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Abstract

We present a combination of a CNN-based encoder with an analytical forward map for solving 

inverse problems. We call it an encoder-analytic (EA) hybrid model. It does not require a 

dedicated training dataset and can train itself from the connected forward map in a direct learning 

fashion. A separate regularization term is not required either, since the forward map also acts as 

a regularizer. As it is not a generalization model it does not suffer from overfitting. We further 

show that the model can be customized to either find a specific target solution or one that follows 

a given heuristic. As an example, we apply this approach to the design of a multi-element surface 

magnet for low-field magnetic resonance imaging (MRI). We further show that the EA model 

can outperform the benchmark genetic algorithm model currently used for magnet design in MRI, 

obtaining almost 10 times better results.
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1 Introduction

Cause and effect are central to every physical measurement in the classical world. For 

systems that are described by an exact mathematical model, the parameters of the model 

represent the cause, and the output of the model the effect. Given a mathematical model, 

this mapping from a set of input parameters to an output state is straightforward. However, 

an inverse mapping from the output of such models to a complete set of input parameters, 

termed an inverse problem, is much more challenging [1]. If the forward map, ℱ (from 

cause to effect) is linear with respect to the model parameters i.e. y = ℱx, with x being 

the model parameters, then the inverse problem of finding x given y and ℱ is also linear. 

However, a non-linear forward map leads to non-linear inverse problems [2], the majority of 
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which are also ill-posed. Linear inverse problems with a finite number of model parameters 

can be formulated as a linear system of equations with the forward map (ℱ) written in the 

form of a matrix. In the case when ℱ is a full rank square matrix, then a unique inverse 

solution can be obtained by constructing a ℱ−1 matrix, although it may quickly become 

intractable for large matrices. If this is not the case, but the linear inverse problem is of the 

type which can be written using Fredholm’s integral equation of the first kind [3], then this 

integral equation can be discretized and written in Ax = b linear form, where A is a matrix 

that depends on the forward map, b is the measured signal output and x is the set of model 

parameters. Non-linear inverse problems are usually more challenging and have no general 

method for solving them. The most common method is to try to approximate the non-linear 

forward map to a linear one. A conventional neural network creates a map between input 

and output by learning from a training data set. Numerical inversion of the forward neural 

network can be derived, for example, from a back-propagation algorithm [5, 6] assuming 

duality of the weights. However, this technique can be affected by overfitting unless a very 

large training dataset is available and small batch sizes are used [44].

For inverse problems which can be formulated into the form of Fredholm integral equation 

and digitized, a Hopfield neural network has been utilized to solve the problem [7]. The 

network energy of the Hopfield network decreases with network operation and so the total 

variation error for the inverse problem can be parameterized to the Hopfield network energy. 

However, this suffers from the problem that an optimum solution can not be obtained 

unless a suitable initial state has been set [8, 9]. These techniques all require training 

of the neural network in the forward direction and are dual port networks (input and 

output). In contrast, Ogawa et al [10] have suggested a triple port network with weights 

being the third one. The inverse solution is thus extracted from this third port. This 

technique was termed the answer-in-weights technique. However, up to now this technique 

has been demonstrated only for smaller networks with a handful of neurons. Recently, 

multi-layer perceptron artificial neural networks were also used in solving inverse problems 

for designing photonic systems [11, 12]. Ardiz-zone et al [13] have devised an invertible 

network which incorporates bidirectional training to obtain automatically the inverse map 

once the network is trained in the forward direction. However, the invertible network has 

currently only been demonstrated for low-dimensional inputs and outputs. The emergence of 

deep convolutional neural networks (CNNs) has boosted the impact of artificial intelligence. 

CNNs help in preserving the dimensionality of the input and thus incorporate intelligent 

feature extraction. A CNN based encoder–decoder architecture has been used widely for 

solving inverse problems in imaging, see Lucas et al [47] and the citations therein. The basic 

idea behind this is that the feature maps are spatially compressed by an encoder network, 

then increased back to the size of the output image by a decoder network. In medical 

imaging some applications of this are in image denoising, deconvolution, superresolution, 

image reconstruction [14, 16, 19, 46] and image-to-image compression [36, 39, 40]. A large 

training data-set for these problems can easily be obtained by adding deformations and 

noise to openly available online image datasets. A bottleneck in these methods is that the 

knowledge of neural networks is constrained to the data seen during training. Attempts have 

been made to combining domain-based knowledge with the deep-learning models [17, 18] to 

improve their performance.
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The inverse problem solutions provided in the literature are mostly case-dependent [20]. 

So far, no general framework for solving inverse problems using neural networks has been 

developed. Solving a general inverse problem (either linear or non-linear) related to physical 

measurements using deep neutral network faces the following challenges. First, many of 

these inverse problems are regression problems. This means that the output of the model 

are quantitative numbers and could demand a certain level of accuracy. Second, the training 

datasest for many such problems are not easily available. The problem becomes especially 

complicated if trying to train an AI model to predict a solution which is not present in 

the statistical distribution of the training dataset. An example of this is finding an input 

corresponding to a target output which is better, with respect to a defined metric, than 

all other outputs present in the training dataset. Third, solving these inverse problem still 

requires a prior knowledge of the regularization constraint to be entered into the system [21].

In this present work, in order to overcome some of the limitations outlined above, we 

suggest a simple method for solving inverse problems using a deep neural network when 

the analytical expression or the forward map (ℱ) is known. This is accomplished by 

constructing an encoder-analytic (EA) hybrid model. We demonstrate here the capability 

of such an hybrid model by solving a magnet design problem. We compare our result with 

the very commonly used genetic algorithm (GA) technique.

2 Encoder-analytic hybrid AI model

Our model is a modification of a standard encoder-decoder model. An example case model 

is shown in figure 1 in which the neural network in the decoder part has been replaced 

by an analytic equation solver. The analytic equation is simply the known forward map ℱ, 

and the encoder part is a deep neural network based architecture which will be optimized 

to map the inverse solution using the forward problem defined in the decoder. For our 

specific example shown in figure 1 the encoder is CNN based model which encodes the 

information stored in the bigger size input to a lower-resolution output. We term this 

combination to be an encoder-analytic hybrid model (EA model). The addition of the 

analytical part avoids introduction of the usual regularization term. Regularization terms 

provide additional (known) constraints which could be useful in defining complex forward 

map. If such regularization constraints are required, then they will be part of the forward 

map definition only in our EA model.

The EA model presented here is an optimization model and not used for generalization, 

which will become clearer with the example case discussed in the later sections. Thus it 

utilizes a direct-learning approach, as opposed to indirect-learning in which a large training 

dataset is created using the analytical forward map. In a regular encoder–decoder AI model, 

this training dataset is then used to train both the encoder and decoder parts. The accuracy 

of the optimum solution to the inverse problem, i.e. the output from the encoder, in such an 

indirect learning method strongly depends on how well the decoder part (the forward map) 

is trained and how appropriate is the training dataset. In the EA model proposed here, the 

accuracy is not compromised as there is no neural network to be trained in the decoder part 

(alternatively this would be analogous to a usual encoder-decoder model where the decoder 

is trained to 100% accuracy). The optimization EA model presented here does not suffer 
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from overfitting. Overfitting happens when a model becomes too attuned to the data on 

which it was trained. That means the model could explain the training data very well, but it 

will fail on another unknown dataset.

In fact, one can see the overfitting of an generalization AI model in the response of a 

validation or test dataset. In our case, there is no unknown test/validation dataset. The EA 

model works on one problem at a time and attuning to that problem is not considered as 

overfitting. Once the problem is defined it will adjust its weights and biases to find the 

solution for that specific problem and is not supposed to work in a generalized manner by 

design.

3 Magnet array design

The particular example we have chosen to demonstrate the performance of the EA model is 

that of producing a desired three-dimensional magnetic field distribution using an array of 

individual rare-earth permanent magnets. Applications of different field distributions include 

magnetic resonance imaging [22, 27], particle accelerators and stellarators [23, 24] used for 

plasma confinement.

For a single isolated magnet with magnetization M r i , the forward map given in equation 

(1) provides the expression for the magnetic field as a volume (V) integral: H ( r ).

H ( r ) = ∇r ⋅ 1
4π∫

V

∇ri ⋅ M r i

r − r i
d3 r i . (1)

M  is the magnetization vector. Engel-Herbert and Hesjedal [26] have derived an analytical 

solution to equation (1) for cuboid magnets, represented by equations (5)–(7) in that 

publication. For arrays of individual magnets, the contributions from each of the elements is 

added together.

Surface magnets are mostly designed by manually (brute force technique) tuning the 

position and orientation of a small number of cubic or cuboid permanent magnets [28–31]. 

Under certain assumptions, such as the desired region of interest (ROI) is far from the 

magnet surfaces and the magnetization fills a single region with smooth curved boundaries, 

the inverse of the magnet design problem could be made linear. Such linear-inverse problem 

could then be solved using Tikhonov type regularization as discussed earlier [4, 24]. 

However, in situations where the ROI cannot be assumed far from the magnet, the sparsity of 

the magnets and the non-unity permeability interactions between individual magnets cannot 

be ignored, and the inverse magnet design problem becomes highly non-linear.

There are two broad classes of optimization target fields: one which consists of a linear static 

magnetic field gradient perpendicular to the surface of the magnet [28, 32, 33, 35, 41, 45,49] 

or a localized ‘sweet spot’ consisting of a ROI in which the magnetic field is relatively 

homogeneous in all three dimensions [29, 30, 34, 42, 43, 48, 50]. In the next section we will 

use the EA model we developed to find an optimized magnet design solution by varying the 
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relative positions of the individual permanent cubic magnets. The optimized design should 

thus have a relatively low strength linear gradient perpendicular to the magnet surface which 

can be used for spatial encoding to the surface of the magnet and at the same time a uniform 

field in the x–y plane in a ROI defined at a set distance above the surface of the magnet 

array.

4 Method

We use a 6 × 6 grid of permanent cubic magnets with the remanent magnetization of 

1.32T, that corresponds to widely available NdFeB magnets. The optimization task is to 

find the best z-positions for each magnet for the magnetic field distribution defined above. 

For simplicity, we keep the orientation of all the magnets same. The limits of the search 

space for the program for each magnet is ±5 mm translation along the z-axis (see figure 

2). Note that a brute force technique finding the best solution with 1 mm steps would 

require scanning 1136 permutations. The analytic part in our EA model, the forward map 

ℱ, uses the analytic expression given by Engel-Herbert and Hesjedal [26]. The encoder part 

shown in figure 1 corresponds to this surface magnet example only. It is based on CNN 

architecture and is implemented in TensorFlow which is an open-source machine learning 

software. It is similar to the encoder of an image-to-image compression model [15, 36, 39, 

40], which encodes the information stored in the bigger size input to a lower-resolution 

output. There are a few subtle differences however there. First, the encoder part of regular 

image-to-image compression model would have the number of channels increasing while 

decreasing the resolution. While in our case the input of the encoder is a 3D target field 

image of dimensions 32 × 32 × 6 (Nx–pixel × Ny–pixel × Nz–pixel) with three channels (which 

corresponds to the three components of the vector field) and a convolution neural network 

is then utilized to compress it to a single channel 6 × 6 grid output (compressed 2D image) 

which are the positions of a 6 × 6 grid of magnets. Here, Nx–pixel, Ny–pixel and Nz–pixel are 

the the number of pixels in the x, y and z-directions in the ROI respectively. By doing this, 

we preserve the spatial information of the magnets and connect it to the spatial variation of 

the magnetic field. Second difference is that in a regular image-to-image compression model 

the encoder is always trained along-side the decoder part, while in our case as the decoder 

part is not a neural network so just the encoder gets trained.

One of the standard figures of merit to design the 3D magnetic field from an MRI magnet 

is (to minimize) the inhomogeneity of the field, which is calculated as max(B) − min(B)
mean(B) , 

where B is the dominant component, i.e. Bx, By or Bz, of the field. The magnetic field 

generated by surface magnets decreases rapidly as a function of distance from the surface 

(in the z-direction). (Gz). To find the design with a linear-gradient the figure of merit that is 

minimized here is thus defined over a reduced field Br = B – zGz. This criterion also results 

in the most homogeneous field in the xy-plane. For obtaining a reasonable signal-to-noise 

ratio, the criterion that only magnetic field values above 24.46 mT, corresponding to a 1 

MHz Larmor frequency, were considered. For the current case, a custom loss (error) term 

is defined which is nothing but these inhomogeneity values. The error is then propagated 

backwards to update the weights and biases of the encoder model. The model is sent 

back and forth till a desired figure of merit is achieved. This EA model thus does not 
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require a dedicated training data set. It determines the solution by iteratively learning from 

the forward map of the problem (the analytic part) and fine-tuning the parameters for 

subsequently constructing the inverse map (the encoder part). Along with the custom loss 

function, for optimization we have used the Adam optimizer available in TensorFlow. It is a 

stochastic gradient descent optimizer that is based on adaptive estimation of first-order and 

second-order moments. The output of the encoder part is passed through a tanh activation 

function which generates output between −1 and +1. After proper scaling this is converted to 

the z-position in a desired range. Although we do train the encoder part of the model with 

the analytic part, but as we do not require any dedicated training dataset, so the batch size is 

set to one. This could also help to avoid falling into local minima [44].

5 Results/discussion

A ROI of dimensions 16 mm × 16 mm × 6 mm was defined centred at a distance 26 mm 

above the zero position of the magnets. Figure 3(a) shows the result of the inhomogeneity 

convergence obtained using the EA model for ±5 mm search range. The starting point 

was all of the magnets with the same z-location, which gave an inhomogeneity above 

150000 ppm, which rapidly decreased to 5000 ppm after 200 epochs. These results were 

compared to those from a widely-used GA. The best GA design was with inhomogeneity 

of 10 889 ppm while the best EA design has 4065 ppm for ±5 mm search range. This 

shows that the inhomogeneity in the EA model is about 2.5 times better than that obtained 

using multiple-runs of the GA. An existing python evolutionary algorithm framework called 

DEAP is used for implementing the GA code and been optimized to design low field MRI 

systems earlier [37, 38]. Each run of the GA code had 150 generations each with crossover 

and mutation happening between 10 000 populations in each generations. The minimum 

inhomogeneity obtained using GA is marked with a red dashed line in figure 3(a).

One possible explanation for the better magnet design output from EA model as compared to 

the GA model could be found in the finite number of pre-defined constituents that are used 

to construct the parent states used in GA model. For example, here as the search range was 

±5 mm with step of 1 mm that amounts to 11 pre-defined constituents. However, the EA 

model looks for optimized solution anywhere in the ±5 mm range. Another benefit of EA 

over GA model is that in the EA model the size of the search space can be increased without 

effectively increasing the time required to find the solution. This can be seen in figure 3(a), 

when the search space was increase to ±10 mm, the over all convergence rate was similar 

while the best results obtained using EA model was brought down to approximately 1122 

ppm, which is almost 10 times better than GA output. The corresponding magnet design 

is given in table 1 in the supplementary information (https://stacks.iop.org/IP/38/035003/

mmedia). Here the 6 mm thick ROI is centered at z = 0 mm. The time the EA model takes 

for 10k iterations is around 6 h. Figures 3(b)–(d) show the line plots for the Bx,By and Bz 

components in the ROI along the x-, y- and z-directions for the best solution found by the 

EA model.

We have also investigated the use of the encoder–decoder model proposed by Beliy et al [51] 

and also a simple encoder model where only the inverse map was trained using a training 

dataset generated using GA. Our results showed that the best magnet design in these cases is 
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very similar to that obtained obtain via the GA model. These models are also very sensitive 

to how realistic is the target field. On the other hand, the EA model can look for a field 

which satisfies a certain heuristic and this heuristic might or might not include the target 

field. Thus the EA model can be used in two modes: either to find a target input or to find 

a solution that follows a certain heuristic. In the second case, where a pre-defined heuristic 

will be used as a custom loss, it is not important what the target field looks like. As the 

EA model gets trained in a direct learning fashion (without any dedicated training data set) 

to find a solution for a given target field and/or a given heuristic so it is not affected by 

over-fitting.

6 Conclusion

We have shown a hybrid artificial intelligence optimization model to solve inverse problems 

where the mathematical formulation for the forward map is known. Our hybrid model has 

two parts similar to encoder–decoder models with the decoder part being replaced by the 

known analytical forward map. The encoder part is CNN based deep neural network which 

compresses the input magnetic field data to a 2D magnet design output. We show that such 

an EA hybrid model can be used to find an optimized inverse solution and does not require 

any training dataset, since the encoder can learn directly from the analytic part. Normally, 

solving such inverse problems would require some form of regularization; however in this 

case the analytic part also acts as a regularizer.

We have demonstrated that we can use such an EA model to design a surface MRI magnet. 

We compared the results obtained using the EA model with commonly used GA model 

which are non-deterministic, stochastic in nature. The EA model performs almost 10 times 

better than a standard GA model. We also note that, in addition to enabling optimal design, 

an inverse problem solution could also be used for detection of faults [25] in these magnetic 

system which could be performed by studying the distribution of magnetization.
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Figure 1. 
EA hybrid model. The left side of the model is the encoder which takes a 3D target vector 

field as the input, and outputs a 1D position vector of length 36 for the 36 permanent 

magnets used here (6 × 6 magnet array, see figure 2). The right side of the model is the 

analytic part (ℱ) and does not have any neural network inside. It takes the magnet design 

output of the encoder and generates a 3D vector field, which is compared with the target 

field and the error is propagated backwards.
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Figure 2. 
Surface magnet constructed using 36 permanent cubic magnets. The blue and red color 

corresponds to the north and south pole respectively. The ROI of dimension (16 × 16 × 6 

mm3) is depicted in green color.
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Figure 3. 
(a) Convergence of the inhomogeneity values in our EA model. The blue and green curves 

show results from single EA model runs for ±5 mm and ±10 mm search range respectively. 

The red dashed line marks the best inhomogeneity value obtained using GA model. (b)–(d) 

Simulation results for the best magnet: Bx, By, Bz line plots at the center of the ROI along 

x-, y- and z-direction. Magnet design data is provided in the supplementary information.
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