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Abstract

Hepatitis C virus (HCV) infection remains a major global health problem, with 130-170 million 

chronically infected individuals at risk to develop severe liver disease, including hepatocellular 

carcinoma. Although the development of direct-acting antivirals offers cure in large majority of 

patients, there are still a number of clinical challenges. These include DAA failure in a significant 

subset of patients, difficult-to-treat genotypes and limited access to therapy due to high costs. 

Moreover, recent data indicate that the risk for liver cancer persists in patients with advanced 

fibrosis. These challenges highlight the need for continued efforts towards novel therapeutic 

strategies for HCV. Over the past two decades, advances in HCV model systems have enabled a 

detailed understanding of HCV entry and its clinical impact. Many of the virus-host interactions 

involved in HCV entry have now been identified and explored as antiviral targets. Furthermore, 

viral entry is recognized as an important factor for graft reinfection and establishment of persistent 

infection. HCV entry inhibitors, therefore, offer promising opportunities to address the limitations 

of DAAs. Here, we summarize recent advances in the field of HCV entry and discuss perspectives 

towards the prevention and cure of HCV infection and virus-induced liver disease.

Global impact of HCV infection

There are an estimated 130-170 million people worldwide who are chronically infected 

with hepatitis C virus (HCV) [1]. These individuals are at higher risk to develop severe 

liver disease, including cirrhosis and hepatocellular carcinoma (HCC) [1]. Although recent 

approval of direct-acting antivirals (DAAs) has improved the outlook for HCV patients, the 

risk for liver disease persists even after viral cure, once fibrosis has been established [2]. 
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Furthermore, not all patients respond to therapy and the high costs of DAAs limit access 

to treatment even in high-resource countries [3–5]. A detailed, comprehensive knowledge 

of HCV entry will guide development of novel antiviral approaches [6, 7]. Here, we review 

recent insights into the HCV entry process and its clinical impact as an antiviral target. 

We also discuss perspectives to use our accumulating knowledge of HCV entry to develop 

strategies aimed at the prevention and cure of HCV infection and virus-induced liver disease.

Molecular virology and cell biology of HCV entry

HCV is a member of the flaviviridae family, classified in the hepacivirus genus. HCV, 

with a positive sense single-stranded RNA genome of 9.6 kilo-base pairs, is a cytoplasmic-

replicating virus [8]. The HCV capsid is surrounded by a host-derived lipid envelope, in 

which the E1 and E2 glycoproteins are embedded, and is associated with serum lipoproteins 

such as apolipoprotein E (ApoE) [9].

The first step in HCV infection is low-affinity binding to heparan moieties in heparan 

sulfate proteoglycans on the surface of hepatocytes [10–12], an interaction at least partially 

mediated through virion-associated ApoE [13–15]. The cellular low-density lipoprotein 

receptor (LDL-R) also interacts with virion-associated apolipoproteins to facilitate further 

binding [16–19]. Furthermore, the scavenger receptor class B type I (SR-B1) binds to 

virion-associated lipoproteins [20] and the HCV E2 protein [21]. The lipid transfer activities 

of SR-BI may expose regions of E2 involved in interactions with other cellular factors, such 

as cluster of differentiation 81 (CD81) [22, 23]. CD81, the first receptor identified for HCV, 

binds directly to E2 [24] and also mediates critical post-binding events [25, 26], including 

activation of signaling pathways. Indeed, CD81 engagement was shown to activate signaling 

through the epidermal growth factor receptor (EGFR) [27] and Rho and Ras GTPases [28, 

29].

Tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN) have also been 

identified as HCV entry factors [30, 31]. CD81 interacts with CLDN1 to form a co-receptor 

complex [32], which along with the HCV particle is ultimately internalized into clathrin-

containing endosomes [26]. Given that CD81-CLDN1 co-receptor complex formation could 

be detected at basolateral membranes but not in TJ-associated pools of CLDN1 [32], it 

is likely that the nonjunctional pool of CLDN1 predominantly contributes to HCV entry. 

OCLN is another TJ protein required for a post-binding step of HCV entry [31, 33], 

although its specific role in entry has not yet been elucidated.

Other cellular factors have been implicated in HCV entry, yet their functions remain 

enigmatic. For example, the Niemann-Pick C1-like 1 cholesterol absorption receptor 

interacts with virion-associated cholesterol to mediate binding or internalization steps 

[34]. Transferrin receptor 1 and cell death-inducing DFFA-like effector b are thought 

to be involved in late entry steps [35, 36]. Recently, the provirus integration site for 

Moloney murine leukemia virus (Pim1) kinase was identified as an additional HCV entry 

factor, perhaps by contributing to CD81-CLDN1 receptor complex formation via PI3K-Akt 

signaling [37]. The serum response factor binding protein 1 (SRFBP1) also interacts with 

CD81 to coordinate host cell penetration [38]. SRFBP1 was proposed to mediate actin-
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dependent translocation following HBV receptor binding [38], and may also contribute to 

CD81-CLDN1 co-receptor complex assembly.

Ultimately, these virus-host interactions lead to the internalization of HCV into Rab5-

containing early endosomes, where low pH induces viral fusion [26, 39]. The HCV fusion 

protein is still unknown. Although initial predictions pointed to E2 as being the fusion 

protein, the recently solved crystal structure of the E2 core ectodomain suggests otherwise 

[40, 41]. Indeed, the E2 ectodomain is globular and did not undergo conformational changes 

when exposed to low pH [40, 41], suggesting that E2 acts through a novel mechanism or 

that E1 may be involved in inducing membrane fusion [42]. Further mechanistic studies, 

and likely a structure of the E1/E2 heterodimer, will be necessary to elucidate the fusion 

mechanism.

Another route of HCV entry relies on direct cell-to-cell spread [43]. In this context, CD81, 

CLDN1 and SR-BI likely play key roles [43, 44], as do the viral envelope glycoproteins 

[45]. However, CD81 may be dispensable for cell-to-cell spread, at least in hepatoma cell 

lines [45]. Signaling pathways activated by EGFR may also contribute to cell-to-cell spread 

[27, 29]. Furthermore, virion-associated host factors such as ApoE have been implicated in 

cell-to-cell transmission [46].

HCV entry and liver disease

Viral entry is thought to play a major role in the pathogenesis of HCV infection. In the 

context of liver transplantation – which is severely hampered by rapid reinfection of the graft 

– it has been shown that viral quasispecies are rapidly selected following transplantation 

[47] and the resulting selection of viral variants contributes to pathogenesis. Indeed, escape 

from antibody-mediated neutralization selects for viral variants with a highly efficient entry 

phenotype associated with altered receptor usage [48]. Mutations in E2 that modulate 

interactions with CD81 were implicated in mediating viral evasion at a post-binding step 

[49]. Altered usage of SR-B1 has also been observed [50], and increased levels of CLDN1 

and OCLN modulate recurrence of HCV infection following liver transplantation [51]. 

These findings highlight viral entry as an important determinant for graft reinfection and 

the establishment of persistent infection. They also point to entry as an attractive therapeutic 

target, including preventing reinfection of the liver graft.

Entry as a therapeutic target to address current limitations of DAAs

HCV entry offers many advantages as an alternative antiviral target. Entry inhibitors block 

the virus life cycle at a step before persistent infection can be established. Indeed, in 

the absence of de novo infection, hepatocyte turnover likely results in the elimination of 

infected hepatocytes and leads to clearance of infection [52]. Furthermore, hosttargeting 

agents aimed at entry factors have a higher genetic barrier for resistance, as the targets 

are not encoded by highly mutable viral genomes. Entry inhibitors also act synergistically 

with DAAs [53, 54], which would allow their incorporation into combination regimens. 

Interestingly, adding an entry inhibitor to DAA therapy reduces breakthrough of DAA-

resistant variants, and entry inhibitors have been shown to have strong antiviral activity 
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against DAA-resistant variants [55, 56]. Furthermore, many of the entry inhibitors including 

natural compounds may be produced at low costs offering a perspective to improve access to 

therapy in particular in countries or patients with limited resources. The complex and multi-

step HCV entry process offers many antiviral targets, and our accumulating knowledge of 

the virus-host interactions involved in HCV entry opens perspectives to develop antivirals 

targeting these steps.

Entry inhibitors in preclinical and clinical development

Several compounds have been shown to block HCV binding. These include negatively 

charged small molecules, such as heparin, heparin-like compounds and polyphenols, 

which non-specifically compete for binding to cell-surface HSPGs [10, 11, 57–63]. Other 

molecules target specific receptor binding. For example, the small molecule 281816 (a 

dibenzothiepin derivative) disrupts the interaction between the HCV E2 protein and CD81 

[64]. Similarly, oleanane-type triterpenes and the terpenoid saikosaponin b2 bind to E2 and 

disrupt E2-CD81 interactions to inhibit HCV entry [65, 66]. Monoclonal antibodies against 

CD81 and SR-BI also interfere with HCV binding [67–69] and to protect human liver 

chimeric mice from HCV infection [67–69]. Antibodies targeting SR-BI also reduced viral 

spread in already infected mice [68, 69]. Conversely, neutralizing antibodies targeting highly 

conserved epitopes on the viral envelope are also able to inhibit viral binding to CD81 

[70–72]. Polyclonal immunoglobulins against HCV have been shown to protect human 

liver chimeric mice from HCV infection [73,74] and are being evaluated in a clinical 

trial in the context of graft reinfection (NCT01804829). Antibodies targeting non-virally 

encoded virion-associated epitopes such as ApoE also interfere with virion binding [9], as 

do peptides derived from ApoE [75].

Following the binding step, CD81-CLDN1 co-receptor complex formation is a critical 

step in HCV entry and therefore a most promising antiviral target. Furthermore, the 

CD81-CLDN1 co-receptor complex has no known physiological role, thereby limiting off-

target effects. Monoclonal antibodies targeting the extracellular loops of CLDN1 inhibit 

CD81-CLDN1 association at a post-binding step. These antibodies inhibit infection by all 

major genotypes of HCV as well as patient isolates [76–78]. Furthermore, anti-CLDN1 

monoclonal antibodies prevent HCV infection in human liver chimeric mice [52, 79]. 

Notably, one such antibody cured chronically infected mice in monotherapy [52], providing 

proof-of-concept for the use of entry inhibitors to cure chronic viral infection. Similarly, 

peptides targeting CLDN1 inhibit HCV entry at a post-binding step [80]. Small molecules 

targeting EGFR and EphA2, kinases involved in CD81-CLDN1 association, block HCV 

infection in cell culture and in human liver chimeric mice [27]. An EGFR inhibitor, 

erlotinib, is in clinical trials for chronic HCV infection (NCT02126137).

Other post-binding steps in the HCV entry process are also targets. SR-BI receptor 

antagonists, including the arylketoamide ITX5061, inhibit HCV infection following binding 

[81]. ITX5061 is in a phase 1b clinical trial (NCT01560468). Arbidol (a synthetic indole) 

and silibinin (a flavonolignan from milk thistle) inhibit HCV clathrin-dependent endosomal 

trafficking by interfering with dynamin-2-mediated membrane scission [82, 83]. Ezetimibe, 

a small molecule in clinical use as a cholesterol-lowering agent, inhibits HCV infection by 
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interfering with NPC1L1 internalization [34]. A clinical trial has been initiated to study 

its effects on chronically infected patients (NCT02126137). Recently, an antihistamine 

approved for allergy treatment, chlorcyclizine hydrochloride, was shown to inhibit infection 

by all genotypes of HCV, likely by targeting a late entry step linked to fusion [84].

Fusion is a critical step in the entry of enveloped viruses, including HCV. Indeed, the fusion 

inhibitor enfuvirtide – a peptide preventing conformational rearrangements of the human 

immunodeficiency virus (HIV) fusion protein – is approved to treat HIV infections. Our 

limited understanding of the HCV fusion mechanism currently prevents similar rational 

design approaches for HCV. However, peptides derived from E2 were shown to inhibit 

HCV infection at a post-binding step [85]. Furthermore, flunarizine (a piperazine derivative 

approved for the treatment of migraine headaches) inhibits HCV genotype 2 fusion by 

targeting E2 and a potential fusion peptide within E1 [42]. An antimalarial compound, 

ferroquine, inhibited HCV fusion, possibly through its interactions with E1 [86]. HCV 

infectivity inhibitor-1 (HCV-II1) is thought to lock the HCV envelope in a pre-fusion 

conformation, thus blocking HCV fusion [87]. An HCV-specific triazine inhibitor, EI-1, 

interacts with E2 to inhibit a post-binding pre-fusion entry step [88].

Given that lipids play a central role in membrane fusion, molecules that target lipids 

also modulate fusion of enveloped viruses [89]. Lipid-mimicking rigid amphipathic fusion 

inhibitors insert into the lipid core of virion envelopes, where they block curvature changes 

required for fusion of HCV [90, 91]. Membrane fluidity is another critical determinant 

of fusion. Indeed, modulators of membrane fluidity such as phenothiazine derivatives, 

benzhydrylpiperazines and curcumin inhibit HCV fusion [92–94]. Similarly, polyunsaturated 

endoplasmic reticulum-targeting liposomes deplete cellular cholesterol levels to inhibit 

HCV fusion [95]. Clinical cholesterol-lowering drugs such as statins and ezetimibe inhibit 

HCV infection [34, 96], perhaps at least partially by modulating membrane fluidity. 

Type II photosensitizers such as amphiphilic thiazolidine derivatives (e.g. LJ001) generate 

singlet oxygen species that oxidize phospholipids, leading to biophysical alterations in 

viral envelopes [97, 98]. These alterations were proposed to increase positive curvature 

and reduce membrane fluidity, both of which inhibit membrane fusion by increasing the 

energetics required.

Clearly, many compounds acting by distinct mechanisms show great promise in pre-clinical 

models; ultimately, clinical studies will determine the future role of HCV entry inhibitors. 

Several clinical trials are ongoing and will reveal the perspectives for entry inhibitors against 

HCV to prevent liver graft reinfection or to treat patients who fail DAA-based therapy.

Perspectives

Since the discovery of HCV approximately 25 years ago, major advances in HCV model 

systems have enabled a detailed understanding of HCV virology and virus-host interactions. 

These advances allowed the development of DAAs targeting virus replication steps, which 

have dramatically improved the standard of care for chronically infected patients. Recent 

advances in the understanding of HCV entry and its clinical impact have set the stage 
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for further development of novel antiviral approaches, which could address the current 

limitations of DAAs including resistance/failure and access to therapy.
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Figure 1. 
A simplified scheme of the HCV entry pathway, showing major viral and cellular 

determinants of viral entry. Inhibitors targeting the main entry steps are also shown.
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Table 1
HCV inhibitors targeting different steps of the HCV entry process. Inhibitors in bold are 
in clinical trials.

Entry step Compound Target/Mechanism References

Primary binding Heparin-like molecules HCV-HSPG interaction [6, 7, 8, 53]

Epigallocatechin gallate HCV-HSPG interaction [54–56]

Tannic acid Docking of HCV at cell surface [57]

Gallic acid Docking of HCV at cell surface [58]

Delphinidin Docking of HCV at cell surface [59]

Specific binding 281816 HCV E2-CD81 interaction [60]

Oleanane-type triterpenes HCV E2-CD81 interaction [61]

Saikosaponin b2 HCV E2-CD81 interaction [62]

Anti-CD81 antibody HCV E2-CD81 interaction [63]

Anti-SRBI antibody HCV-SRBI interaction [64, 65]

Anti-ApoE antibody HCV-associated ApoE-HSPG interaction [5]

Neutralizing antibodies HCV E1/E2 [66–68]

Polyclonal anti-HCV IgG HCV E1/E2 [69, 70]

ApoE-derived peptide HCV-associated ApoE-HSPG interaction [71]

Post-binding Anti-CLDN1 antibodies CD81-CLDN1 coreceptor complex [48, 72–75]

CLDN1-derived peptide CD81-CLDN1 coreceptor complex [76]

Erlotinib CD81-CLDN1 coreceptor complex; signaling [23]

ITX5061 SRBI lipid transfer activity [77]

Internalization Arbidol HCV endosomal trafficking [78]

Silibinin HCV endosomal trafficking [79]

Fusion Flunarizine HCV genotype 2 fusion (E1 and/or E2) [38]

Ferroquine HCV fusion (E1) [81]

RAFIs HCV envelope curvature [85, 86]

Phenothiazines HCV envelope fluidity [87]

Benzhydrylpiperazines HCV envelope fluidity [88]

Curcumin HCV envelope fluidity [89]

Polyunsaturated liposomes Cellular membrane (cholesterol depletion) [90]

Statins Cellular membrane (cholesterol depletion) [91]

Ezetimibe Cellular membrane (cholesterol depletion) [30]

Photosensitizers (LJ001) Lipid oxidation (viral envelope) 92, 93]
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