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Abstract

Radiomics is an emerging field which extracts quantitative radiology data from medical images 

and explores their correlation with clinical outcomes in a non-invasive manner. This review aims 

to assess whether radiomics is a useful and reproducible method for clinical management of 

hepatocellular carcinoma (HCC) by reviewing the strengths and weaknesses of current radiomics 

literature pertaining specifically to HCC. From an initial set of 48 articles recovered through 

database searches, 23 articles were retained to be included in this review after full screening. 

Among these 23 studies, seven used a radiomics approach in magnetic resonance imaging (MRI). 

Only two studies applied radiomics to positron emission tomography-computed tomography (PET-

CT). In the remaining 14 articles, a radiomic analysis was performed on computed tomography 

(CT). Eight studies dealt with the relationship between biological signatures and imaging findings, 

and can be classified as radiogenomic studies. For each study included in our review, we computed 
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a Radiomics Quality Score (RQS) as proposed by Lambin et al. We found the RQS (mean ± 

standard deviation) was 8.35 ± 5.38 (out of a possible maximum value of 36). Although these 

scores are fairly low, and radiomics has not yet reached clinical utility in HCC, it is important 

to underscore the fact that these early studies pave the way for the radiomics field with a focus 

on HCC. Radiomics is still a very young field, and is far from being mature, but it remains a 

very promising technology for the future for developing adequate personalized treatment as a 

non-invasive approach, for complementing or replacing tumor biopsies, as well as for developing 

novel prognostic biomarkers in HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is the most common liver cancer. HCC mostly occurs in 

patients with chronic liver disease such as cirrhosis or severe fibrosis. Its major causes 

are chronic liver disease due to chronic hepatitis B and C virus infection or metabolic 

liver disease, such as non-alcoholic steatohepatitis or alcoholic liver disease. HCC is poorly 

symptomatic at the early stages of its development, and often becomes symptomatic only at 

an advanced stage when curative treatments are no longer possible. Therefore, the prognosis 

of HCC remains unsatisfactory [1].

Recently, tumor heterogeneity in terms of biological and genomic characteristics has 

become a topic of interest in cancer research [2]. Tumor heterogeneity can be demonstrated 

not only within primary cancers and various metastases (inter-tumor heterogeneity), but also 

within the same tumor (intra-tumor heterogeneity). Numerous publications have shown that 

HCCs are extremely heterogeneous both in terms of their genotype and phenotype [3, 4]. 

Thus, not only can different patients develop very different types of cancer, but tumors 

in the same patient can also be heterogeneous. Patient prognosis depends strongly on this 

phenotypic expression, which could be evaluated, for example, by analyzing pathological 

characteristics, such as the histological grade of the tumor [5] and microscopic vascular 

invasion [6]. Many staging systems including clinical, biological and imaging data have 

been developed such as the Barcelona Clinic Liver Cancer staging system [7], the Cancer 

of the Liver Italian Program [8, 9], and the Okuda criteria [10]. However, beyond the size 

and number of lesions, none of these scoring systems include information on the tumor 

phenotype that affects patient survival in a significant way [11]. Diagnostic and therapeutic 

trends in liver cancer are changing; they now tend to be determined by significant biological 

and genomic tumor characteristics.

Tumor characterization via medical imaging

Among all techniques for interrogating tumor phenotype and heterogeneity, medical imaging 

provides several advantages [11, 12]. By allowing an evaluation of tumors as a whole, 

in a minimally invasive and reproducible manner, imaging is complementary to biopsies, 

which only provide samples that are not always representative of tumor heterogeneity 
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[13]. Since biopsies merely aim to sample a small portion of the tumor and since it is 

difficult to repeat pathological assessments, they provide limited information regarding 

tumor heterogeneity. Conversely, medical imaging methods such as Computed Tomography 

(CT), positron emission tomography (PET) or magnetic resonance imaging (MRI) can 

capture a tumor in its entire 3D extent with features that reflect tumor heterogeneity.

Such cross-sectional imaging techniques have become essential tools for modern oncology 

management [14–16]. Protocols for image acquisition based on these modalities have 

reached such a degree of sophistication that, in order to make a therapeutic decision, tissue 

biopsy is often unnecessary when the diagnostic criteria for HCC are all met [17–19]. 

However, the methods currently used to assess the prognosis of patients with HCC based 

on the acquired images remain very rudimentary and are simply based on size, number of 

tumors and vascular invasion as subjectively analyzed by the radiologist [7–10, 20–22]. As 

we recognize the need to go beyond tumor size and number, given the sophistication of 

the acquired imaging signal, advanced image analysis tools are now required to establish 

biomarkers from the complex signal that can be extracted from the images [22].

Going beyond size: semantic descriptors of tumor appearance

To improve image-based tumor characterization, one possible approach is based on a 

qualitative or semi-quantitative analysis as performed by an expert radiologist, using 

standardized reading scores. Examples of characteristics generally described for HCC 

by radiologists include the presence of arteries in the tumor, a peri-tumoral halo or the 

tumor’s apparent heterogeneity. Specifically, an HCC could be encapsulated, well-limited, or 

homogeneously hypervascularized after contrast injection or, on the contrary, poorly limited 

with vascular invasion, heterogeneously enhanced, and with a larger area of necrosis. This 

type of image analysis is referred to as a “semantic” analysis of lesions, where images 

are evaluated by one or more trained radiologists on the basis of semantic descriptors of 

the lesion(s) that are part of the established radiologist's lexicon. Another example of a 

semantic approach to tumor classification is the LI-RADS classification, which provides a 

standardized radiological lexicon built by consensus among expert radiologists [24].

The semantic analysis approach is interesting because it often provides a pathophysiological 

explanation for the image descriptions. The process of quantifying visual semantic 

characteristics unfortunately remains quite subjective and difficult to reproduce. Its 

implementation also poses practical problems because this process is very time consuming 

and cannot easily be used with large populations or integrated into clinical practice. 

Furthermore, its low inter- and intra-observer reproducibility makes this analysis difficult 

to standardize.

Going beyond size: quantitative descriptors of tumor appearance

Another approach to image-based tumor characterization is based on quantitative image 

descriptors. This type of approach is known as radiomics, and it aims to quantify the 

morphological appearance of the tumor, i.e. its imaging phenotype, using mathematically 

defined quantitative features [25, 26]. This type of quantitative information cannot be easily 

assessed by a radiologist, but can be computed with specialized computer algorithms. 
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Radiomics was popularized by Lambin et al. [27] in 2012, and since then has been 

extensively used as a methodology to assess tumor heterogeneity, in order to establish a 

correlation with clinical or biological information [28].

Radiomics

The radiomics analysis pipeline consists of three main steps: 1) tumor segmentation, 2) 

computation of radiomic features within the segmented tumoral region and 3) feature 

selection, model building and classification. The details of every stage of the radiomics 

pipeline, their implementation details and limitations have been discussed at length 

elsewhere [29–32]. Here, we briefly mention a few details that are relevant to the findings of 

our review.

Segmentation—Radiomics requires a tumor region to be segmented in order to define the 

image region where quantitative descriptors are to be computed. Automatic segmentation 

has been a long-standing objective in the computer vision and machine learning fields 

[33], but remains difficult to achieve. This is why most radiomic studies still rely on 

manual tumor segmentation. Unfortunately, the use of manual segmentation not only makes 

measurements long and tedious, but also hinders measurement reproducibility. It should be 

noted that in studies using semantic analysis, segmentation is not necessary [34–41].

Radiomics features—Many different quantitative descriptors (features) have been 

proposed for radiomics [29–32]. The studies included in the present review typically use 

first-order, second-order and higher-order mathematical descriptors such as grayscale matrix 

analysis (co-occurrence) which take into account the relationships between neighboring 

pixels. A filtering step – using for example Gauss Laplacian filters – is usually performed 

prior to any analysis to reduce noise and improve performance [42–47].

Feature selection, model building, classification—One difficulty of radiomics is 

that it can calculate thousands of parameters for a single image. If the number of parameters 

is very high and the population is small – a few dozen patients – there is a significant risk 

of overfitting. This means that in practice there will almost always be parameters which are 

statistically correlated with the patient's condition. In order to limit this risk, the number 

of parameters must be significantly reduced before building the statistical model and, if 

possible, the model needs to be tested on an independent imaging dataset, obtained for 

instance at a different institution [33].

Limitations—The limitations of this method have been thoroughly analyzed in previous 

review articles about radiomics [23, 29–32, 33, 48–50]. One of the main limitations is 

the lack of standardization of image acquisition (such as slice thickness, choice of MRI 

sequences, or timing after contrast injection), which could add a strong bias to the post-

imaging workflow.

Radiogenomics

Radiogenomics refers to the study of correlations between genome and molecular 

measurements on one hand, and radiological measurements (either quantitative or qualitative 
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(semantic) features) on the other [51–53]. Radiomics and radiogenomics have the 

same objective, which is to transform radiological images into objective measurements 

representative of tumor heterogeneity.

Purpose

In recent years, we have seen the publication of numerous studies on radiomics with the 

objective of improving the diagnosis and stratification of patients with primary liver cancer 

[54]. The results of these studies are sometimes contradictory and complex to reproduce. 

Unfortunately, many of the published works show significant methodological weaknesses 

which have limited their impact in clinical practice. Therefore, there is a need to clarify the 

performance of radiomics as a prognostic and stratification tool for HCCs. We have thus 

conducted this systematic review to assess whether radiomics is a useful and reproducible 

method for HCC clinical management in terms of diagnosis, prognosis, and estimation of 

treatment response by reviewing the advantages and qualities of the studies included.

Review Strategy

This review was conducted for all studies, published between January 1, 2007 and December 

23, 2018 following PRISMA (Preferred Reporting Items for Systematic Reviews and 

Meta-analyses) guidelines [55]. We used the following search strategy on PubMed and 

Embase: ((hepatocellular carcinoma [Title]) AND (radiomics [Title] OR radiogenomics 

[Title] OR omics [Title])), and a combination of associated terms from the controlled 

MeSH vocabulary. The final search was carried out on 23 December 2018. Inclusion 

criteria were (1) human studies, (2) English language studies, (3) full-text articles, and 

(4) studies reporting on semantic features or radiomics analyses for HCC. Exclusion criteria 

included (1) animal/experimental studies, (2) abstracts, reviews, and case reports, (3) only 

ultrasound-related studies, and (4) no investigation on clinical outcome. The existing review 

articles were analyzed in order to look for possible additional references. Every abstract was 

reviewed for initial selection, then all chosen articles were fully downloaded. Two authors 

(T.W, F.O), and an independent third one (B.G) when consensus was needed, individually 

assessed each manuscript to eliminate those which failed to meet the inclusion criteria. 

In accordance with the forementioned search strategy and criteria, we found 48 articles 

and excluded the 7 review articles, 7 articles without clinical outcomes, 7 articles focusing 

on other etiology, 2 ultrasound-related studies, 1 animal study, 1 article without imaging 

analysis. Finally, we included 23 of them in this review after a full screening (Figure 1). The 

articles are summarized in Table 1.

The 23 studies included in our review use either semantic or quantitative features. Table 2 

describes the types of features used in the quantitative and semantic categories. Quantitative 

features are computed via specialized software and are classified as first-order, second-order 

and high-order descriptors, and morphological features. Semantic features are visually 

interpreted by radiologists and are defined as 8 features in our review: two-traits predictor 

of venous invasion, non-smooth tumor margin, peritumoral enhancement, tumor size, tumor-

liver difference, PET-CT positivity, infiltrative pattern, and mosaic appearance.
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For all articles, we analyzed separately 5 phases within the radiomics workflow: 1) data 

inclusion and selection criteria, 2) description and standardization of imaging acquisitions, 

3) feature extraction, 4) exploratory analysis, and 5) modelling [25]. For each study, the 

following data were systematically recorded: first author, year of publication, type of study 

(retrospective or prospective), number of centers (single or multicentric), objective of the 

study (tumor detection, tumor characterization, prognosis, response to treatment), type of 

imaging modality (MRI, CT, PET), technical parameters (slice thickness, magnetic field for 

MRI scanner, contrast media injection), main radiomics investigated features, presence of 

genomic consideration, number of patients used to build the model, presence of a validation 

cohort.

Findings

Variations in imaging modalities and protocols

Seven out of the 23 studies used a radiomics approach on MRI images [34, 35, 56–60]. 

In one study, both CT and MRI were investigated [35]. MRI provides a very rich signal 

which can provide accurate information about tumors. However, MRI acquisitions are very 

difficult to standardize, with numerous acquisition parameters and many variations between 

manufacturers. MRI is also sensitive to many artifacts which complicate the reproducibility 

of measurements such as motion artifacts – cardiac or respiratory – due to long acquisition 

times or field homogeneity with image and signal distortion consequences.

Only two studies performed a radiomics analysis using PET-CT data [36, 61]. Blanc et al. 

[61] reported that a radiomics signature computed on whole-liver PET 18F-FDG imaging 

performed before transarterial radioembolization using Yttrium-90 predicted progression-

free survival (PFS) and overall survival (OS) in patients with advanced HCC. This study 

is unique, as it uses an integrative whole-liver approach and underlines the importance of 

including not only tumor lesions, but also adjacent liver parenchyma to explore the tumor 

environment. In all the other articles, a radiomics analysis was carried out on CT images. 

An iodine contrast agent was used in all studies [35, 37–47, 62, 63] except for one study 

[64]. Four studies dealt with quantitative features from contrast-enhanced multiple-phase CT 

images [43–45, 63] and all six studies dealt with only semi-quantitative (semantic) features 

from contrast-enhanced multiple-phase CT images [35, 37–41]. The other four studies 

focused on quantitative characteristics from contrast-enhanced single-phase CT images 

(arterial phase in 2 [42, 47], portal phase in 2 [46, 62]).

Clinical utility of radiomic analysis in HCC

Eight studies dealt with the relationship between the biological variables and imaging 

findings. For these studies we used the terminology of radiogenomics – which is used often 

in the literature – although most refer to microscopic vascular invasion (MVI), which is not 

a genomic variable [35, 37, 39–41, 58, 59, 62]. Four of these articles considered MVI in 

their studies [34, 38–40]. In fact, MVI is the most frequent feature required to investigate 

the correlation with pathological characterization in our review. Among all the included 

articles, eight studies focused on the correlation between radiomic features and MVI [34, 35, 

37–41, 63]. Bakr et al. [63] demonstrated that quantitative features which capture the lesion 
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texture, intensities, and shape extracted from triphasic CT images had a better accuracy in 

MVI prediction, compared to two previously reported signatures based on semantic features, 

radiogenomic venous invasion [39, 40] and TTPVI [35].

The percentage of studies performed for tumor characterization was 61% (14/23) [34, 35, 

56–60, 36–41, 47, 63]. Rahman et al. [47] described a model that distinguished successfully 

different lesion types (focal nodular hyperplasia, hepatic adenomas, and HCC) and normal 

liver tissue with high predicted classification performance accuracy, as compared to two 

human readers.

Twelve out of 23 (52%) studies were conducted to aid with prognosis [36, 39, 40, 42–46, 58, 

61, 62, 64]. Cozzi et al. [64] have described a radiomics method to predict tumor response 

and OS for patients treated with arc-based radiotherapy. The other 11 studies were related 

to tumor prognosis after surgical treatment. Zheng et al. [42] demonstrated that a radiomics 

score measured on baseline CT was a prognostic factor of the outcome in patients that 

underwent liver resection for HCC. They concluded that this score might be complementary 

to the current staging system and help to stratify individualized treatments for solitary HCC 

patients.

Quality assessment of radiomic studies for HCC

In order to assess the quality of the included studies, we used the Radiometric Quality Score 

(RQS) as published by Lambin et al [25]. The RQS – which evaluates 16 key components of 

the radiomics workflow – is a tool which analyzes the quality of a radiomics study. It assigns 

points according to 16 different criteria, for a maximum score of 36. In our work, the RQS 

score was evaluated by two authors (T.W. and F.O.) first separately, and then by consensus.

The results of the quality evaluations according to the RQS criteria are presented in Table 

1 and the RQS scores are detailed by criteria in Figure 2. The RQS (mean ± standard 

deviation) was 8.35 ± 5.38 (representing 23% of the possible maximum value of 36). All 

but one study were scored below 18 (50%) due to a lack of external validation and/or to 

retrospective design as shown in Table 1. The main three reasons for entirely insufficient 

scores in the reviewed articles are the lack of prospective design except in one study [59], 

the lack of validation except in four studies [38, 39, 42, 56], and the lack of open-access 

scientific data resources except in two studies [39, 42]. Additionally, no studies have 

attempted to analyze the cost-effectiveness of a radiomics approach applied to a specific 

clinical situation.

The prospective nature of the study is a major component of the RQS, representing almost 

20% of the total score (7 points out of 36). A prospective study ensures that included 

patients could undergo a consistent imaging protocol, which would provide results that are 

more reliable as compared to a retrospective study. From all the studies included in the 

present review, all but one study [59] were retrospective evaluations.

Next, our analysis shows that existing radiomics studies in HCC have involved only 

relatively small patient populations, with an average number of patients of 110, with half of 

the studies including fewer than 100 cases. In addition, there is a general lack of validation 
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in an independent population. Most of the studies trained the algorithm and evaluated its 

performance in only a small group of patients, risking overfitting. In the RQS, the type of 

validation performed accounts for as much as 10/36 points (nearly 28%), with the highest 

score being given to validation on independent datasets. In this regard, one option is the use 

of open-access scientific data. If such data is available for a radiomics study, researchers will 

be able to use the data set for a validation, reproduction, or replication with various data sets 

[25]. However, the lack of open-access data for HCC is a considerable limitation and results 

in a reduction by as many as 4 points of the total RQS.

Finally, only two articles used semi-automatic segmentation [60, 61], while all the other 

studies used manual tumor delineation. This could be a limitation to reproducibility and a 

barrier to the deployment of the method because as noted earlier, manual segmentation is 

very operator dependent and time consuming.

Semantic analysis of HCC

Eight articles in our review used semantic analysis, with potentially interesting results 

allowing the standardization of vascular invasion criteria for example [34–41]. One study 

examined the correlation between a quantitative and a semantic characteristic in an attempt 

to reduce variability between observers [38].

Discussion

The results of our analysis showed that the overall quality of the studies evaluated is low 

or moderate with an average RQS score of 8.35 or less than 25%. This underlines the fact 

that radiomics is a very recent technique that has not yet reached maturity, but also that this 

method is complex and that its standardization is not easy to implement.

This review demonstrates the importance of being cautiously optimistic about radiomic 

signatures. This new field of research has led to an accumulation of experimental and 

analytical work, most often thorough retrospective studies. However, the consolidation and 

standardization of experimental methods has not been standardized or validated. This review 

shows that the published radiomics work on HCC adds little to scientific knowledge, and 

is currently not useful in clinical decision-making. However, radiomics is a very young 

field, far from being mature, and has many subtleties that researchers are just learning 

to manage. In any case, the automated calculation of oncology biomarkers based on data 

acquired through medical imaging remains a necessity and is a matter of urgency. Radiomics 

in its current conventional form is probably only one step in the development of reliable 

computational image biomarkers that will probably need to be specific to a particular organ 

and tumor type. Although the results of our review article are somewhat disappointing 

regarding HCC, it is important to note that these published studies pave the way of the 

field of radiomics with a focus on HCC. Also, they demonstrate that radiomics is a topic of 

current interest for the management of HCC.

For radiomics to be a promising option for personalized medicine, it becomes clear that 

the methods of analysis should be standardized and automated. Radiomics is particularly 

interesting in the case of HCC because this tumor has an extremely varied phenotype, 
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depending not only on the tumor type but also on the underlying liver disease, and 

this phenotype has a direct impact on the evolution of cancer. New prospective studies 

integrating the potential clinical impact are therefore needed. The standardization of image 

acquisition methods and injection protocols is also essential to obtain more relevant results.

Future perspectives in radiomic approaches for HCC

It is possible to yield additional accuracy with a standardization of CT-scan, MRI, and 

PET protocols. Further developments may also potentially require higher resolution imaging 

modalities. As a consequence, radiomics features may become promising diagnostic and 

prognostic factors, in particular with a carefully conducted validation. However, it will 

always be preferable for radiomics studies to be conducted on large patient populations, 

ideally collected prospectively from multiple institutions.

One of the most important challenges radiomics has to face is the segmentation step. 

An ideal segmentation will define correctly the target region in the image with high 

reproducibility and at a low cost. However, this ideal scenario is far from being achieved. 

Currently used manual drawings of the tumor region lead to a high rate of disagreement 

among interpreters, missing crucial information because of tumor heterogeneity [65]. The 

increasing number of publicly available liver image datasets and the development of 

machine and deep learning can help in automating liver and lesion segmentation [66, 67].

While radiomics in HCC is in the early stages of development, recent work in biology has 

shown that variations in phenotype, such as those potentially observed through imaging, are 

at least as important as tumor genetics. In this context, the search for imaging biomarkers 

able to quantify variations in tumor phenotype remains a promising avenue for research. 

These new biomarkers will have to be built in concordance with the latest discoveries 

in HCC biology, in order to attempt capturing the changes that occur specifically at the 

interface between the tumor and the liver, in terms of immune and inflammatory reaction, 

as well as tumor heterogeneity. A better quality of radiomics analyses can be achieved using 

the entire tumor [68] plus the peritumoral environment with a three-dimensional analysis. 

An analysis of the whole liver and factors affecting its structure, its baseline signal and 

vascularization should also be associated with the tumor analysis [61]. This is needed 

because liver cancer is not an isolated cancer, but occurs, in most cases, in a pre-existing 

chronic liver disease. To do this, we must develop computer analysis tools specific to the 

tumor under investigation, while also integrating the adjacent hepatic tissue into the analysis. 

Furthermore, there is a need to use more complex image analysis methods – including 

artificial intelligence – that are more specific than the simple accumulation of a large 

number of very generic and non-specific features used in “classical” radiomics.

Utilization of deep learning in radiomic analysis

In the case of conventional radiomics, the features mined by the discovery algorithm 

are designed by experts in medical image processing. However, a new class of artificial 

intelligence method known as deep learning may replace this approach [69]. Deep learning 

radiomics automatically identify – without human intervention – the best characteristics for 

a specific task [70–72] without the need for tumor segmentation. However, regardless of 
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the image analysis method used, it is essential to create public image databases of patients 

with chronic liver diseases, with or without cancer, and make them accessible to researchers. 

This will make it possible to improve patient prognosis and to anticipate response to therapy 

for patient stratification. Unfortunately, to our knowledge, there is only one open access 

database fulfilling those criteria for the liver [73].

Summary

In summary, radiomics is at its very early stages in HCC and many challenges need to 

be addressed. Nevertheless, recent pilot studies using radiomics in patients with HCC have 

shown their potential. For diagnosis, radiomics may help to characterize pathological and 

molecular liver lesions. For prognosis, image features could be independent prognostic 

factors, as they can be associated with tumor biological characteristics. By estimating 

treatment response, radiomics analysis may also help to pave the way for personalized 

medicine. Additionally, there is a need for prospective evaluations in order to allow 

for potential clinical applications. As shown in other cancer entities, radiomics may be 

an appropriate option for personalized treatment, as a non-invasive approach which can 

complement or replace tumor biopsy, and which can also be used to develop novel 

prognostic biomarkers in HCC patients.

Acknowledgment

The authors acknowledge the support of ARC, Paris and Institut hospitalo-universitaire, 

Strasbourg (TheraHCC IHUARC IHU201301187), as well as the European Union 

(ERC-AdG-2014-671231-HEPCIR, H2020-667273-HEPCAR). In addition, the authors are 

grateful to Camille Goustiaux, Christopher Burel, and Guy Temporal for their assistance in 

proofreading the manuscript.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: 
GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. 
CA Cancer J Clin. 2018; 68: 394–424. [PubMed: 30207593] 

2. Hiley C, de Bruin EC, McGranahan N, Swanton C. Deciphering intratumor heterogeneity and 
temporal acquisition of driver events to refine precision medicine. Genome Biol. 2014; 15: 453. 
[PubMed: 25222836] 

3. Lin DC, Mayakonda A, Dinh HQ, Huang P, Lin L, Liu X, Ding LW, et al. Genomic and 
Epigenomic Heterogeneity of Hepatocellular Carcinoma. Cancer Res. 2017; 77: 2255–2265. 
[PubMed: 28302680] 

4. Lu LC, Hsu CH, Hsu C, Cheng AL. Tumor Heterogeneity in Hepatocellular Carcinoma: Facing the 
Challenges. Liver Cancer. 2016; 5: 128–138. [PubMed: 27386431] 

5. Martins-Filho SN, Paiva C, Azevedo RS, Alves VAF. Histological Grading of Hepatocellular 
Carcinoma-A Systematic Review of Literature. Front Med (Lausanne). 2017; 4: 193. [PubMed: 
29209611] 

6. Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, Camerini T, et al. Predicting 
survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan 
criteria: a retrospective, exploratory analysis. Lancet Oncol. 2009; 10: 35–43. [PubMed: 19058754] 

7. Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. 
Semin Liver Dis. 1999; 19: 329–338. [PubMed: 10518312] 

Wakabayashi et al. Page 10

Hepatol Int. Author manuscript; available in PMC 2022 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



8. Prospective validation of the CLIP score: a new prognostic system for patients with cirrhosis 
and hepatocellular carcinoma. The Cancer of the Liver Italian Program (CLIP) Investigators. 
Hepatology. 2000; 31: 840–845. [PubMed: 10733537] 

9. Farinati F, Rinaldi M, Gianni S, Naccarato R. How should patients with hepatocellular carcinoma be 
staged? Validation of a new prognostic system. Cancer. 2000; 89: 2266–2273. [PubMed: 11147597] 

10. Okuda K, Ohtsuki T, Obata H, Tomimatsu M, Okazaki N, Hasegawa H, Nakajima Y, et al. Natural 
history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. 
Cancer. 1985; 56: 918–928. [PubMed: 2990661] 

11. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. 
Gut. 2014; 63: 844–855. [PubMed: 24531850] 

12. Sadot E, Simpson AL, Do RK, Gonen M, Shia J, Allen PJ, D’Angelica MI, et al. 
Cholangiocarcinoma: Correlation between Molecular Profiling and Imaging Phenotypes. PLoS 
One. 2015; 10 e0132953 [PubMed: 26207380] 

13. Sherman M, Bruix J. Biopsy for liver cancer: how to balance research needs with evidence-based 
clinical practice. Hepatology. 2015; 61: 433–436. [PubMed: 25308482] 

14. Hricak H. Oncologic imaging: a guiding hand of personalized cancer care. Radiology. 2011; 259: 
633–640. [PubMed: 21493796] 

15. Sharma B, Martin A, Stanway S, Johnston SR, Constantinidou A. Imaging in oncology--over a 
century of advances. Nat Rev Clin Oncol. 2012; 9: 728–737. [PubMed: 23149892] 

16. Tirkes T, Hollar MA, Tann M, Kohli MD, Akisik F, Sandrasegaran K. Response criteria in 
oncologic imaging: review of traditional and new criteria. Radiographics. 2013; 33: 1323–1341. 
[PubMed: 24025927] 

17. Elsayes KM, Hooker JC, Agrons MM, Kielar AZ, Tang A, Fowler KJ, Chernyak V, et al. 2017 
Version of LI-RADS for CT and MR Imaging: An Update. Radiographics. 2017; 37: 1994–2017. 
[PubMed: 29131761] 

18. An C, Rakhmonova G, Choi JY, Kim MJ. Liver imaging reporting and data system (LI-RADS) 
version 2014: understanding and application of the diagnostic algorithm. Clin Mol Hepatol. 2016; 
22: 296–307. [PubMed: 27304548] 

19. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management 
of hepatocellular carcinoma. J Hepatol. 2018; 69: 182–236. [PubMed: 29628281] 

20. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 
1981; 47: 207–214. [PubMed: 7459811] 

21. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, et al. 
New guidelines to evaluate the response to treatment in solid tumors. European Organization for 
Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer 
Institute of Canada. J Natl Cancer Inst. 2000; 92: 205–216. [PubMed: 10655437] 

22. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. 
Semin Liver Dis. 2010; 30: 52–60. [PubMed: 20175033] 

23. Savadjiev P, Chong J, Dohan A, Agnus V, Forghani R, Reinhold C, Gallix B. Image-based 
biomarkers for solid tumor quantification. Eur Radiol. 2019; doi: 10.1007/s00330-019-06169-w 

24. Tang A, Bashir MR, Corwin MT, Cruite I, Dietrich CF, Do RKG, Ehman EC, et al. Evidence 
Supporting LI-RADS Major Features for CT- and MR Imaging-based Diagnosis of Hepatocellular 
Carcinoma: A Systematic Review. Radiology. 2018; 286: 29–48. [PubMed: 29166245] 

25. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, 
et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin 
Oncol. 2017; 14: 749–762. [PubMed: 28975929] 

26. Cassinotto C, Dohan A, Zogopoulos G, Chiche L, Laurent C, Sa-Cunha A, Cuggia A, et al. 
Pancreatic adenocarcinoma: A simple CT score for predicting margin-positive resection in patients 
with resectable disease. Eur J Radiol. 2017; 95: 33–38. [PubMed: 28987689] 

27. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, et 
al. Radiomics: extracting more information from medical images using advanced feature analysis. 
Eur J Cancer. 2012; 48: 441–446. [PubMed: 22257792] 

28. Lee G, Lee HY, Ko ES, Jeong WK. Radiomics and imaging genomics in precision medicine. Precis 
Future Med. 2017; 1: 10–31. 

Wakabayashi et al. Page 11

Hepatol Int. Author manuscript; available in PMC 2022 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



29. Aerts HJ. The potential of radiomic-based phenotyping in precision medicine. A review JAMA 
Oncol. 2016; 2: 1636–1642. [PubMed: 27541161] 

30. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, et al. 
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat 
Commun. 2014; 5: 4006. [PubMed: 24892406] 

31. Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies 
for tissue characterization: a review of technology and methodological procedures. Br J Radiol. 
2017; 90 20160665 [PubMed: 27936886] 

32. O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A. Imaging intratumor 
heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res. 2015; 
21: 249–257. [PubMed: 25421725] 

33. Savadjiev P, Chong J, Dohan A, Vakalopoulou M, Reinhold C, Paragios N, Gallix B. 
Demystification of AI-driven medical image interpretation: past, present and future. Eur Radiol. 
2019; 29 (3) 1616–1624. [PubMed: 30105410] 

34. Kim KA, Kim MJ, Jeon HM, Kim KS, Choi JS, Ahn SH, Cha SJ, et al. Prediction of microvascular 
invasion of hepatocellular carcinoma: usefulness of peritumoral hypointensity seen on gadoxetate 
disodium-enhanced hepatobiliary phase images. J Magn Reson Imaging. 2012; 35: 629–634. 
[PubMed: 22069244] 

35. Renzulli M, Brocchi S, Cucchetti A, Mazzotti F, Mosconi C, Sportoletti C, Brandi G, et al. 
Can Current Preoperative Imaging Be Used to Detect Microvascular Invasion of Hepatocellular 
Carcinoma? Radiology. 2016; 279: 432–442. [PubMed: 26653683] 

36. Park JH, Kim DH, Kim SH, Kim MY, Baik SK, Hong IS. The Clinical Implications of Liver 
Resection Margin Size in Patients with Hepatocellular Carcinoma in Terms of Positron Emission 
Tomography Positivity. World J Surg. 2018; 42: 1514–1522. [PubMed: 29026966] 

37. Kuo MD, Gollub J, Sirlin CB, Ooi C, Chen X. Radiogenomic analysis to identify imaging 
phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. 
J Vasc Interv Radiol. 2007; 18: 821–831. [PubMed: 17609439] 

38. Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L. A radiomics nomogram for preoperative 
prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma. 
Diagn Interv Radiol. 2018; 24: 121–127. [PubMed: 29770763] 

39. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, Chan BK, et al. Decoding global gene 
expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007; 25: 675–680. 
[PubMed: 17515910] 

40. Banerjee S, Wang DS, Kim HJ, Sirlin CB, Chan MG, Korn RL, Rutman AM, et al. A computed 
tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in 
hepatocellular carcinoma. Hepatology. 2015; 62: 792–800. [PubMed: 25930992] 

41. Taouli B, Hoshida Y, Kakite S, Chen X, Tan PS, Sun X, Kihira S, et al. Imaging-based surrogate 
markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary 
results. Eur Radiol. 2017; 27: 4472–4481. [PubMed: 28439654] 

42. Zheng BH, Liu LZ, Zhang ZZ, Shi JY, Dong LQ, Tian LY, Ding ZB, et al. Radiomics score: 
a potential prognostic imaging feature for postoperative survival of solitary HCC patients. BMC 
Cancer. 2018; 18: 1148. [PubMed: 30463529] 

43. Akai H, Yasaka K, Kunimatsu A, Nojima M, Kokudo T, Kokudo N, Hasegawa K, et al. Predicting 
prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. 
Diagn Interv Imaging. 2018; 99: 643–651. [PubMed: 29910166] 

44. Zhou Y, He L, Huang Y, Chen S, Wu P, Ye W, Liu Z, et al. CT-based radiomics signature: a 
potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. 
Abdom Radiol (NY). 2017; 42: 1695–1704. [PubMed: 28180924] 

45. Chen S, Zhu Y, Liu Z, Liang C. Texture analysis of baseline multiphasic hepatic computed 
tomography images for the prognosis of single hepatocellular carcinoma after hepatectomy: A 
retrospective pilot study. Eur J Radiol. 2017; 90: 198–204. [PubMed: 28583634] 

46. Li M, Fu S, Zhu Y, Liu Z, Chen S, Lu L, Liang C. Computed tomography texture analysis to 
facilitate therapeutic decision making in hepatocellular carcinoma. Oncotarget. 2016; 7: 13248–
13259. [PubMed: 26910890] 

Wakabayashi et al. Page 12

Hepatol Int. Author manuscript; available in PMC 2022 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



47. Raman SP, Schroeder JL, Huang P, Chen Y, Coquia SF, Kawamoto S, Fishman EK. Preliminary 
data using computed tomography texture analysis for the classification of hypervascular liver 
lesions: generation of a predictive model on the basis of quantitative spatial frequency 
measurements--a work in progress. J Comput Assist Tomogr. 2015; 39: 383–395. [PubMed: 
25700222] 

48. Scrivener M, de Jong EEC, van Timmeren JE, Pieters T, Ghaye B, Geets X. Radiomics applied to 
lung cancer: a review. Translational Cancer Research. 2016; 5: 398–409. 

49. Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast 
cancer. Breast Cancer Res Treat. 2018; 169: 217–229. [PubMed: 29396665] 

50. Grossmann P, Gutman DA, Dunn WD Jr, Holder CA, Aerts HJ. Imaging-genomics reveals driving 
pathways of MRI derived volumetric tumor phenotype features in Glioblastoma. BMC Cancer. 
2016; 16: 611. [PubMed: 27502180] 

51. Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, Diskin SJ. Imaging genomics in 
cancer research: limitations and promises. Br J Radiol. 2016; 89 20151030 [PubMed: 26864054] 

52. Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG, Hricak H, et al. Background, current 
role, and potential applications of radiogenomics. J Magn Reson Imaging. 2018; 47: 604–620. 
[PubMed: 29095543] 

53. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. 
Radiology. 2016; 278: 563–577. [PubMed: 26579733] 

54. Jeong WK, Jamshidi N, Felker ER, Raman SS, Lu DS. Radiomics and radiogenomics of primary 
liver cancers. Clin Mol Hepatol. 2018. 

55. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009; 6 e1000097 
[PubMed: 19621072] 

56. Wu M, Tan H, Gao F, Hai J, Ning P, Chen J, Zhu S, et al. Predicting the grade of hepatocellular 
carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol. 2018. 

57. Zhou W, Zhang L, Wang K, Chen S, Wang G, Liu Z, Liang C. Malignancy characterization of 
hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn 
Reson Imaging. 2017; 45: 1476–1484. [PubMed: 27626270] 

58. Miura T, Ban D, Tanaka S, Mogushi K, Kudo A, Matsumura S, Mitsunori Y, et al. Distinct 
clinicopathological phenotype of hepatocellular carcinoma with ethoxybenzyl-magnetic resonance 
imaging hyperintensity: association with gene expression signature. Am J Surg. 2015; 210: 561–
569. [PubMed: 26105803] 

59. Hectors SJ, Wagner M, Bane O, Besa C, Lewis S, Remark R, Chen N, et al. Quantification of 
hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci 
Rep. 2017; 7: 2452. [PubMed: 28550313] 

60. Starmans, MPA, Miclea, RL, van der Voort, SR, Niessen, WJ, Thomeer, MG, Klein, S. Medical 
Imaging 2018: Image Processing. Angelini, ED, Landman, BA, editors. Vol. 10574. Spie-Int Soc 
Optical Engineering; Bellingham: 2018. [Epub ahead of print]

61. Blanc-Durand P, Van Der Gucht A, Jreige M, Nicod-Lalonde M, Silva-Monteiro M, Prior JO, 
Denys A, et al. Signature of survival: a (18)F-FDG PET based whole-liver radiomic analysis 
predicts survival after (90)Y-TARE for hepatocellular carcinoma. Oncotarget. 2018; 9: 4549–4558. 
[PubMed: 29435123] 

62. Xia W, Chen Y, Zhang R, Yan Z, Zhou X, Zhang B, Gao X. Radiogenomics of hepatocellular 
carcinoma: multiregion analysis-based identification of prognostic imaging biomarkers by 
integrating gene data-a preliminary study. Phys Med Biol. 2018; 63 035044 [PubMed: 29311419] 

63. Bakr S, Echegaray S, Shah R, Kamaya A, Louie J, Napel S, Kothary N, et al. Noninvasive 
radiomics signature based on quantitative analysis of computed tomography images as a 
surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging 
(Bellingham). 2017; 4 041303 [PubMed: 28840174] 

64. Cozzi L, Dinapoli N, Fogliata A, Hsu WC, Reggiori G, Lobefalo F, Kirienko M, et al. Radiomics 
based analysis to predict local control and survival in hepatocellular carcinoma patients treated 
with volumetric modulated arc therapy. BMC Cancer. 2017; 17: 829. [PubMed: 29207975] 

Wakabayashi et al. Page 13

Hepatol Int. Author manuscript; available in PMC 2022 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



65. Echegaray S, Gevaert O, Shah R, Kamaya A, Louie J, Kothary N, Napel S. Core samples for 
radiomics features that are insensitive to tumor segmentation: method and pilot study using CT 
images of hepatocellular carcinoma. J Med Imaging (Bellingham). 2015; 2 041011 [PubMed: 
26587549] 

66. Parekh VS, Jacobs MA. Integrated radiomic framework for breast cancer and tumor biology using 
advanced machine learning and multiparametric MRI. NPJ Breast Cancer. 2017; 3: 43. [PubMed: 
29152563] 

67. Papp L, Potsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, Mitterhauser M, et al. 
Glioma Survival Prediction with Combined Analysis of In Vivo (11)C-MET PET Features, Ex 
Vivo Features, and Patient Features by Supervised Machine Learning. J Nucl Med. 2018; 59: 
892–899. [PubMed: 29175980] 

68. Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V. Assessment of primary colorectal cancer 
heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker 
of 5-year survival. Radiology. 2013; 266: 177–184. [PubMed: 23151829] 

69. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521: 436–444. [PubMed: 26017442] 

70. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, et al. Deep 
Learning: A Primer for Radiologists. Radiographics. 2017; 37: 2113–2131. [PubMed: 29131760] 

71. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak J, et al. A 
survey on deep learning in medical image analysis. Med Image Anal. 2017; 42: 60–88. [PubMed: 
28778026] 

72. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. 
Nat Rev Cancer. 2018; 18: 500–510. [PubMed: 29777175] 

73. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, et al. The Cancer Imaging 
Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013; 
26: 1045–1057. [PubMed: 23884657] 

Wakabayashi et al. Page 14

Hepatol Int. Author manuscript; available in PMC 2022 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Study selection
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Figure 2. Completing rate of each query item in radiomics quality score for 23 studies
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Table 2
Summary of significant extracted features in 23 studies

Quantitative features Number of studies Semantic features Number of studies

First-order descriptors 12 Two-Traits Predictor of Venous Invasion

Second-order descriptors 7   Internal arteries 6

High-order descriptors 3   Hypo-attenuating halos 4

Morphological feature 1 Non-smooth tumor margin 3

Peritumoral enhancement 2

Tumor size 2

Tumor-liver difference (estimated) 1

PET/CT positivity 1

Infiltrative pattern 1

Mosaic appearance 1

PET/CT: computed tomography integrated with positron emission tomography First-order descriptors comprise of shape (compacity or sphericity), 
skewness, kurtosis, mean, energy, median, entropy, peak, standard deviation, intensity ratio between tumor and liver, enhancement ratio, and 
tumor-liver difference (computed). Second-order descriptors comprise of gray level matrices, cluster prominence, strength, and textual features 
variance. Morphological feature comprises of tumor margin volume.
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