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Abstract

Bacterial infections in healthcare settings are a frequent accompaniment to both routine procedures 

such as catheterization and surgical site interventions. Their impact is becoming even more 

marked as the numbers of medical devices that are used to manage chronic health conditions 

and improve quality of life increases. The resistance of pathogens to multiple antibiotics is also 

increasing, adding an additional layer of complexity to the problems of employing safe and 

effective medical procedures. One approach to reducing the rate of infections associated with 

implanted and indwelling medical devices is the use of polymers that resist the formation of 

bacterial biofilms. To significantly accelerate the discovery of such materials, we show how state 

of the art machine learning methods can generate quantitative predictions for the attachment of 

multiple pathogens to a large library of polymers in a single model for the first time. Such models 

facilitate design of polymers with very low pathogen attachment across different bacterial species 

that will be candidate materials for implantable or indwelling medical devices such as urinary 

catheters, cochlear implants, and pacemakers.
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Introduction

Bacterial infections are a large and re-emerging global healthcare issue because of aging 

populations, the evolution of multi- and pan-antibiotic resistant pathogens, increasing 

numbers of immunocompromised patients, and developments in and the use of medical 

devices. Immune responses abate with aging, and concurrent medical conditions mean that 

hospitalizations are increasing and nosocomial infections are becoming more prevalent.1,2 

Antibiotic resistance is a major global healthcare challenge, and the increased use 

of implantable and indwelling medical devices is hampered by the risk of bacterial 
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infections, especially by multiantibiotic resistant pathogens.3,4 Additionally, wound 

infections, traumatic burns, suppressed immune responses due to HIV infection or organ 

transplantation, and increased survival of patients with serious, chronic conditions such as 

cystic fibrosis and diabetes add to the overall burden of infection.

Health care-associated infections affect around 4.1 million patients in Europe and around 1.7 

million patients in the USA per year, according to World Health Organization.5 Bacterial 

colonization of, and subsequent biofilm formation on, medical devices are particularly 

problematic given the rapidly growing number of patients requiring, for example, 

catheterization, stents, cochlear implants, pacemakers, and other major and minor surgical 

interventions.1,3,4 New materials are needed for medical device applications that prevent 

infection by broadly resisting attachment and subsequent formation of antibiotic tolerant 

biofilms by diverse pathogens. These materials have advantages over those that incorporate 

antibiotics including: efficacy against strains resistant to incorporated antibiotics; low 

antibiotic resistance pressure; and enduring performance because the active components 

cannot leach away. Consequently, a substantial amount of research and development is now 

being conducted to identify new types of materials, chiefly polymers, that prevent bacterial 

colonization and hence biofilm development. The current status has been summarized 

in recent reviews.6–12 In spite of some promising outcomes, given the immense size of 

materials space, it is essential that automated and high throughput materials synthesis and 

assessment methods be adopted to identify suitable materials quickly and allow their use in 

medical devices.13

Clearly, it would be ideal if we fully understood the diverse sensing and signaling 

mechanisms that bacteria employ to determine whether they are near or on a surface and 

whether that surface is suitable for attachment and biofilm formation. Such knowledge 

would allow the direct, rational design of surfaces that do not support bacterial colonization. 

As recent articles on this topic indicate,14,15 mechanistic information is still far from 

complete. Pathogens use sophisticated, diverse strategies to colonize a surface that involve 

multiple surface appendages and macromolecules including pili, flagellar, proteins, and 

exopolysaccharides.14,16–18 Attachment can be reversible or irreversible and mature biofilms 

disperse, releasing bacterial cells to search for new attachment sites.19 Pathogen interactions 

are modulated by surface physicochemical interactions20 and involve substantial changes in 

gene expression through an integrated network of bacterial sensing and signaling systems 

that operate at transcriptional and post-transcriptional levels and involve, e.g., multiple 

two-component sensor regulators, mechanosensors, quorum sensing systems, riboregulatory 

networks, and second messenger molecules (e.g., cyclic diguanylate).14–18,21 Consequently, 

we are not yet at the point where sufficient information is available to permit the rational 

design of low attachment surfaces as an effective and reliable strategy for new materials 

discovery. High throughput experimentation is a practical alternative to rational design in the 

majority of situations where the primary aim is to discover translatable materials to solve 

real clinical problems. However, high throughput synthesis and assessment of materials is 

not sufficient to guarantee discovery of the best materials.

An experimental high throughput materials discovery campaign was undertaken to identify 

new acrylate polymers with reduced attachment and biofilm formation, initially using a 
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single strain belonging to each of three major pathogen species but subsequently using 

multiple clinical isolates.22 Pseudomonas aeruginosa (PA), Staphylococcus aureus (SA), and 

uropathogenic Escherichia coli (UPEC) attachment was compared with existing commercial 

medical device materials such as silicone rubber and silver-containing hydrogel coatings. 

Acrylate polymers presented in a microarray format (see Figure 1) were screened to identify 

promising materials that minimized bacterial attachment and biofilm formation in vitro and 

in an in vivo foreign body infection model.22,23 Some of these materials are now undergoing 

regulatory approval for use as urinary catheter coatings.

Data-driven computational modeling methods that extract useful information from large 

data sets are an important adjunct to accelerated synthesis and testing technologies. The 

experiments generated large, information rich data sets derived from many hundreds of 

polymers and more than 20 000 assays. These data were used in the current work to 

extract useful information on relationships between polymer surface chemistry and bacterial 

attachment and to predict attachment of multiple pathogens on materials not used to generate 

the models. We previously employed sparse feature selection and Bayesian Regularized 

Artificial Neural Network (BRANN) approaches to generate quantitative and predictive 

models of the attachment of each of the three pathogens to diverse acrylate materials.24 

These have important advantages over other modeling techniques. They are very resistant to 

overtraining and overfitting, as they automatically generate sparse models and select sparse 

sets of relevant molecular features with optimum predictive capabilities. Although linear 

models of the relationships between surface chemistry and bacterial attachment reported by 

Hook et al.23 showed some predictive abilities for pathogen attachment, nonlinear neural 

network-based models are often significantly more robust and predictive and were used 

in the current study. Sanni et al.25 also used the highest performing (lowest bacterial 

attachment) subset of the monomers reported in the Hook et al.23 study and used here, 

correlating bacterial cell attachment with a composite parameter composed of contributions 

from the lipophilicity and molecular flexibility of the monomer units.

There is often a lack of clarity, even within the quantitative structure—property relationships 

(QSPR) modeling community, on the two main purposes of machine learning and other 

statistical methods that model the relationships between the properties of molecules or 

materials and their biological effects. One aim is to understand the details of the molecular 

interactions and mechanisms underlying the biological phenomena being modeled. The 

other aim, now dominant in drug discovery and materials design, is to be able to predict the 

biological response of materials yet to be synthesized, allowing very large virtual libraries 

of synthetically feasible materials to be prioritized for subsequent synthesis and testing and 

discovering useful materials more quickly. This aim is driven by the need to translate novel 

materials with previously inaccessible properties into real medical applications. It is this 

aim that our current research is pursuing. These disparate but synergistic uses of models 

have been elucidated recently by Fujita and Winkler.26 QSPR models can also be used as 

fitness functions in evolutionary processes that allow materials to evolve toward one or more 

desirable properties.27

Given our previous success in generating computational models capable of making 

quantitative predictions of attachment of a single pathogen to a polymer library, here, 
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we report for the first time a single computational model that can predict the polymer 

attachment of multiple pathogens simultaneously. It should be noted that these experiments 

and models predict the attachment of single pathogen strains to polymers not mixtures 

of different pathogens. The approach we have taken is similar to multitask networks,28,29 

which have proven to be successful in predicting the biological activities of small molecules 

against several targets. Multitask models potentially have wide applicability in materials 

science and medicine as they can identify materials with low attachment for a range of 

important pathogens and strains, rather than for a single pathogen strain. We compare 

the performance of the multipathogen model to that of the three, single pathogen strain 

computational models. Such models may also lead to general rules that relate low 

attachment to specific types of surface chemistry of polymers. A similar computational 

approach is used in small molecule drug discovery to find alternative drug targets.30

Experimental Methods

Polymer Library and Pathogen Attachment Data

Data for pathogen attachment to a polymer library containing 496 acrylate copolymers and 

homopolymers were obtained from Hook et al.23 Acrylate polymers were used because of 

the robustness and reliability of this type of polymer when used in the microarray format 

in our hands.23,24,31–33 Homo- and copolymers were generated by combinatorial reaction 

of different ratios of each monomer prior to UV-initiated polymerization. The nomenclature 

adopted for the copolymers is as follows: 1A(30%) means the polymer is composed of 70% 

of monomer 1 and 30% of monomer A by volume.

The bacterial attachment was measured using the fluorescence of bacteria transformed with 

green fluorescent protein. The brightness of the green fluorescence was proportional to the 

number of bacteria on the spot. As some polymers show a degree of autofluorescence, 

we removed the background signal from an equivalent microarray immersed in fresh 

uninoculated media

F = Fpolymer+bacteria  − Fpolymer  (1)

As the fluorescence spanned several orders of magnitude, we modeled the logarithm of the 

fluorescence, log F.

Two additional new polymer arrays were used to validate blind predictions of the models, 

the gold standard for assessing the utility of computational models.34 These arrays were 

constructed as described previously by Hook et al.23 using the monomers and proportions 

shown in Figures S6 and S7 and Tables S6 and S7. Measurements of pathogen attachment 

were obtained using the same bacterial strains but transformed to express mCherry 

protein instead of GFP. This change in protocol was made to minimize problems with 

autofluorescence of polymers and to improve the signal-to-noise ratio and lower detection 

limits. However, this meant that a direct quantitative comparison between the bacterial 

attachment predictions of the models for GFP-transformed bacteria and those with bacteria 

expressing mCherry could not be made. For these validation experiments, the following 
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screening protocol was adopted. The fluorescently tagged bacteria were grown for 12 h in 

LB (Luria—Bertani, Oxoid, UK) and used to inoculate RPMI-1640 defined medium (OD600 

= 0.01) containing the microarray slides. These were incubated at 37 °C with shaking at 60 

rpm for 72 h; the slides were removed and washed with phosphate buffered saline (PBS, 15 

mL) at room temperature three times for 5 min each, then rinsed with distilled H2O, and 

air-dried. Fluorescence was measured with a GenePix Autoloader 4200AL scanner, using 

red laser 635 nm and red emission filter. The data were screened as described above before 

modeling and are summarized in Tables S6 and S7.

Polymer microarrays may contain errors due to monomer carry over between spots 

despite washing procedures and other types of printing errors, and cell attachment may 

be heterogeneous due to poor presentation on the slide. We identified likely problematic 

replicates in the arrays using modified Thomson’s tau. This identifies suspect measurements 

using the variance between data point replicates.

τ = ta/2 × (n − 1)
n × n − 2 + ta/22 (2)

where n = sample size, ta/2 = critical student’s t test value at a with sample size n — 2. We 

chose a = 0.05, viz., statistical significance at 95% level. Data points were omitted if δ > τ × 

S where S is standard deviation of the sample and δ is the absolute difference of a data point 

and the sample mean. Replicates identified by this process were discarded, and values of the 

remaining replicates were averaged for the modeling studies.

The analyses also required the removal of polymers having log F values below 5.6, the 

detection limit of the pathogen attachment assay, as we did not have information on what 

their actual fluorescence/ attachment values were. It was also necessary to remove a few 

model outliers, a process that must be done carefully and objectively. Polymers with low 

fluorescence values that were <2.5σ of the background fluorescence were removed. These 

two steps eliminated 89 polymers from the PA data set, 18 from the SA data set, and 409 

from the UPEC data set. Four additional outliers were identified from the models. Polymers 

1A(30%), 5F(15%), and 9D(15%) for the PA attachment model and 5D(10%) for the SA 

attachment model had fluorescence values that were inconsistent with the fluorescence of 

copolymers with similar compositions and were poorly predicted by the models.

The acrylate monomer library used to screen the three pathogens is shown in Figure S1, and 

a schematic of the screening and modeling process is provided in Figure 1. The identities 

and structures of the monomers used to generate the additional smaller and larger polymer 

arrays used to valid model predictions are summarized in Figures S2 and S3.

Quantitative Modeling

Data sets were partitioned into training and test sets containing 80% and 20% of data 

points, respectively. The splitting was done by using k-means clustering (generating k 

clusters related by descriptor similarity and choosing the cluster mean for the test set). 

This ensures that the test set spans the same range of descriptors and attachment levels 

as the training set so that predictions outside of the domain of the models do not occur. 
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It also ensures reproducibility of results for others wishing to replicate our work. The PA 

attachment data set contained 404 polymers after removal of data points below the detection 

threshold and outliers. The data was divided into a training set of 323 polymers and a 

test set of 81 polymers. The SA attachment data set consisted of 477 points for modeling 

(after statistical assessment), split into 382 polymers in the training set and 95 points in 

the test set. The protocol for measuring attachment of UPEC was different from that of the 

other two pathogens, as artificial urine was added to the culturing protocol to simulate the 

service environments that urinary catheters will encounter. This increased the variance in the 

measured bacterial fluorescence and resulted in a lower degree of attachment of UPEC to 

the polymers compared to that of SA and PA. UPEC also forms weaker adhering biofilms 

compared to PA and SA. Consequently, the UPEC data set only contains 87 polymers after 

omitting those below the detection limit (the majority), with experimental artifacts, or with 

unusually high variability in replicates. This data set was partitioned into 70 points for the 

training set and 17 for the test set. After removal of outliers and polymers with fluorescence 

below the detection limit, the resulting 968 multipathogen attachment polymer data set was 

split into a training set of 774 points and a test set of 194 points.

Molecular descriptors were calculated from the Dragon 7.01 package using SMILES strings 

to represent the structures of monomers.35 We generated 3839 constitutional, structural, and 

physicochemical descriptors that were dependent only on 2D structures. We and others36– 

38 have shown that consideration of monomer or small oligomer structures alone can often 

provide good descriptions of polymer performance without consideration of other structural 

properties such as molecular weight, polydispersity, degree of branching copolymer block 

size, etc. Copolymer descriptors were calculated as a linear combination of monomer 

descriptors weighted by the proportion of each monomer in the copolymer.24 Highly 

correlated descriptors (r2 > 0.95) and those with low variance in the data set were removed, 

to provide 1640 final descriptors. The most relevant descriptors were identified by multiple 

linear regression with expectation maximization (MLREM), an extremely sparse method of 

identifying features.39 The sparsity was adjusted by a parameter, β, to obtain a model with 

the lowest standard error of prediction (SEP) for all three pathogens. This resulted in a set of 

descriptors shown in Table S1.

We have also used experimental time-of-flight secondary ions mass spectrometry (ToF-

SIMS) ion peaks derived from analysis of the surfaces of the polymer spots in the library 

as descriptors. These data were also obtained from Hook et al. and contained surface 

characterization of one spot from the six replicates.23 The assignment of the identities of the 

peak ions and association with the polymer structures is described by Hook and Scurr.32 The 

water contact angle (WCA), a measure of surface polarity, was also measured in this paper 

and employed here as an experimental descriptor. Experimental data used for modeling are 

shown in Table S3.

The multipathogen models were generated from a data set that combined all three pathogen 

attachment data sets, using an indicator variable as a descriptor to distinguish between 

the presence (1) and absence (0) of a specific pathogen. A Bayesian regularized Neural 

Network with Gaussian prior (BRANNGP) was used to generate the pathogen attachment 

models.40 The neural network consisted of one input, one hidden, and one output layer. The 
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number of nodes in the hidden layer was varied from 2 to 10. However, previous reports41 

have shown that less than five hidden layer nodes are sufficient in almost all cases and 

that specifying larger numbers of nodes results in almost identical models because of the 

Bayesian regularization.41 The best model for each case was identified as the one with the 

lowest test set standard error of prediction (SEP), as is best practice.42 However, the standard 

error of estimation (SEE) for the training set prediction and the r2 value for the training and 

test set predictions were also reported.

To ensure that the neural network was not biased by the order in which the data were 

presented during training, we shuffled the order of the rows. Shuffling of the data order has 

essentially no effect on the quality of the model generated. We also checked for overfitting 

(something Bayesian regularized neural networks are relatively immune to)41 or chance 

correlations by randomly redistributing only the y-values. This gave models with r2 values 

very close to zero, as would be expected.

As described above, the predictions of pathogen adhesion of two new polymer libraries 

were complicated by a change in experimental protocols after generating, measuring, and 

modeling the data using GFP-modified bacteria. Pathogens genetically modified to express 

the mCherry fluorescent protein were used to check the prediction of the models for a 

new polymer array containing homo- and copolymers. This prevented a direct, quantitative 

validation of model predictions. The logarithm of the mCherry intensities was autoscaled 

(normalized), and three classes (low, medium, and high attachment) were defined for each 

normalized set of data by inspection of the distributions in the histograms (see Figure S4). 

Truth tables were generated from the class membership of attachment of PA and UPEC to 

each polymer in the array.

Results

The attachment of each of P. aeruginosa (PA), S. aureus (SA), and uropathogenic E. 
coli (UPEC) to the polymer microarray was modeled using two classes of descriptors: 

experimentally measured time-of-flight secondary ion mass spectrometry (ToF-SIMS) 

peak intensities and water contact angles (WCAs); computed molecular descriptors (from 

DRAGON).35 These descriptors describe the surface chemistry of the polymer spots on the 

arrays. While WCA has been found to be a poor predictor of bacterial attachment across 

diverse libraries when used alone,23 we wanted to investigate its utility when combined with 

the molecularly rich information from ToF-SIMS experiments.43

Individual models predicting the attachment of each pathogen to the same polymer library 

were reported by Epa et al. using computed molecular descriptors specifically chosen to be 

chemically interpretable.24 The aim of this prior work was to generate models that provided 

some insight into the relationship between surface chemistry and pathogen attachment, 

as well as making quantitative prediction of bacterial attachment of new materials. More 

arcane molecular descriptors generally provide improved predictive power at the expense 

of loss of chemical interpretability. Given the added complexity of modeling surface 

chemistry-polymer attachments relationships for several pathogens simultaneously, in this 

work, we chose descriptors solely for their ability to generate the most accurate predictions 

Mikulskis et al. Page 8

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2022 August 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



of pathogen attachment. We employed indicator variable descriptors to allow the entire set of 

pathogen attachment data to be used to train multipathogen attachment models that predict 

the performance of polymer libraries for all three pathogens (see Experimental Methods).

Here, we compare the performance of multipathogen attachment models with those that 

predict attachment of single pathogens. We reiterate that these experiments and models 

predict the attachment of single pathogen strains to polymers not coincident mixtures of 

pathogens, as often occurring in infections. Model performance was assessed by the ability 

of each model to recapitulate the attachment performance of polymers in a test set not used 

to train the models. We also compared the performance of experimental ion peak and water 

contact angle descriptors with computed molecular descriptors for single and multipathogen 

attachment models, to assess whether the extra effort involved in ToF-SIMS experiments 

was justified by higher model accuracy or interpretability.

Pathogen Attachment Models Based on Computed Molecular Descriptors

The results of modeling the attachment of the three individual pathogens and the attachment 

of all three pathogens simultaneously to the polymer library are summarized in Table 

1. These models were generated by a Bayesian neural network (BRANN), and a linear 

multiple regression (MLR) model was also included for comparison. Clearly, the BRANN 

multipathogen model had significantly lower standard error of prediction (SEP) than the 

linear model, so it predicted the attachment to polymers in the test set more accurately (the 

r2 was also higher than the linear model). This is consistent with earlier studies of models 

predicting each pathogen separately.23, 24

Multipathogen Model

The best multipathogen attachment model was generated by a BRANN neural network 

model that employed 7 neurons in the hidden layer and 41 descriptors. The training set 

standard error of estimation (SEE) and test set standard error or prediction (SEP) values 

were 0.16 and 0.19 log F, respectively, for this model. The training and test set predictions 

had r2 values of 0.86 and 0.81, indicating a high level of statistical significance and showing 

that the model was robust and strongly predictive. Figure 2 illustrates the performance of the 

multipathogen model in predicting the attachment of bacteria to the polymer library.

The linear MLR multipathogen attachment model was also statistically significant (r2 ~ 
>0.5, Table 2),44 but the standard errors of prediction were larger (0.28 log F) than the 

nonlinear BRANN model (0.19 log F). The linear models were derived to elucidate the 

likely contributions of the descriptors to the models. The contributions of the computed 

molecular descriptors to the multipathogen model are summarized in Figure 3. The main 

purpose of this and related figures in the paper is to show which descriptors make positive or 

negative contributions to the attachment of one or more pathogens, to provide a qualitative 

measure of the size of the contribution and to make inferences of the role of surface 

chemistry where possible.
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Single Pathogen Strain Models

Models relating pathogen attachment to surface chemistry were also generated for each 

pathogen separately. The model that best predicted PA attachment to polymers in the test set 

was derived using a neural network with 8 nodes in the hidden layer and 30 descriptors. The 

training set SEE was 0.17 log F and r2 was 0.88, while the test set had an SEP of 0.17 log 

F and an r2 of 0.87. This suggests that the model was not overtrained and was quite robust. 

The SA attachment model had a training set SEE of 0.12 and a test set SEP of 0.14 and an 

r2 of 0.87 and 0.78 for predictions of attachment to polymers in the training and test sets, 

respectively.

Despite the smaller data set size of the UPEC attachment study, a statistically valid and 

predictive model was obtained. The model used two neurons in the hidden layer and 18 

descriptors. The training and test set SEE and SEP values were 0.30 and 0.24, respectively, 

and the r2 for the training set was 0.78 and for the test set was 0.94. The graphs showing 

the correlations between the measured and predicted attachment for the individual pathogen 

models employing computed molecular descriptors are shown in Figure S5.

Pathogen Attachment Models Based on ToF-SIMS Ion Peak Descriptors

Experimentally measured ToF-SIMS ion peaks and water contact angles (WCA) were also 

used as descriptors in the pathogen attachment models to assess their efficiency relative 

to the computed descriptors. The results of modeling the three individual pathogen data 

sets and the combined multipathogen data sets with the experimental ToF-SIMS analysis 

and WCA data are summarized in Table 2. A linear MLR attachment model for multiple 

pathogens is included for comparison and to allow the contributions of ion peaks to the 

model to be evaluated.

Multipathogen Model—As with the pathogen attachment model generated using 

computed molecular descriptors, the best performing attachment model employed a neural 

network (BRANN) with 5 neurons in the hidden layer and 79 descriptors. This model 

contained more effective weights but fewer descriptors than the same model using computed 

molecular descriptors. The training and test sets were predicted with good accuracy, with 

SEE and SEP values of 0.12 and 0.21 log F and r2 values of 0.76 and 0.74, respectively. 

Values of r2 above 0.7 show that it is possible to generate a good combined model for 

the attachment of all three pathogens to the polymer library using data obtained from 

experimental techniques: ToF-SIMS and WCA.33 Figure 4 illustrates the performance of this 

multipathogen model in predicting the attachment of bacteria to the polymer library.

As with the linear multipathogen attachment model based on computed molecular 

descriptors, the experimental descriptors also generated a linear (MLR) model of 

multipathogen attachment of lower statistical significance (r2 > 0.5, Table 2).44 The standard 

error of prediction was larger (0.33 log F) than the nonlinear model (0.21 log F) and 

larger than that of the linear multipathogen attachment model using computed molecular 

descriptors (0.28 log F). The contributions of the experimental descriptors to the linear 

model are summarized in Figure 5.
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Single Pathogen Strain Models—The best PA attachment model was obtained using 

a neural network containing 6 neurons in the hidden layer and 57 descriptors. The training 

and test sets were well predicted by this model, with SEE and SEP values of 0.14 and 0.22 

log F and r2 values of 0.92 and 0.81 for training and test sets, respectively. The number 

of descriptors in the model is higher than in the other bacterial attachment models for SA 

and UPEC. The optimal SA attachment model was obtained from a BRANN model that 

used 8 neurons in the hidden layer and 19 descriptors. Again, the training and test set 

attachment was well predicted by the model, with SEE and SEP values of 0.11 and 0.14 log 

F for training and test sets. The corresponding r2 values for these predictions were 0.88 for 

the training set and 0.84 for the test set. The low standard errors, high r2 values, and the 

similarity in the prediction efficacy of the training and test set data show that this model of 

SA attachment to the polymer library using experimental features is robust and predictive. 

The quality of the models is similar to those reported previously by Epa et al.,24 which had 

an SEP = 0.12 log F and r2 = 0.85 for the test set. The most predictive UPEC attachment 

model for the polymer library was obtained also using a neural network with 2 neurons in 

the hidden layer and 10 descriptors. This model predicted attachment of UPEC with SEE 

and SEP values of 0.24 and the r2 values of 0.87 and 0.84 for training and test sets. The 

relatively small number of experimental descriptors and excellent model metrics show that 

there are few key molecular features important for UPEC attachment to the polymer surface. 

The model SEE and SEP values of 0.24 are significantly better than those reported by Epa et 

al.24 (0.43 and 0.48), presumably because the descriptors employed were more efficient than 

the chemically interpretable set used in the earlier study. In our study, r2 for the training set 

was higher than that in Epa et al.’s model (0.87 vs 0.58), while r2 for the test set was slightly 

lower at 0.84 versus 0.73 in the Epa et al.24 study. However, as we have shown previously, 

the standard errors are a more robust measure of model predictivity than the r2 values.42 

The graphs showing the correlations between the measured and predicted attachment for the 

individual pathogen models employing experimental descriptors are shown in Figure S6.

Discussion

We would first like to clarify that the term multipathogen should not be confused with the 

term polymicrobial, which describes a situation where a number of bacterial species and 

strains coexist (common in many infections). By multipathogen, we mean we have tested 

one bacterial species and strain at a time. We have not performed experiments where we mix 

several strains together and examine their collective behavior.

Single versus Multipathogen Models

The attachment of the three pathogens to the polymer library is reasonably well correlated 

with each other, with r2 values greater than 0.5 for all species, as Table 3 shows. UPEC 

attachment shows good correlation with PA and SA, while PA and SA attachment are 

correlated to a slightly lesser extent. The significance of the pathogen indicator variables (1 

when pathogen present and 0 when absent) to the attachment models was interesting. Only 

the UPEC indicator variable was statistically significant in the models, and the weights of 

the PA and SA indicator variables were similar and much smaller. Given the caveat that 

we are only examining single strains of each pathogen, we might imply that PA and SA 
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may have more similar structure-property relationships and levels of attachment compared to 

UPEC.

The differences between the single pathogen and multipathogen models for the two types 

of molecular descriptors are summarized in Tables 1 and 2. It is clear that there are 

not large differences in the predictive power of the single pathogen models compared 

to the multipathogen model for each family of descriptors. This is illustrated graphically 

in Figure 6, which summarizes the SEP values for pathogen attachment generated by 

pathogen-specific models or the by the multipathogen model. Clearly, the test set SEP 

values for predicted attachment from single pathogen models are similar to those from 

the multipathogen models. This suggests strongly that multipathogen models are effective 

and have quantitative predictive power that is similar to the individual pathogen models. 

Consequently, it should be feasible to generate models that can make accurate quantitative 

predictions of pathogen attachment to materials for more than three pathogens. The fact that 

such models can be derived relatively simply by use of indicator variables as descriptors 

shows that the structure-activity (attachment) relationships between the pathogens may be 

described well by a nonlinear additive function such as a log-linear relationship. There 

is also a degree of inductive transfer of knowledge (a type of “read across”) where 

internal models predicting the adhesion of each pathogen learn from each other.45 It has 

been proposed relatively recently that multitask machine learning models have improved 

generalization performance because they use information from related tasks as an inductive 

bias.46 The efficacy of the multipathogen model may also be aided by the moderate 

correlations between the attachment of the three pathogens to the polymer library. Bacterial 

pathogens whose attachment to polymers are not as strongly correlated with each other may 

not be predicted as reliably by future multipathogen models.

Models Using Computed versus Experimental Descriptors

The results summarized in Tables 1 and 2 suggest that nonlinear models derived from 

computed and experimental descriptors have similar abilities to predict attachment of 

pathogens to polymers in the test set (SEP values of 0.19 and 0.21 log F). However, 

the linear model of pathogen attachment based on computed molecular descriptors had 

significantly better predictive power than that based on experimental ToF-SIMS and WCA 

descriptors (0.28 versus 0.33 log F). Consequently, it may be argued that it is not essential to 

obtain ToF-SIMS data for model generation, unless these types of experimental descriptors 

provide additional insight into the role of surface chemistry on pathogen attachment 

compared with computed molecular descriptors. Table 4 summarizes the statistics of the 

two multipathogen models. Figure 7 compares the performance of the two descriptor types 

in predicting the attachment of the test set.

The model using experimental ToF-SIMS ion peaks uses a less complex neural network 

architecture but more descriptors than the model using computed molecular descriptors. 

However, the number of effective weights in the model, derived from the Bayesian 

regularization, are similar. It is clear that both methods for encoding the molecular 

characteristics of the polymers generated very good, robust, and predictive attachment 

models, and the model quality is similar. The SEP values for all models derived using 
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computed molecular descriptors are equal to or lower than those derived using experimental 

descriptors, as Figure 7 shows. The performance of the UPEC model using ToF-SIMS ions 

peak and computed molecular descriptors are comparable despite the model derived from 

ToF-SIMS descriptor being sparser (10 relevant descriptors compared to 18).

The weights of the descriptors in the linear multipathogen models gives some insight into 

the role surface chemistry plays in attachment of the three pathogens. The unweighted 

contributions the computed descriptors made to the model are shown in Figure 3. Curiously, 

in this linear model, the contributions that the PA and SA indicator variables made to 

the model were very similar, suggesting similar structure−property relationships at the 

polymer surfaces and similar levels of pathogen attachment, despite having fundamentally 

different cell surfaces and signal transduction machineries (Gramnegative vs Gram-positive). 

In spite of being easy to calculate and capable of generating a robust model that makes 

good predictions of the attachment of pathogens to polymers, the molecular descriptors 

are quite arcane and difficult to interpret in terms of surface chemistry. The majority of 

computed descriptors make negative contributions to the attachment model, meaning that, 

when these molecular properties are larger, pathogen attachment is reduced. The largest 

negative contribution was from the PVSAs6 descriptor, and the most positive contribution 

was from the TIC1 descriptor. The PVSAs6 descriptor is one of a group of P-VSA-like 

descriptors that is defined as the amount of the molecular van der Waals surface area (VSA) 

having a property P in a certain (binned) range.47 TIC1 is the first order neighborhood total 

information content of the molecule, a measure of molecular (graph) complexity. It is related 

to Shannon entropy.48

The unweighted contributions the sparse experimental descriptors make to this model are 

summarized graphically in Figure 5. Significantly, WCA makes a negligible contribution 

to pathogen attachment in either individual or multipathogen models. Previously Hook 

et al. had also found no correlation between contact angle and pathogen attachment.23 

Conventional wisdom teaches that reduced bacterial attachment often requires bound 

water in hydrophilic structures. As noted by Hook et al.,23 previously, these relatively 

hydrophobic materials clearly do not function by that mechanism. This is consistent with 

the poor predictive power provided by a surface wettability parameter across these diverse 

material libraries for eukaryotic and prokaryotic cells, discussed in detail elsewhere.43

In the multipathogen attachment models using the ToF-SIMS surface analysis data, the 

indicator variables for the pathogen identity were also significant, with the UPEC indicator 

variable making a much larger negative contribution to the model than the PA and SA 

indicator variables. This may be due to the significantly lower average attachment of UPEC 

to the polymer library. The C4H+ ion peak made the largest negative contribution to the 

model, approximately 3 times larger than the next most significant ion peaks (Figure 5). 

The dominance of hydrocarbons in the ion fragments associated with negative loadings 

is consistent with the view that monomers with pendent hydrocarbon groups bonded to 

the ester moiety are more resistant to bacterial attachment. The exceptions are the C2H3
+, 

C3H-, C6H11
+, and C6H6O+ ions that made positive contributions to the model. The C2H3

+ 

fragment ion is present in the spectra of all polymers and is likely to have contributions 

from both the backbone and the polymer pendant groups. The C3H− peak is present 
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at elevated intensities in the mass spectra of monomers 7 and 14 and is consequently 

assigned to a fragment of an aromatic ring. C6H11
+ could be an aliphatic chain or a 

cyclohexane ring fragment (e.g., from monomer 5), but it makes negligible contribution 

to the multipathogen linear model in any case. The C6H6O+ ion fragment comes mostly 

from the phenol fragment present in monomer 7. These contributions toward the log F model 

imply that small aliphatic groups (all hydrophobic) on the meth/acrylate polymer were 

correlated with low bacterial attachment, as was previously reported by Hook et al. and Epa 

et al.23,24 The more hydrophilic phenolic fragment C6H6O+ appears to enhance attachment 

of pathogens in the multipathogen model, again consistent with these previous studies. It 

was conjectured that the functional groups in the polymer facilitated hydrogen bonding 

with peptidoglycans, teichoic acids, proteins, lipopolysaccharides, lipoteichoic acids, or 

exopolysaccharides present on the bacterial cell surface or that are components of the 

biofilms.

There is relatively little difference between the test set standard errors of prediction (Figure 

6) for models using computed or experimental descriptors (ToF-SIMS ion peak dominated). 

Models derived from experimental descriptors have larger prediction errors for the PA 

attachment but smaller errors for UPEC models (this may also be an artifact of the small 

training set size of this data set). Clearly, the computed descriptors avoid the need for 

further experiments, but the experimental descriptors may be easier to interpret in terms of 

how the surface chemistry of the polymers influences pathogen attachment. Generally, for 

quantitative structure-property relationship (QSPR) methods, the use of computed molecular 

descriptors is desired as it allows properties of new molecules to be predicted prior to 

synthesis. The use of experimentally derived data may be useful in cases where the 

characterization experiments have been carried out for another purpose or where other 

synthesis or processing properties have a significant effect on their performance.

As mentioned previously, work on bacterial attachment modeling has been reported Epa et 

al.,24 Hook et al.,23 and Sanni et al.25 The simplest modeling approach was by Sanni et al.,25 

where the authors generated a linear attachment model using a composite descriptor derived 

from the log of the octanol/water partition coefficient (log P) and number of rotatable bonds 

in the monomer. The model was derived from only (meth)acrylate materials containing 

hydrocarbon pendant groups, and it failed to predict attachment for other chemistries that 

promoted greater biofilm formation. The predictions inside this restricted chemical space 

domain of applicability had an r2 of 0.67, good for such a simple linear model.

Hook et al.23 employed a partial least squared (PLS) linear method using ions obtained 

from ToF-SIMS experiments to find the relationship between surface chemistry and bacterial 

attachment. The authors were able to make relatively good models for PA and SA with r2 

values of 0.68 and 0.76, respectively, while PLS analysis failed to find a statistically valid 

predictive model for UPEC (r2 < 0.3). In this paper, we were able to make substantially 

improved quantitative models predicting the polymer attachment of all three pathogens (see 

Table 3). This shows that sparse selection of features, combined with an optimal nonlinear 

modeling method BRANN, can create significantly improved predictive models compared to 

those generated by PLS or other linear methods with the same or similar sets of descriptors.
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Epa et al.’s24 sparse selection of computed, interpretable molecular descriptors generated 

bacterial attachment models consistent with those of the current study, presented in Table 

2. It is interesting to note that, despite different sets of descriptors being used, models of 

similar quality were obtained.

Model Predictions of Pathogen Attachment to a New Polymer Array

Prediction of the attachment properties of test sets partitioned from a large data set 

and never used to generate the model is a pragmatic way of measuring the predictive 

power of computational models. However, the ultimate test is to predict the attachment 

properties of new polymers. The models derived for bacterial attachment from computed 

molecular descriptors were used to estimate bacterial attachment for two new libraries, one 

containing 61 polymers made from 12 monomers Table S6) and the other containing 368 

polymers derived from 21 monomers (Table S7). Attachment data were obtained for PA and 

UPEC. As explained in the Experimental Methods, these polymer attachment experiments 

used a different fluorescent protein, mCherry instead of GFP, to generate the data used 

to validate model predictions. Differences between the different fluorophores meant that 

quantitative comparisons between the predicted and measured pathogen attachment to these 

new monomers could not be made, and classification methods were employed. Predictions 

were made for low, medium, or high pathogen attachment of polymers in the two new 

libraries based on the distribution of predicted log F values. Predictions of the multipathogen 

and single pathogen attachment (log GPF fluorescence) models were also normalized and 

assigned to the low, medium, and high attachment classes. Prediction accuracy was assessed 

by use of truth tables, and the percentage of class membership was correctly predicted.

As the truth tables for classification by models in Figure S7 show, the individual pathogen 

attachment models had similar accuracies to those for the multipathogen models for 

predicting the class membership of the new materials in both new polymer arrays. The 

class membership for attachment of PA to the larger polymer library was predicted with 

accuracies of 60% and 71% for the multipathogen and specific PA models, respectively. 

The class membership prediction accuracies were slightly lower for the smaller validation 

polymer library. In this case, PA attachment was predicted with 55% and 40% accuracies 

for the multipathogen model and specific PA model, respectively. Given that classes would 

be assigned correctly 33% of the time by chance, the specific PA model attachment to 

the smaller polymer library predictions are not statistically significant but those of the 

multipathogen model are. Adhesion of UPEC to polymers is generally lower, and the 

experimental error is larger; however, both models predicted the class membership with 

reasonable accuracies (39% and 46% for multipathogen and single pathogen models, 

respectively). Although this study did not allow us to assess the predicted pathogen 

attachment to new polymer libraries quantitatively, it does strongly suggest that the models 

have useful predictive capabilities that will be helpful in selecting improved materials with 

the ability to resist the attachment and biofilm formation for multiple pathogens.
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Conclusions

We have shown that it is possible to predict the individual attachment of three important 

pathogens to a library of copolymers using a single model that employs a specific set of 

descriptors. This model can predict the attachment of each pathogen to the polymers with 

accuracies similar to those of models specifically trained to predict a single pathogen. 

This offers the possibility of developing a generalized description of the response of 

multiple bacterial strains to materials. This could ultimately become a framework with 

which new materials with broad pathogen resistance can be designed and optimized, rather 

than relying on “one-pathogen-at-a-time” modeling methods now widely used. Such new 

materials promise reduced materials-associated infections in the clinic and more broadly in 

other nonclinical applications where formation of biofilms is problematic. We anticipate the 

multipathogen modeling approach may be extendable to more than three pathogens and to 

experiments where several bacterial species (or strains) are coexisting. This will open the 

way for a comprehensive predictive capability that could be used to assess the suitability of 

novel materials for highly effective implantable materials.
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Abbreviations

SA Staphylococcus aureus

PA Pseudomonas aeruginosa

UPEC uropathogenic Escherichia coli

QSPR quantitative structure-property relationships BRANN, Bayesian 

Regularized Artificial Neural Network MLR, multiple linear 

regression SEP, standard error of prediction

SEE standard error of estimation

ToF-SIMS time-of-flight secondary ions mass spectrometry WCA, water contact 

angle

log P logarithm of the octanol/water partition coefficient MLREM, 

multiple linear regression with expectation maximization
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Figure 1. 
Schematic of the processes employed in the microarray fabrication, pathogen screening, 

modeling of data, and prediction of pathogen attachment for new polymers.
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Figure 2. 
Measured and predicted attachment (estimated using the log of the GFP fluorescence, log F) 

of the multipathogen attachment model employing computed molecular descriptors.
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Figure 3. 
Weights of the descriptors in the linear multipathogen attachment model. The error bars 

represent the standard errors in the parameter estimations from the MLR model. See Table 

S2 for an explanation of these descriptors and Discussion for the relevance to the model.
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Figure 4. 
Measured and predicted attachment (estimated using the log of the GFP fluorescence, log F) 

of the multipathogen attachment model employing ToF-SIMS ion peak features and WCA 

from experiments as descriptors.
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Figure 5. 
Weights of the descriptors in the linear multipathogen attachment model (different scales for 

the ToF-SIMS ion peaks, WCA, and the indicator variables for the three pathogens). The 

error bars represent the standard errors in the parameter estimations from the MLR model.
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Figure 6. 
Standard errors of prediction values for the test set for single pathogen versus multipathogen 

models generated using molecular descriptors or experimental surface analytical ToF-SIMS 

descriptors.
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Figure 7. 
Test set SEP values for the four pathogen attachment models for the two types of 

descriptors. The experimental descriptors were dominated by ToF-SIMS ion intensities, and 

the WCA did not play a significant role.

Mikulskis et al. Page 26

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2022 August 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Mikulskis et al. Page 27

Table 1
Statistics of Pathogen Attachment Neural Network (BRANN) Models Based on Molecular 

Descriptors
a

training set test set

model Nhidden Neff Ndes SEE r2 SEP r2

multipathogen (MLR) 22 22 0.30 0.59 0.28 0.60

multipathogen 7 488 41 0.16 0.86 0.19 0.81

P. aeruginosa 8 246 30 0.17 0.88 0.17 0.87

S. aureus 7 310 18 0.12 0.87 0.14 0.78

uropathogenic E. coli 7 33 18 0.30 0.78 0.24 0.94

a
Neff is the number of effective adjustable weights, Ndes is the number of descriptors employed, Nhidden in the number of nodes in the hidden 

layer, SEE is the standard error of estimation, SEP is the standard error of prediction, and r2 is the squared correlation coefficient of the predictions.
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Table 2
Statistics of Pathogen Attachment BRANN Models Based on ToF-SIMS Molecular Ion 

Peaks and WCA Values
a

training set test set

model Nhidden Neff Ndes SEE r2 SEP r2

multipathogen (MLR) 16 16 0.31 0.55 0.33 0.52

multipathogen (BRANN) 5 378 79 0.12 0.76 0.21 0.74

P. aeruginosa 6 173 57 0.14 0.92 0.22 0.81

S. aureus 8 259 19 0.11 0.88 0.14 0.84

uropathogenic E. coli 2 44 10 0.24 0.87 0.24 0.84

a
See Table S3 for ToF-SIMS descriptors used in the models.
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Table 3

Correlation Matrix (r2) for the Attachment of the Three Pathogens to the Polymer 
Library

PA SA UPEC

PA 1.00 0.52 0.66

SA 0.52 1.00 0.72

UPEC 0.66 0.72 1.00

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2022 August 29.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Mikulskis et al. Page 30

Table 4

Statistics of Multipathogen Attachment Models
a

training test

descriptor set N hidden N eff Ndes SEP r 2 SEE r2

computed 7 488 41 0.16 0.86 0.19 0.81

experimental 5 378 79 0.12 0.76 0.21 0.74

a
See Tables S1 and S3 for details of the descriptors used in the models.
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