refinement stage with 

information fusion between the initial segmentation and additional user clicks, as described 

in the following.

2.4 Refinement based on information fusion between initial segmentation and additional 
user clicks

For deep learning-based interactive segmentation, it is important to support refinement of 

an initial segmentation. Existing methods either require an additional model for refinement 

(Acuna et al., 2018; Castrejon et al., 2017; Liao et al., 2020; Wang et al., 2018; Zhou 

et al., 2019) or need to fine-tune the pre-trained model for a specific image (Wang et 

al., 2018a). However, these refinement methods are time and memory consuming, and not 

ready-to-use for unseen objects. In addition, Chen et al. (2017) and Kamnitsas et al. (2016) 

used CRF (Lafferty et al., 2001) to refine CNN’s prediction automatically. However, these 

CRF-based (Lafferty et al., 2001) refinement methods (Chen et al., 2017; Kamnitsas et al., 

2016) were not designed for interactive segmentation. Differently from these methods, we 

propose an e?cient and simple refinement method based on a novel method for information 

fusion between initial segmentation and additional user interactions, which generalizes 

better to previously unseen objects without extra fine-tuning and re-training. Fig. 4 shows an 

illustration of our information fusion method.

In the refinement stage, the user is asked to provide some additional clicks to indicate mis-

segmented foreground and background regions, respectively. To effciently encode these new 

interactions, we use the proposed EGD transform again to get two additional interaction-

derived cue maps: Ef and Eb are cue maps based on EGD of user-provided foreground and 

background clicks for refinement, respectively. Note that, we do not reuse the initial EGD 

map obtained in the first stage directly, but combine the initial interior margin points with 

refinement clicks for calculating the new EGD maps in the refinement step. The values of 

E f and Eb are in the range of [0, 1] and represent the similarity between each pixel and 

foreground/background clicks. Let P f and Pb denote the initial foreground and background 

probability map obtained by the CNN, and i represent a pixel/voxel in the input image I. 
The information fusion strategy is proposed to refine the P f and Pb according to Ef and 

Eb. Specifically, we aim to automatically emphasize Ef and Eb when pixel i is close to the 

refinement clicks, otherwise P f and Pb tend to keep unchanged. We define user-calibrated 

foreground (Ri
f) and background (Ri

b) probability for pixel i as:

Ei
f = e−Di

f

e−Di
f

+ e−Dib
(3)
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Ei
b = e−Dib

e−Di
f

+ e−Dib
(4)

Ri
f = 1 − αi ∗ Pi

f + αi ∗ Ei
f (5)

Ri
b = 1 − αi ∗ Pi

b + αi ∗ Ei
b (6)

αi = e−min(Di
f, Dib) (7)

where αi ∈ [0, 1] is an automatic and adaptive weighting factor. When i is close to the 

clicks, αi is close to 1.0, and Ri
f(Ri

b) is more affected by Ei
f(Ei

b). If no clicks are provided 

for the foreground (background), we set the corresponding Di
f or Di

b to a constant value. Let 

Cf and Cb denote the clicks for foreground and background, respectively, so the entire set of 

clicks is C = Cf ∪ Cb. Let Ci denote the user-provided label of a pixel in the clicks, then we 

have Ci = 1 if i ∈ Cf and Ci = 0 if i ∈ Cb. We integrate Rf and Rb into a Conditional Random 

Field (CRF) to get the refined segmentation:

E = ∑
i

ϕ(yi I) + λ ⋅ ∑
i, j

ψ(yi, yj I)

subject to :yi = ci if i ∈ C
(8)

where φ and ψ are the unary and pairwise energy terms, respectively. λ specifies a relative 

weight between φ and ψ. In this paper:

ϕ(yi I) = − (yilog(ri) + (1 − yi)log(1 − ri)) (9)

ψ(yi, yj I) ∝ exp( − (Ii − Ij)2

2σ2 ) ⋅ 1
distij

(10)

where ri denotes the value of pixel i in Rf, and yi = 1 if i belongs to the foreground and 0 

otherwise. Ii and Ij mean the intensity of pixel i and j in image image I, respectively. distij 
is the Euclidean distance between pixel/voxel i and j. σ is a parameter to control the effect 

of intensity difference. In this paper, the CRF (Lafferty et al., 2001) problem in Eq. (8) is 

submodular and can be solved by Graph Cut through max-flow/min-cut (Boykov and Jolly, 

2001).

2.5 Implementation details

We implemented the U-Net and 3D U-Net for 2D and 3D image segmentation by Pytorch 

(Paszke et al., 2019), respectively. The training was on a Ubuntu(16.04) desktop with an 

Intel Core i7 CPU and one GTX 1080Ti NVIDIA GPU and 120 GB memory. We used 
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the DICE loss function and Adam algorithm for optimization, with a mini-batch size of 

4, weight decay 10−4. For 2D segmentation, we totally trained 300 epochs for network 

convergence. The learning rate was kept as 10−4 for the first 150 epochs and then halved 

for every 30 epochs. For 3D segmentation, we totally trained 2000 epochs for network 

convergence. The learning rate was kept as 10−4 for the first 1000 epochs and then halved 

for every 200 epochs. Each image/volume was cropped based on the relaxed bounding box 

derived from the interior margin points firstly and then normalized by the mean value and 

standard deviation of the cropped image. To boost the generalizability to unseen objects, 

we used several data augmentation methods during the training stage, including random 

rotation, random scaling, random flipping in space and intensity. Following DeepIGeoS 

(Wang et al., 2018b), we used open source code to compute geodesic distance1 and solve 

Eq. (8) based on max-folw2, respectively.

In this paper, all testing processes with user interactions were performed on a Ubuntu(16.04) 

desktop with an Intel Core i7 CPU and a GTX 1080Ti NVIDIA GPU. Following the practice 

of DeepIGeoS (Wang et al., 2018b) and BIFSeg (Wang et al., 2018a), the values of λ in Eq. 

(8) was 5 and σ in Eq. (10) was 0.1 based on a grid search with the validation data. But 

for specific cases, it also allows the user to set these two parameters manually, like many 

existing works (Boykov and Jolly, 2001; Rother et al., 2004; Criminisi et al., 2008). We 

developed two PyQt GUIs for user interactions on 2D images and 3D volumes respectively. 

(See supplementary videos)

3 Experiments and results

3.1 Comparison methods and evaluation metrics

To investigate the performance of different encoding methods with the same interior margin 

points in the first stage of our segmentation method, we compared our EGD with Euclidean 

distance transform, Gaussian distance transform and geodesic distance transform, which are 

referred to as EGD, Eucl, Gauss and Geos respectively. In addition, we compared them 

with segmentation based on the bounding box without encoding of interactions, which is 

referred to as BBox. All these methods were based on the same CNN structure. For a 

fair comparison, Eucl, Gauss and Geos were implemented with their respective optimal 

parameters for encoding user-provided interactions. (see the supplementary document)

MIDeepSeg was also compared with several existing interactive segmentation methods. In 

2D cases, in addition to traditional methods like Graph Cuts (Boykov and Jolly, 2001), 

Random Walks (Grady, 2006) and SlicSeg (Wang et al., 2016b), we also compared recent 

deep learning-based methods including DeepIGeoS (Wang et al., 2018b), DIOS (Xu et al., 

2016), DeepGrabCut (Xu et al., 2017) and DEXTR (Maninis et al., 2018), where the same 

2D network structure was used as our 2D version of MIDeepSeg. For 3D segmentation, 

we compared MIDeepSeg with ITK-SNAP (Yushkevich et al., 2006) and 3D Graph Cuts 

(Boykov and Jolly, 2001), as well as 3D versions of DeepIGeoS (Wang et al., 2018b), 

DIOS (Xu et al., 2016), DeepGrabCut (Xu et al., 2017) and DEXTR (Maninis et al., 2018) 

1geodesic distance: https://github.com/taigw/GeodisTK
2max-flow: https://vision.cs.uwaterloo.ca/code/.
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that used the same 3D network as MIDeepSeg for 3D segmentation. Graph Cuts, SlicSeg, 

Random Walks, DeepIGeoS and DIOS allow the user to refine the results multiple times. 

DeepGrabCut just allows the user to draw a bounding box at the beginning and does not 

support further interactions for refinement. DEXTR takes the extreme points as the user 

interactions and allows the user to refine the results once. Graph Cuts, SlicSeg, Random 

Walks, and ITK-SNAP are traditional interactive segmentation methods without the need of 

training with an annotated dataset and have a high generalization. In contrast, DeepIGeoS, 

DIOS, DeepGrabCut, and DEXTR are deep learningbased methods and require labeled 

data to train, and DeepIGeoS cannot deal with unseen objects. Two users respectively 

used these interactive frameworks to segment each test image until the result was visually 

acceptable, and we reported the average results of the two users achieved. The segmentation 

results were compared with the ground truth label which was annotated by experienced 

radiologists manually. For quantitative evaluation, we used the Dice similarity coefficient 

and the average symmetric surface distance (ASSD).

Dice = 2 ⋅ Rp ∩ Rg
Rp + Rg

(11)

where Rp and Rg denote the region segmented by an algorithm and the ground truth label, 

respectively.

ASSD = 1
Sp + Sg

∑
i ∈ Sp

d(i, Sg) + ∑
i ∈ Sg

d(i, Sp) (12)

where Sp and Sg represent the set of surface points of the result provided by an algorithm 

and ground truth label, respectively. d(i, Sp) is the shortest Euclidean distance between the 

point i and the surface Sg. To investigate the efficiency of these methods, we listed the user 

time and amount of user interaction points of each segmentation task.

3.2 Interactive segmentation of 2D images

3.2.1 Data—Firstly, we validate the proposed pipeline with two 2D applications: 

segmentation of placenta and spleen from fetal MRI and abdomen CT, respectively. 

Specifically, the placenta data were collected from clinical MRI scans of 30 pregnancies 

in the second trimester, and were acquired in axial view with pixel size between 0.7422 

mm × 0.7422 mm and 1.582 mm × 1.582 mm and slice thickness 3 - 4 mm. Each slice 

was resampled with a uniform pixel size of 1 mm×1 mm. We used 532 slices from 18 

volumes, 111 slices from 4 volumes and 176 slices from 8 volumes for training, validation 

and testing, respectively. The ground truth was manually delineated by an experienced 

Radiologist. For the spleen data, we randomly selected 235 slices of spleen from 47 volumes 

(5 slices per volume) in BTCV (Marsh, 2013) data set for training, and selected 159 

slices from 53 volumes (3 slices per volume) in TCIA3 data set for testing. Secondly, to 

validate the generalizability of our method, we apply our model trained only with placenta 

in MRI to four types of organs from a variety of modalities that were not present in the 

3 https://zenodo.org/record/1169361#.YETa43UzYUE 
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training set: 1) Kidney in CT, T1-weighted and T2-weighted MRI in the CHAOS4 training 

set. We randomly selected 100 slices for these three cases respectively. 2) Spleen in CT, 

T1-weighted and T2-weighted MRI in the CHAOS training set. We also randomly selected 

100 slices for these three cases respectively. 3) Prostate in T2-weighted MRI from MSD5 

Task05 dataset, where we randomly selected 72 slices from 24 cases. 4) Fetal brain in 

ultrasound images from HC186 dataset, where we randomly selected 60 slices. Information 

of the training and testing set is listed in Table 1. To deal with different organs at different 

scales, we resized the cropped sub-region and the cue map to 64 × 64 as the input of CNN.

3.2.2 Initial segmentation based on EGD-based cue map and 2D CNN—Fig. 

5 shows some examples of the initial segmentation of the placenta from MRI and spleen 

from CT with user-provided interior margin points, respectively. We compared the proposed 

EGD with BBox, Eucl (with a threshold), Gauss (with a sigma), Geos (with a threshold) 

with the same user-provided interior margin points, respectively. Note that, the parameters of 

Eucl, Gauss and Geos were respectively optimized for comparison, and more details of these 

optimal parameters are listed in the supplementary document. It can be observed that the 

EGD transform can guide CNN to obtain more accurate segmentation results than the other 

encoding methods. Table 2 lists the quantitative evaluation results of different encoding 

methods for placenta and spleen. It can be observed that our context-aware and parameter-

free encoding method of EGD consistently outperforms the others. The computation time 

for EGD in 2D is less than 0.05s, which gives real-time response. Fig. 6 shows the effect of 

different number of interior margin points for initial segmentation of challenging cases with 

complex shapes.

3.2.3 Interactive refinement by 2D information fusion between initial 
segmentation and additional clicks—Fig. 7 shows examples of interactive refinement 

of placenta and spleen segmentation using different refinement methods. The first row 

shows the initial segmentation obtained in stage 1 of our framework. Based on the initial 

segmentation, we further use additional clicks to obtain refined results. We compared the 

refined results between naive Graph Cuts (GC) and information fusion followed by Graph 

Cuts (IF-GC) using the same set of user clicks. Following the implementation in BIFSeg 

(Wang et al., 2018a), the naive Graph Cuts takes the initial segmentation probability map 

and the user interactions (background and foreground seeds) as inputs and is solved by 

max-flow. A python implementation is publicly available in the SimpleCRF toolkit7. The 

performance on placenta and spleen segmentation is listed in Table 3, where the first 

two rows show that our method in the first stage already largely outperformed automatic 

segmentation with the same network structure. The last two rows demonstrate that our 

IF-GC achieved higher accuracy than naive Graph Cuts with the same set of user clicks for 

refinement in the second stage.

4 https://chaos.grand-challenge.org 
5 http://medicaldecathlon.com/ 
6 https://hc18.grand-challenge.org/ 
7 https://github.com/HiLab-git/SimpleCRF 
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We further investigated the number of refinement clicks for segmentation of different objects 

using MIDeepSeg and plotted the histogram of refinement click number in Fig. 8. We can 

find that a large number of testing cases do not need additional clicks to achieve accurate 

results and just a few challenging cases need more than 4 clicks for refinement.

3.2.4 Comparison with other interactive methods—We compared MIDeepSeg 

with DeepIGeoS (Wang et al., 2018b), Graph Cuts (Boykov and Jolly, 2001), Random 

Walks (Grady, 2006), SlicSeg (Wang et al., 2016b), DIOS (Xu et al., 2016), DeepGrabCut 

(Xu et al., 2017) and DEXTR (Maninis et al., 2018) for placenta and spleen segmentation, 

respectively. Fig. 9 shows a visual comparison between these methods for 2D placenta 

segmentation. The first row shows the initial interactions and the initial segmentation results, 

and the second row shows the final results and all user interactions after refinement. It 

shows that MIDeepSeg can get a good result with only fewer user clicks, while the others 

need more interactions. The quantitative comparison of these methods based on placenta 

and spleen results as presented in Table 4. It shows that MIDeepSeg achieves higher 

accuracy than the other interactive segmentation methods and it needs less user time and 

a smaller number of interaction points than the others except for DeepGrabCut. Note that 

DeepGrabCut does not allow additional user interactions for refinement, which caused the 

lowest accuracy among the compared methods. This demonstrates that our method is very 

efficient to obtain highly accurate segmentation results. (Also see supplementary video 1)

3.2.5 Deal with previously unseen 2D objects—To investigate the performance and 

generalizability of MIDeepSeg on previously unseen objects, we compared MIDeepSeg with 

existing methods with good generalizability to different objects: Graph Cuts (Boykov and 

Jolly, 2001), Random Walks (Grady, 2006), SlicSeg (Wang et al., 2016b), DIOS (Xu et al., 

2016), DeepGrabCut (Xu et al., 2017) and DEXTR (Maninis et al., 2018). For MIDeepSeg, 

DIOS, DeepGrabCut and DEXTR, we used the model that was only trained with placenta 

images (T2-weighted MRI) to segment four previously unseen organs (i.e., kidney, spleen, 

prostate and fetal brain) in a range of modalities, as listed in Table 1. Fig. 10 shows 

examples of segmentation results of previously unseen objects by MIDeepSeg. The first 

row shows the initial interactions and initial segmentation results. In the second row, all 

interactions and final segmentation results are presented. It can be observed that MIDeepSeg 

can obtain a good result on unseen organs with only few user clicks. The quantitative 

comparison of these methods based on final results as presented in Fig. 11. It shows that 

MIDeepSeg takes noticeably less user time and interactions with similar or higher accuracy 

compared with the other interactive segmentation methods. What is more, it can be observed 

that MIDeepSeg can deal with different types of previously unseen image modalities and 

organs very well without any additional training or fine-tuning. We further studied the 

number of refinement clicks for Kidney (T2-MRI) and spleen (T2-MRI) segmentation using 

MIDeepSeg and plotted the histogram of refinement click number in Fig. 8. We can find that 

although these objects are not present in the training set, our method requires no or only few 

clicks for refinement to obtain accurate results. (See supplementary video 2)
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3.3 Interactive segmentation of 3D volumes

3.3.1 Data—Firstly, we validated the performance of MIDeepSeg on 3D brain tumor 

core segmentation from contrast-enhanced T1-weighted images. We used the BraTS20188 

training set which consists of 285 cases with four modalities: FLAIR, T1ce, T1 and T2. All 

images had been skull-stripped and resampled to an isotropic resolution of 1mm × 1mm 

× 1mm. We used 170 and 47 T1ce cases for training and testing, respectively. Manual 

segmentations were used as the ground truth.

Then, we validated the generalizability of MIDeepSeg with three tasks of segmentation of 

unseen objects: 1) Whole brain tumor in FLAIR from BraTS2018, from which we randomly 

selected 60 cases for testing. 2) Kidney in CT from KiTS20199 dataset, where we randomly 

selected 15 cases (include 30 kidneys with or without tumor) to test. 3) Left ventricular in 

MRI from ACDC10, where we randomly selected 30 cases. The testing data of KiTS and 

ACDC were resampled to an isotropic resolution of 1mm × 1mm × 1mm. All data sets for 

training and testing are listed in Table 5. To deal with 3D objects at different scales, we 

resized the cropped subregion and cue map to 64 × 96 × 96.

3.3.2 Initial segmentation based on EGD-based cue map and 3D CNN—To 

validate our proposed EGD transform for interior margin points encoding in 3D volumes, we 

compared it with BBox, Eucl, Gauss, and Geos with their respectively optimized parameters, 

respectively. In this stage, the same set of interior margin points provided by the user 

were used for these methods. Fig. 12 shows the initial segmentation results obtained by 

CNN guided by different encoding methods. It shows that EGD transform can guide CNN 

to achieve more noticeable improvement from BBox compared with the other encoding 

methods. Table 6 lists the quantitative evaluation results of different encoding methods for 

tumor core segmentation from T1ce images. It can be observed that our context-aware and 

parameter-free encoding method of EGD consistently outperforms the others with 87.00% in 

term of Dice and 1.46 mm in term of ASSD for tumor core, respectively. Despite that EGD 

takes more time (0.24s) for interaction encoding than the others, it is still very efficient in 

practice.

3.3.3 Interactive refinement by 3D information fusion between initial 
segmentation and additional clicks—Based on the above initial segmentation obtained 

by our method, we further use additional clicks to obtain refined results. We compared the 

refined result between naive Graph Cuts (GC) and the proposed information fusion followed 

by Graph Cuts (IF-GC) with the same set of user refinement clicks. The performance 

on tumor core segmentation is listed in Table 7, showing that the information fusion 

achieves higher accuracy than the other variants. Fig. 13 shows an example of tumor core 

segmentation by different refinement methods. It can be observed that IF-GC refined the 

result more accurately than GC with the same set of clicks for refinement.

8 https://www.med.upenn.edu/sbia/brats2018.html 
9 https://kits19.grand-challenge.org 
10 https://acdc.creatis.insa-lyon.fr/ 
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3.3.4 Comparison with other interactive methods—Fig. 14 shows a visual 

comparison between MIDeepSeg, 3D Graph Cuts (Boykov and Jolly, 2001), ITK-SNAP 

(Yushkevich et al., 2006), and 3D versions of DeepIGeoS (Wang et al., 2018b), DIOS (Xu 

et al., 2016), DeepGrabCut (Xu et al., 2017) and DEXTR (Maninis et al., 2018). It can 

be found that MIDeepSeg needs only few interior margin points as the initial interactions, 

but its initial segmentation is more accurate and it requires fewer user clicks to get an 

accurate final result. The quantitative comparison of these methods based on the final result 

is presented in Table 8. It shows that MIDeepSeg achieved significantly higher accuracy 

than the others. Additionally, MIDeepSeg takes 29s in average for the entire 3D interactive 

segmentation process for tumor core, which is less than the other methods except for 

DeepGrabCut. (See supplementary video 3)

3.3.5 Deal with previously unseen 3D objects—To investigate the generalizability 

of MIDeepSeg on previously unseen 3D objects, we used the 3D CNN model trained in 

the task of tumor core segmentation from T1ce images to deal with three previous unseen 

objects and modalities: whole tumor in FLAIR; kidney in CT and left ventricular in MRI, 

as listed in Table 5. Two users used MIDeepSeg and two existing methods with good 

generalizability including ITK-SNAP (Yushkevich et al., 2006) and 3D versions of Graph 

Cuts (Boykov and Jolly, 2001), DIOS (Xu et al., 2016), DeepGrabCut (Xu et al., 2017) and 

DEXTR (Maninis et al., 2018) to segment these objects. Fig. 15 shows some examples of 

3D whole tumor, kidney and left ventricular segmentation using MIDeepSeg. It can be found 

that accurate results are obtained for different types of unseen objects by using MIDeepSeg 

with few clicks. Quantitative evaluation results are presented in Fig. 16. It shows that 

MIDeepSeg achieves similar or higher accuracy compared with 3D Graph Cuts, ITK-SNAP, 

DeepIGeoS, DIOS, DeepGrabCut and DEXTR. However, MIDeepSeg takes notably less 

user time to achieve the results. (See supplementary video 4)

4 Discussion

Though some recent works (Wang et al., 2018b; 2020; Zhou et al., 2019a; Liao et al., 2020) 

on deep learning-based interactive segmentation have shown good performance, it is a great 

challenge for current CNNs to generalize well on previously unseen object classes, as they 

rely on annotated images of the target object to learn directly (Masood et al., 2015). For 

medical images, annotated images are very precious and scarce since accurate annotations 

require both expertise and time to obtain. This limits the performance of CNNs to deal with 

unseen objects that are not present in the training set. Compared with traditional CNNs 

(Çiçek et al., 2016; Ronneberger et al., 2015) and transfer learning (Wang et al., 2018a; 

Tajbakhsh et al., 2016), the major advantage of our proposed framework is that it can 

segment unseen objects without re-training or fine-tuning. Therefore, it reduces the burden 

for collecting and annotating data noticeably, and can be applied to segment or annotate 

unseen objects directly. Compared with DeepIGeoS (Wang et al., 2018b) and BIFSeg (Wang 

et al., 2018a), MIDeepSeg only requires few clicks as input and has higher generalizability.

A big challenge for existing deep learning frameworks is that they hardly generalize 

on previously unseen objects, and they require additional re-training or fine-tuning for 

segmentation of new targets. BIFSeg (Wang et al., 2018a) uses image-specific fine-tuning 
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to improve the generalization of CNN, but it requires fine-tuning for each test image, which 

is a time and memory consuming process. Based on our proposed interior margin points, 

EGD transform and information fusion, MIDeepSeg can deal with different types of unseen 

medical images without additional fine-tuning or training.

Despite the simple implementation, our EGD has not been proposed earlier for user 

interaction encoding, and it has two important differences from geodesic distances: First, 

EGD is parameter-free with higher generalizability. The geodesic distance method (Wang 

et al., 2018b) requires a user-defined threshold to make sure that the interactions will 

affect a local region, which reduces its generalizability as different images may require 

different threshold values. In contrast, our EGD does not require such a parameter, and it 

can be applied to different images without some specific adjustment, making it a simple 

and effective method with a wider utility. Second, the EGD naturally outputs a probability 

map, which gives can be used as the probability of a pixel belonging to the foreground 

or background indicated by the user interactions. This probabilistic view allows it to be 

seamlessly integrated into a conditional random field formulation for refinement.

The computation time of our EGD listed in Tables 2 and 6 show that it takes less than 

0.05s and 0.25s for 2D and 3D images respectively, which is acceptable for fast response 

of user interactions. We also studied the computation time of other stages of our method: 

the inference time for 2D and 3D CNNs was 0.008s and 0.04s, respectively. The CRF 

optimization time was 0.015s and 0.5s for 2D and 3D images, respectively. The entire user 

time was around 8-12s for 2D cases (Fig. 11) and 60–80s for 3D cases (Fig. 16). Therefore, 

our method is efficient for interactive segmentation of unseen objects.

In our experiments, we found that our refinement method based on calibrated probability 

maps and Graph Cuts worked well in various cases for different organs in a range of 

modalities. The advantages include: 1) the refinement step is decoupled from the initial 

segmentation step based on CNNs, thus is ready-to-use as a general refinement tool for 

interactively correcting segmentation results obtained by different networks and for unseen 

objects. 2) It is computational efficient, and allows real-time response of user interactions, 

which is highly desired for improving the user experience of interactive segmentation. 3) 

The user interactions are used as hard constraints, which ensures that points given by users 

will have their desired labels after refinement. A potential issue is that in complex cases a 

relatively large number of clicks are needed to obtain accurate results. However, in practice, 

our method is easy to use and efficient in dealing with different unseen objects, as shown by 

the experimental results.

A general problem for interactive segmentation is that the result may depend on knowledge 

and experience of the user, as the user refines the segmentation until it is visually acceptable, 

where the standard may be subjective. However, our method has some requirements on the 

user interactions: in the first stage, the interactions need to be given near the inner side 

boundary, and in the second stage the interactions are only given in incorrect regions, where 

for most cases, the incorrect region is small, leading to the range of clicks provided by 

different users limited. Therefore, inter-user variation of our method is small. As our method 

does not require the user to provide clicks exactly on the boundary or extreme points, our 
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interior margin points tolerate inaccurate clicks, which is more user-friendly. As shown in 

Fig. 10, in the first column the interior margin points are not accurate and far away from the 

boundary, and in the fourth column the top point is also inaccurate and even clicked in the 

background, but they still lead to good initial segmentation results. It further demonstrates 

the robustness and generalization of MIDeepSeg.

Recently, some works (Rupprecht et al., 2018; Song et al., 2018; Sourati et al., 2019; 

Zhou et al., 2019) used Fisher information, natural language, active learning and deep 

reinforcement learning to develop an intelligent interactive segmentation or annotation tool. 

In the future, it is of interest to use active learning (Top et al., 2011)and deep reinforcement 

learning (Liao et al., 2020) and uncertainty estimation (Wang et al., 2020) to provide 

guidance on user interactions for refinement, which has a potential to further improve the 

efficiency of interactive segmentation.

5 Conclusion

In this paper, we proposed a deep learning-based interactive framework with good 

generalizability to unseen objects for medical images segmentation and it only requires 

few clicks as user inputs. A novel context-aware and parameter-free encoding method 

was proposed to encode user interactions to guide CNN for a good initial segmentation. 

Based on the encoding method, we also proposed an effective refinement way for 

improving the accuracy of the segmentation results. The framework is designed to improve 

the generalizability to unseen objects, which is highly desired for deep learning-based 

models. Experiments on segmenting a wide range of previously seen and unseen organs 

or lesions from various 2D and 3D images show that: 1) Our interior margin points 

and EGD transform-based framework outperforms existing deep learning-based interactive 

segmentation tools in terms of accuracy and efficiency. 2) The proposed framework 

generalizes well on previously unseen objects. It could be used as an annotation tool to 

obtain segmentation masks of a range of objects more efficiently with high accuracy.
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Acknowledgment

This work was supported by the National Natural Science Foundations of China [61901084 and 81771921] 
funding, key research and development project of Sichuan province, China [No. 20ZDYF2817]. This work also 
was supported by the Wellcome Trust [WT101957 203148/Z/16/Z], and the Engineering and Physical Sciences 
Research Council (EPSRC) [NS/A000027/1 NS/A000049/1]. TV is supported by a Medtronic / Royal Academy of 
Engineering Research Chair [RCSRF18194].

References

Acuna, D; Ling, H; Kar, A; Fidler, S. Efficient interactive annotation of segmentation datasets 
with polygon-RNN++; Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition; 2018; 859–868. 

Bai X, Sapiro G. Geodesic matting: a framework for fast interactive image and video segmentation and 
matting. Int J Comput Vis. 2009; 82 (2) 113–132. 

Luo et al. Page 16

Med Image Anal. Author manuscript; available in PMC 2022 August 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://data.crossref.org/fundingdata/funder/10.13039/501100001809
http://data.crossref.org/fundingdata/funder/10.13039/501100014975
https://doi.org/10.13039/100010269
http://data.crossref.org/fundingdata/funder/10.13039/501100000266
http://data.crossref.org/fundingdata/funder/10.13039/501100000266


Benenson, R; Popov, S; Ferrari, V. Large-scale interactive object segmentation with human annotators; 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019; 11700–
11709. 

Boykov, YY; Jolly, M-P. Interactive graph cuts for optimal boundary & region segmentation of objects 
in ND images; Proceedings of the IEEE International Conference on Computer Vision, 1; 2001; 
105–112. 

Castrejon, L; Kundu, K; Urtasun, R; Fidler, S. Annotating object instances with a polygon-RNN; 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017; 5230–
5238. 

Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation 
with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans Pattern 
Anal MachIntell. 2017; 40 (4) 834–848. 

Çiçek, O, Abdulkadir, A, Lienkamp, SS, Brox, T, Ronneberger, O. International Conference on 
Medical Image Computing and Computer-Assisted Intervention. Springer; 2016. 424–432. 

Criminisi, A; Sharp, T; Blake, A. Geos: geodesic image segmentation; European Conference on 
Computer Vision; 2008; Springer; 99–112. 

Grady L. Random walks for image segmentation. IEEE Trans Pattern Anal MachIntell. 2006; (11) 
1768–1783. 

Hao, J; Scott, L; Brian, C; Long, P; Ong, MS-h. MultiSeg: semantically meaningful, scale-diverse 
segmentations from minimal user input; Proceedings of the IEEE International Conference on 
Computer Vision; 2019; 662–670. 

Harris CG, Stephens M, et al. A combined corner and edge detector. Alvey Vis Conf. 1988; 15 (50) 
10–5244. 

Hu Y, Soltoggio A, Lock R, Carter S. A fully convolutional two-stream fusion network for interactive 
image segmentation. Neural Netw. 2019; 109: 31–42. [PubMed: 30390521] 

Kamnitsas, K; Ferrante, E; Parisot, S; Ledig, C; Nori, AV; Criminisi, A; Rueckert, D; Glocker, 
B. Deepmedic for brain tumor segmentation; International Workshop on Brainlesion: Glioma, 
Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 2016; Springer; 138–149. 

Khan, S; Shahin, AH; Villafruela, J; Shen, J; Shao, L. Extreme points derived confidence map as a cue 
for class-agnostic interactive segmentation using deep neural network; International Conference on 
Medical Image Computing and Computer-Assisted Intervention; 2019; Springer; 66–73. 

Lafferty, J; McCallum, A; Pereira, FCN. Conditional random fields: Probabilistic models for 
segmenting and labeling sequence data; International Conference on Machine Learning; 2001; 
282–289. 

Li, Z; Chen, Q; Koltun, V. Interactive image segmentation with latent diversity; Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition; 2018; 577–585. 

Liao, X; Li, W; Xu, Q; Wang, X; Jin, B; Zhang, X; Wang, Y; Zhang, Y. Iteratively-refined interactive 
3d medical image segmentation with multi-agent reinforcement learning. Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020; 

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van 
Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 
2017; 42: 60–88. [PubMed: 28778026] 

Maninis, K-K; Caelles, S; Pont-Tuset, J; Van Gool, L. Deep extreme cut: from extreme points to object 
segmentation; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 
2018; 616–625. 

Marsh, HE. Beyond Thick Versus Thin: Mapping Cranial Vault Thickness Patterns in Recent Homo 
Sapiens. University of Iowa; 

Masood S, Sharif M, Masood A, Yasmin M, Raza M. A survey on medical image segmentation. Curr 
Med Imaging Rev. 2015; 11 (1) 3–14. 

Papadopoulos, DP; Uijlings, JRR; Keller, F; Ferrari, V. Extreme clicking for efficient object 
annotation; Proceedings of the IEEE International Conference on Computer Vision; 2017; 4930–
4939. 

Luo et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2022 August 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga 
L, et al. Pytorch: an imperative style, high-performance deep learning library. Advances in Neural 
Information Processing Systems. 2019. 8024–8035. 

Price, BL; Morse, B; Cohen, S. Geodesic graph cut for interactive image segmentation; Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition; 2010; 3161–3168. 

Rajchl M, Lee MCH, Oktay O, Kamnitsas K, Passerat-Palmbach J, Bai W, Damodaram M, Rutherford 
MA, Hajnal JV, Kainz B, et al. Deepcut: object segmentation from bounding box annotations 
using convolutional neural networks. IEEE Trans Med Imaging. 2016; 36 (2) 674–683. [PubMed: 
27845654] 

Raju, A; Ji, Z; Cheng, CT; Cai, J; Huang, J; Xiao, J; Lu, L; Liao, C; Harrison, AP. User-guided 
domain adaptation for rapid annotation from user interactions: a study on pathological liver 
segmentation; International Conference on Medical Image Computing and Computer-Assisted 
Intervention; 2020; Springer; 457–467. 

Ronneberger, O, Fischer, P, Brox, T. International Conference on Medical Image Computing and 
Computer-Assisted Intervention. Springer; 2015. 234–241. 

Roth, H, Zhang, L, Yang, D, Milletari, F, Xu, Z, Wang, X, Xu, D. Large-Scale Annotation of 
Biomedical Data and Expert Label Synthesis and Hardware Aware Learning for Medical Imaging 
and Computer Assisted Intervention. Springer; 2019. 42–50. 

Roth HR, Yang D, Xu Z, Wang X, Xu D. Going to extremes: weakly supervised medical image 
segmentation. arXiv. arXiv:2009.11988 

Rother C, Kolmogorov V, Blake A. Grabcut: interactive foreground extraction using iterated graph 
cuts. ACM Trans Graph. 2004; 23 (3) 309–314. 

Sakinis T, Milletari F, Roth H, Korfiatis P, Kostandy P, Philbrick K, Akkus Z, Xu Z, Xu D, Erickson 
BJ. Interactive segmentation of medical images through fully convolutional neural networks. 
arXiv. arXiv:1903.08205 

Rupprecht, C; Laina, I; Navab, N; Hager, GD; Tombari, F. Guide me: interacting with deep networks; 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018; 8551–
8561. 

Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017; 19: 
221–248. [PubMed: 28301734] 

Song, G; Myeong, H; Mu Lee, K. Seednet: automatic seed generation with deep reinforcement 
learning for robust interactive segmentation; Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition; 2018; 1760–1768. 

Sourati J, Gholipour A, Dy JG, Tomas-Fernandez X, Kurugol S, Warfield SK. Intelligent labeling 
based on fisher information for medical image segmentation using deep learning. IEEE Trans Med 
Imaging. 2019; 38 (11) 2642–2653. [PubMed: 30932833] 

Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J. Convolutional neural 
networks for medical image analysis: Full training or fine tuning? IEEE Trans Med Imaging. 2016; 
35 (5) 1299–1312. [PubMed: 26978662] 

Top, A; Hamarneh, G; Abugharbieh, R. Active learning for interactive 3d image segmentation; 
International Conference on Medical Image Computing and Computer-Assisted Intervention; 
2011; Springer; 603–610. 

Vezhnevets, V, Konouchine, V. Growcut: interactive multi-label ND image segmentation by cellular 
automata. Vol. 1. Graphicon; 2005. 150–156. 

Wang, Z; Acuna, D; Ling, H; Kar, A; Fidler, S. Object instance annotation with deep extreme level 
set evolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 
2019; 7500–7508. 

Wang, G; Aertsen, M; Deprest, J; Ourselin, S; Vercauteren, T; Zhang, S. Uncertainty-guided efficient 
interactive refinement of fetal brain segmentation from stacks of MRI slices; International 
Conference on Medical Image Computing and Computer-Assisted Intervention; 2020; Springer; 
279–288. 

Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S, 
et al. Interactive medical image segmentation using deep learning with image-specific fine tuning. 
IEEE Trans Med Imaging. 2018; 37 (7) 1562–1573. [PubMed: 29969407] 

Luo et al. Page 18

Med Image Anal. Author manuscript; available in PMC 2022 August 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Wang, B; Liu, KW; Prastawa, KM; Irima, A; Vespa, PM; Van Horn, JD; Fletcher, PT; Gerig, G. 4D 
active cut: an interactive tool for pathological anatomy modeling; IEEE International Symposium 
on Biomedical Imaging; 2014; 529–532. 

Wang G, Zuluaga MA, Li W, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S, 
et al. DeepIGeos: a deep interactive geodesic framework for medical image segmentation. IEEE 
Trans Pattern Anal MachIntell. 2018; 41 (7) 1559–1572. 

Wang, G; Zuluaga, MA; Pratt, R; Aertsen, M; Doel, T; Klusmann, M; David, AL; Deprest, J; 
Vercauteren, T; Ourselin, S. Dynamically balanced online random forests for interactive scribble-
based segmentation; International Conference on Medical Image Computing and Computer-
Assisted Intervention; 2016; Springer; 352–360. 

Wang G, Zuluaga MA, Pratt R, Aertsen M, Doel T, Klusmann M, David AL, Deprest J, Vercauteren 
T, Ourselin S. Slic-seg: a minimally interactive segmentation of the placenta from sparse and 
motion-corrupted fetal MRI in multiple views. Med Image Anal. 2016; 34: 137–147. [PubMed: 
27179367] 

Xu N, Price B, Cohen S, Yang J, Huang T. Deep grabcut for object selection. arXiv. arXiv:1707.00243 

Xu, N; Price, B; Cohen, S; Yang, J; Huang, TS. Deep interactive object selection; Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition; 2016; 373–381. 

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3d active 
contour segmentation of anatomical structures: significantly improved efficiency and reliability. 
Neuroimage. 2006; 31 (3) 1116–1128. [PubMed: 16545965] 

Zhao F, Xie X. An overview of interactive medical image segmentation. Ann Br Mach Vis Assoc. 
2013; 2013 (7) 1–22. 

Zhou, B; Chen, L; Wang, Z. Interactive deep editing framework for medical image segmentation; 
International Conference on Medical Image Computing and Computer-Assisted Intervention; 
2019; Springer; 329–337. 

Zhou, X; Zhuo, J; Krahenbuhl, P. Bottom-up object detection by grouping extreme and center points; 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2019; 850–
859. 

Luo et al. Page 19

Med Image Anal. Author manuscript; available in PMC 2022 August 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 1. 
Pipeline of the proposed Minimally Interactive Deep learning-based Segmentation 

framework (MIDeepSeg). Stage 1: User-provided interior margin points are encoded by 

Exponentialized Geodesic Distance (EGD) maps to guide a CNN to obtain an initial result. 

Stage 2: Refining the initial segmentation based on additional user clicks and our proposed 

Information Fusion followed by Graph Cut (IF-GC). Note that this framework is ready to 

use for segmentation of previously unseen objects without the need of extra fine-tuning or 

re-training.
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Fig. 2. 
Simulation of interior margin points on training images for different shapes of placenta. 

Fuchsia: simulated clicks on placenta edge. Brown: interior margin points-derived relaxed 

bounding box. Yellow: ground truth. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Visual comparison of different cue maps generated from user-provided interior 
margin points. (Fuchsia: interior margin points. Brown: inferred relaxed bounding box). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
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Fig. 4. Illustration of refinement by information fusion.
(a) The user provides clicks to indicate under-segmentation(red) and over-

segmentation(cyan) regions. (b) and (c) are initial segmentation foreground and 

background probability maps obtained by CNN in the first stage, respectively. (d) 

and (e) are cue maps based on foreground and background refinement clicks and 

EGD transformation, respectively. (g) and (h) are calibrated foreground and background 

probability maps, respectively. (f) is refined segmentation result. (IF: Information 

Fusion; EGD: Exponentialized geodesic distance transformation; GC: Graph Cut). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 5. 
Visual comparison of different encoding methods for placenta and spleen segmentation, in 

the first stage of our method. The first column shows the input image with user-provided 

interior margin points (fuchsia). The other column show the initial results.
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Fig. 6. 
Effect of different number of start interior margin points for segmentation of a placenta 

(seen object) and prostate (unseen object) with a complex shape. The first row shows the 

input image with different numbers of interior margin points. The second row shows the 

segmentation results.
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Fig. 7. 
Visual comparison of GC and IF-GC. The first row shows the user clicks for refining initial 

segmentation result. The other rows show the refined results by GC and IF-GC, respectively. 

The results are based on the same set of user clicks for refinement. (GC: naive Graph Cuts, 

IF-GC: information fusion followed by Graph Cut)
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Fig. 8. 
Histogram of number of refinement clicks required by MIDeepSeg for different objects. 

Placenta (MRI) and spleen (CT) in the first row are seen objects, while spleen (T2-MRI) and 

Kidney (T2-MRI) in the second row are previously unseen objects.
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Fig. 9. 
Visual comparison of MIDeepSeg and other interactive methods for 2D placenta 

segmentation. The first row shows the initial segmentation results with or without initial 

interactions. And the second row shows the final results after refinement.
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Fig. 10. 
Some examples of 2D unseen organ segmentation results by MIDeepSeg. The first row 

shows the initial user interactions and the initial segmentation. The second row shows all 

user interactions and final segmentation results. Note that the model is only trained with 

placenta in T2 MRI.
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Fig. 11. 
Dice, ASSD, user time and interaction points of different interactive segmentation methods 

for unseen objects. #, §, ♠, ♣ denote CT images, ultrasound images, T1-weighted MR 

images and T2-weighted MR images, respectively. All these organs are previously unseen in 

the training set.
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Fig. 12. 
Visual comparison of different encoding methods for 3D tumor core segmentation, which is 

based on the initial segmentation obtained in the first stage. All these methods used the same 

interior margin points and inferred bounding box for the input image.
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Fig. 13. 
Visual comparison of different refinement methods for 3D tumor core segmentation. These 

refinement methods are compared with the same initial segmentation with the same set of 

clicks.
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Fig. 14. Visual comparison of 3D tumor core segmentation using MIDeepSeg, DeepIGeoS, 3D 
Graph Cuts and ITK-SNAP.
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Fig. 15. 
Three examples of segmentation of 3D unseen objects using MIDeepSeg. Note that only 

tumor core in T1ce images were used for training.
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Fig. 16. Dice score, ASSD and user time of different interactive methods for 3D unseen objects 
segmentation.
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Table 1

Datasets used for training and testing the 2D interactive segmentation framework. Note that for spleen, BTCV 

and TCIA are training set and testing set, respectively.

Object Modality Training Testing DataSet

Placenta MRI (T2) 532 slices 176 slices Ours

Spleen CT 235 slices 159 slices BTCV, TCIA3

Kidney MRI (T1) No 100 slices CHAOS

Kidney MRI (T2) No 100 slices CHAOS

Kidney CT No 100 slices CHAOS

Spleen MRI (T1) No 100 slices CHAOS

Spleen MRI (T2) No 100 slices CHAOS

Spleen CT No 100 slices CHAOS

Prostate MRI (T2) No 72 slices MSD

Fetal brain Ultrasound No 60 slices HC18
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Table 2

Quantitative comparison of different encoding methods for placenta and spleen segmentation with the same set 

of interior margin points. The results are based on the initial segmentation of our framework. * denotes p-value 

< 0.05 when comparing with the second place method.

Method
“Placenta” from MRI “Spleen” from CT

Time (s)
Dice (%) ASS D (pixels) Dice (%) ASSD (pixels)

Bbox 85.53±7.16 4.37±3.05 91.36±4.69 3.76±1.71 -

Eucl 87.56±5.98 3.42 ±2.30 93.58±6.98 2.29±1.13 0.001

Gauss 87.91±6.18 3.56 ±2.43 93.22±3.32 2.29±1.52 0.001

Geos 87.17±6.38 3.62± 1.01 94.02±7.23 2.13±0.94 0.003

EGD 88.10±4.47* 3.33±2.19 95.08±3.23* 2.25±1.28 0.004
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Table 3

Quantitative comparison of different refinement methods for placenta and spleen segmentation with the same 

set of clicks. GC: naive Graph Cuts; IF-GC: information fusion followed by Graph Cuts. * denotes significant 

difference from GC (p-value < 0.05).

Method
“Placenta” from MRI “Spleen” from CT

Dice (%) ASSD (pixels) Dice (%) ASSD (pixels)

Auto 79.76±15.33 8.94±11.2 90.09±10.2 10.50±13.9

Stage 1 result 88.10±4.47 3.33±2.19 95.08±3.23 2.25±1.28

Refined by GC 88.41 ±5.33 3.14±2.39 95.46±3.19 2.06±1.16

Refined by IF-GC 89.21±4.37* 2.87±1.89 * 95.79±3.07* 1.84±0.86
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Table 4

Quantitative comparison of 2D placenta and spleen segmentation by different interactive methods in terms of 

Dice, ASSD, user time and number of interaction points. * denotes p-value < 0.05 when comparing with the 

second place method.

Method
“Placenta” from MRI “Spleen” from CT

Dice (%) ASSD (pix) Times (s) Points (pix) Dice (%) ASSD (pix) Times (s) Points (pix)

Graph Cuts 87.02±5.20 3.12 ±0.42 30.1±10.9 265.0±103.6 95.27±4.36 1.30 ±0.42 21.2±7.7 335.1±91.7

Random Walks 87.02±4.58 2.95 ±2.66 33.9±34.6 374.3±114.2 95.51 ±1.59 1.45±2.66 20.1±7.9 218.4±69.0

SlicSeg 87.63±5.71 3.00 ±0.39 25.8±11.5 189.3±81.2 95.18±4.70 1.23±0.39 20.1±8.2 254±77.5

DeepIGeoS 87.96±5.16 3.89 ±2.74 12.0±8.0 90.6 ± 95.2 96.39±2.22 1.71±2.74 6.1±4.8 31.1±52.4

DeepGrabCut 86.74±7.03 4.18±2.89 4.2±2.8 2.0±0 92.54±3.36 2.43±1.56 3.8±1.5 2.0±0

DIOS 87.48±6.31 4.03±2.52 15.3±13.0 12.4±5.7 94.85±2.79 2.06±1.47 7.6±2.7 7.8±4.7

DEXTR 88.77±4.83 3.07 ±2.25 8.9±3.7 7.2±3.3 94.18±3.25 2.67±1.36 5.9±3.9 5.6±2.7

MIDeepSeg 89.63±4.15 * 2.69±1.75 * 6.40±3.1 5.75±2.1 96.93±1.43 * 1.18±O.44 * 4.76±2.0 4.85±1.6
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Table 5
Datasets used for training and testing for 3D experiments.

Object Imaging Training Testing DataSet

Tumor core MRI (T1ce) 170 volumes 47 volumes BraTS2018

Whole tumor MRI (FLAIR) No 60 volumes BraTS2018

Kidney CT No 30 volumes KiTS

Left ventricular MRI (T2) No 30 volumes ACDC
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Table 6

Quantitative comparison of different encoding methods for 3D tumor core segmentation with the same set of 

interior margin points. The results are based on the initial segmentation (Stage 1) of our framework. * denotes 

p-value < 0.05 when comparing with the second place method.

Method Dice (%) ASSD (mm) Time (s)

BBox 82.32±12.03 2.17±1.53 -

Eucl 85.25±9.78 1.71±1.20 0.05

Gauss 85.90±9.11 1.64±1.19 0.06

Geos 86.42±8.91 1.60±1.15 0.15

EGD 87.00±9.11* 1.46±1.14* 0.24
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Table 7

Quantitative comparison of different refinement methods for 3D tumor core segmentation with the same set of 

refinement clicks. The segmentation before refinement is obtained by MIDeepSeg in stage 1. GC: 3D Graph 

Cuts; IF-GC: information fusion followed by Graph Cuts.* denotes significantly higher performance than GC 

(p-value < 0.05).

Method Dice (%) ASSD (mm)

Auto 78.08±13.56 2.78±2.22

Stage 1 result 87.00±9.11 1.46±1.14

Refined by GC 87.44±8.31 1.37±1.15

Refined by IF-GC 88.21±7.31* 1.28±0.94
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Table 8

Quantitative evaluation of 3D tumor core segmentation by different interactive methods in terms of Dice, 

ASSD and user time, respectively. * denotes p-value < 0.05 when comparing with the second place method.

Method Dice (%) ASSD (mm) Time (s)

3D Graph Cuts 78.91±14.98 3.46±5.10 99.4±36.7

ITK-SNAP 82.34±11.42 1.99 ±1.31 173.0±75.5

DeepIGeoS 82.47±10.78 3.34±3.81 82.2±44.7

DeepGrabCut 82.58±11.79 2.89±2.37 10.5±8.3

DIOS 83.34±10.47 2.57±1.79 67.5±23.6

DEXTR 86.39±9.03 1.59±1.11 34.7±18.6

MIDeepSeg 88.71±7.00* 1.24 ±0.88* 28.6 ±12.2
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