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Abstract

A common goal of fluorescence microscopy is to collect data on specific biological events. Yet, 

the event-specific content that can be collected from a sample is limited, especially for rare or 

stochastic processes. This is due in part to photobleaching and phototoxicity, which constrain 

imaging speed and duration. We developed an event-driven acquisition (EDA) framework, in 

which neural network-based recognition of specific biological events triggers real-time control in 

an instant structured illumination microscope (iSIM). Our setup adapts acquisitions on-the-fly by 

switching between a slow imaging rate while detecting the onset of events, and a fast imaging 

rate during their progression. Thus, we capture mitochondrial and bacterial divisions at imaging 

rates that match their dynamic timescales, while extending overall imaging durations. Because 

EDA allows the microscope to respond specifically to complex biological events, it acquires data 

enriched in relevant content.

Introduction

Live-cell fluorescence microscopy is an indispensable tool for studying the dynamics 

of biological systems. Yet, fluorescence microscopy also comes with limitations: as 

fluorophores go through excitation and emission cycles, they photobleach and produce 

reactive oxygen species, which interact with cellular components, causing phototoxicity. 

Thus, photobleaching and phototoxicity restrict the photon budget. Practically, this manifests 
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as a trade-off between spatial resolution, temporal resolution, measurement duration, and 

signal-to-noise ratio (SNR), such that improving one parameter comes at a cost to the 

others1,2. For example, higher imaging rates degrade photon budget and sample health more 

rapidly, reducing measurement duration and SNR. Super-resolution microscopies resolve 

features below the diffraction limit, but also require higher light doses.

Methodological developments have addressed the limited photon budget with several 

complementary approaches. Brighter and more photostable fluorescent probes increase the 

photon budget3,4, while computational denoising or reconstruction5–8 restores low SNR or 

sparse images to use photons more efficiently, and adaptive microscopies improve how 

measurements allocate photons. These approaches may be combined synergistically, to 

permit access to longer, gentler measurements.

Adaptive microscopies implement feedback control systems that spatially modulate the 

excitation and reduce the overall light dose. Modulated scanning can adjust laser dwell 

times or intensities to amplify pixels with higher fluorescence signals, to enable faster 

and gentler confocal9,10 and super-resolution imaging11,12. Alternatively, modulation can 

maintain pixel-wise fluorescence intensities, and prioritize increased dynamic range while 

maintaining light exposure13. Additional inputs, such as prior knowledge of sample 

organization or shape have been used to optimize local excitation intensity in multi-photon 

measurements14,15. In widefield, digital micro-mirror devices can illuminate selectively 

where fluorescent structures reside, and reduce the overall light dose16. These adaptive 

approaches generally take into account the spatial heterogeneity of biological samples, and 

use their fluorescence signal to decide where, and how much to illuminate.

Biological processes, however, also occur over a broad range of temporal scales and with 

complex dynamic signatures. For example, within eukaryotic cells, mitochondrial fissions 

are sporadic events which typically only occur once every few minutes in an entire 

mammalian cell, and persist less than a minute from start to finish17. The constriction rate 

accelerates towards full scission – the final stages of which contain the richest information 

about membrane deformation and its mechanisms. By contrast, the bacterial cell cycle is 

deterministic, but also intermittent; cells elongate and partially constrict, before popping 

apart into two separate daughter cells during a small fraction of the cell cycle duration 

(0.1-0.0001%)18,19. As a result, such dynamic biological events are challenging to capture, 

especially under their native conditions without induction. Measurements taken at a fixed 

frame rate would risk missing events of interest, since a high frame rate limits measurement 

duration while a slow frame rate limits event-specific content. Thus, the optimal frame rate, 

set by the biological dynamics, changes during an acquisition.

Open-source control software enables users to define and execute their own automation 

settings, adapted to their biological samples and for their own instruments (MicroManager 

Intelligent Acquisitions plugin20,21,22). However, biological samples often undergo subtle 

changes in morphology and protein assembly patterns that herald the onset of events of 

interest. Under these conditions, adaptive control based on simple readouts like intensity23 

or cell shape22 would lack the required sensitivity and specificity to detect them. The 

complexity of this challenge has prevented event-driven control from achieving its full 
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potential to enable biological discovery through extension beyond spatial adaptation to 

include temporal adaptation, sculpting the measurement to enrich for events of interest.

We introduce an event-driven acquisition (EDA) framework, which responds to the distinct 

spatial signatures of biological events to adapt the microscope acquisition – as demonstrated 

here, by modulating the frame rate. Image analysis powered by deep learning is capable 

of recognizing surprisingly subtle signatures of events of interest within the sample. We 

harness a computer vision approach by training a neural network to detect precursors to 

events of interest and tailor the acquisition on-the-fly. To aid implementation of EDA in 

different microscope setups, we provide a plugin that integrates the neural network analysis 

and actuation into Micro-Manager. As proof of principle, we integrate EDA into a large 

field-of-view instant structured illumination microscope (iSIM)24,25 and apply it to capture 

super-resolved time-lapse movies of mitochondrial and bacterial divisions. In response to 

neural network outputs, EDA prioritizes the imaging speed or measurement duration. Such 

acquisitions spend the sample’s photon budget more efficiently compared with a fixed frame 

rate. Controlled by EDA, the iSIM collects data enriched in event-specific content and 

captures more completely the dynamic progression from constriction through scission.

Results

EDA concept and implementation

The EDA framework consists of a feedback loop between the live image stream and 

microscope controls, whose implementation requires: 1) sensing via images of the sample 

collected by the microscope, 2) computation to analyze images and detect events of interest 

and 3) actuation to adapt the measurement parameters (Figure 1a). In our implementation, 

the open software Micro-Manager20 captures images from the microscope. As new frames 

are received, a neural network trained on labeled bio-image data to recognize specific events 

of interests performs the computation step. For each image, the network generates a spatial 

relative probability map, or ‘event score’, for those events of interest. The event score acts 

as a decision parameter for the control loop, and actuates changes in the measurement. We 

offer this framework as a Micro-Manager plugin – capable of multithreading to parallelize 

image analysis – that allows EDA-enabled experiments on a wide variety of microscopes 

(Supplementary Notes 1 and 2). We demonstrate its utility here for measurements of 

mitochondrial and bacterial division events taken with our custom-built iSIM (Methods).

Since our events of interest are intermittent, we use the event score to actuate a toggle 

between slow and fast imaging speeds as the measurement proceeds (top, Figure 1b). We 

rely on the global maximum event score found in the image, reflecting the likelihood of 

event-relevant content. When it exceeds a user-defined value, the microscope begins to 

acquire data at a high frame rate. Once in this fast mode, the microscope switches back 

to the slow mode only when the event score diminishes below a second, slightly lower, 

threshold. This hysteresis in the triggering mechanism makes the actuation less susceptible 

to noise from the readout and ensures that events are followed for their full duration, even if 

the event score peaks early during the event. Given a limited photon budget and fixed frame 

rate, the measurement will last longest for the slow imaging speed and shortest for the fast 

imaging speed. The EDA measurement has an intermediate duration, but spends more of its 
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photon budget during events of interest, when the sample will accumulate more exposure to 

light (bottom, Figure 1b).

Detecting division using a neural network

Division underlies mitochondrial proliferation and maintenance26, similar to its role in 

free-living single-celled organisms. The structural and dynamic precursors to mitochondrial 

division are challenging to detect. They can occur infrequently, and at any location within 

the mitochondrial network, at any time. Mitochondria are also constantly in motion, 

and undergo shape changes unrelated to division. Once initiated, constrictions typically 

proceed to division within less than a minute17. Finally, mitochondrial width lies near the 

diffraction limit; thus, changes in their shape preceding fission are difficult to measure. 

Although numerous software packages propose automated segmentation27,28 and tracking 

of mitochondria as well as network morphology classification29–32, they rarely attempt to 

detect divisions33 or active constrictions preceding them. For these reasons, microscopists 

typically rely on manual analysis to identify mitochondrial divisions in their data, playing 

videos forward and backward and visually inspecting local changes in the network. Overall, 

detecting division events in real-time during imaging presents a major bottleneck.

The dynamin-related protein 1 (DRP1) drives mitochondrial membrane constriction and 

scission, and is required for spontaneous divisions34–36. Thus, its enrichment at division sites 

can help to identify them. But DRP1 also accumulates at non-dividing sites, since it can bind 

and oligomerize on both curved and flat membranes37. So, its presence alone cannot reliably 

predict future divisions, precluding a simple intensity threshold-based event detection.

To address these challenges and detect mitochondrial division sites, we rely on the combined 

information from mitochondrial shape and DRP1 enrichment. We trained a neural network 

with a U-net architecture38 on input images of mitochondria and DRP1. The shape of a 

constriction site is a saddle point, which is characterized by two principal curvatures of 

opposite signs. Those curvatures are represented by the eigenvalues of the Hessian matrix 

at that point in the image. Thus, as a putative ground truth, we used the intensity in the 

DRP1 channel, multiplied by the negative determinant of the Hessian matrix representing 

the Gaussian curvature of the mitochondrial outline (Supplementary Note 3, Methods). 

Importantly, to generate the final ground truth data, we manually curated the training set to 

increase the accuracy for real constriction events by removing false positives.

Our network, trained to detect mitochondrial constrictions in the presence of DRP1 (Figure 

2a), produces a heat map of event scores: higher values mark locations within the image 

where division is more likely to occur (Figure 2b, Extended Data Figure 1). The maximum 

event score represents the most pronounced constriction site highly enriched in DRP1, and 

hence the most relevant content in a given frame. This network output acts as a decision-

making parameter for the actuation step in the EDA feedback control loop (Figure 2c). Once 

the maximum event score exceeds a threshold value, the imaging speed increases after the 

subsequent frame, and remains high until the event score dips below a second value. In the 

example shown, the neural network detects two events of interest, which trigger fast imaging 

in the iSIM; the first constriction event relaxes without dividing, while the second one ends 

in division.

Mahecic et al. Page 4

Nat Methods. Author manuscript; available in PMC 2023 March 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Temporally adaptive imaging of mitochondrial division

We performed EDA with our iSIM on COS-7 cells expressing mitochondrion-targeted 

Mito-TagRFP (Cox-8 presequence) and Emerald-DRP1. Typically, our FOV included one 

entire cell, and we focused in a plane near the coverslip, where many mitochondria were 

visible. During each measurement, the network recognized events of interest which triggered 

a switch from slow to fast imaging, followed by a return to slow imaging. Many sites that 

accumulated DRP1 did not lead to division, and also failed to trigger the network (Figure 

3a), demonstrating the network’s ability to discriminate events of interest.

To compare the duration of EDA to traditional imaging acquisitions using fixed parameters, 

we also collected data at a constant imaging speed of either 0.2 frames/sec (slow) or 3.8 

frames/sec (fast). EDA showed less photobleaching decay relative to fast imaging, with 

an average 3-fold decrease in the exponential bleaching decay constant (Figure 3b). While 

the bleaching decay is still on average 5 times higher relative to slow imaging alone, it 

was possible to reach 10-minute imaging durations for many EDA experiments without 

excessive photobleaching or sample health degradation. EDA measurements sometimes 

showed photobleaching recovery while imaging at a slow speed (Extended Data Figure 2), 

enabling a higher cumulative light dose compared with fixed-rate fast imaging (Figure 3c). 

During EDA measurements, events of interest toggled the actuation from slow to fast on 

average 9 times for an average of 10 seconds resulting in EDA imaging fast for 18% of the 

frames.

The potential of intelligent microscopy includes measuring what standard acquisitions 

would miss – beyond measuring for longer overall durations. Ideally, EDA should collect 

constriction states leading up to division that would be inaccessible to slow imaging. We 

therefore use constriction diameters to quantify fission intermediates as a measure of event-

relevant content, independent of the event score. During division events, (Figure 2c), we 

asked how many frames EDA collected with highly constricted diameters (below 200nm) 

compared to slow fixed-rate imaging (Figure 3d). The resolution of raw iSIM images is 210 

nm prior to deconvolution. Therefore, information about constriction diameters below 200 

nm is unavailable during on-the-fly processing, and reflects the ability of EDA to collect 

event-relevant content distinct from the ground truth for the neural network. We found the 

average number of such frames (constriction < 200 nm) during the first 20 seconds of 

an event was 5.4-fold higher for EDA compared with fixed slow imaging (7.5 versus 1.4 

frames). This content enrichment is also reflected in the distribution of minimal constriction 

diameters (Figure 3e), both in terms of its lower mean value and its skew. For fixed fast 

imaging, a similar amount of data only showed three constriction events (and thus is not 

included in the figure panel), further highlighting the limitations of fixed-rate imaging 

compared with EDA. Thus, EDA better resolves the constricted states preceding division, 

as well as the progression of molecular and membrane states leading to fission, captured by 

each burst of fast images (Extended Data Figure 3).

Extending EDA to bacterial cell division

An endosymbiotic alphaproteobacterium is believed to be the ancestor to mitochondria39. 

Over time, the proteins required for division were replaced by homologues encoded in the 
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host genome, which assemble on the mitochondrial exterior as opposed to the bacterial 

interior. A superficial resemblance remains between the sub-micrometric diameters of 

mitochondria and many bacteria, and the shape transitions they both undergo en route to 

division. But, the bacterial cell cycle occurs on the timescale of tens of minutes – over which 

the cells elongate and partially constrict, before popping apart into two separate daughter 

cells during a small fraction of the cell cycle duration (0.1-0.0001%)18,19 – in contrast with 

the tens of seconds for mitochondrial division. Thus, it poses a distinct set of challenges to 

live-cell microscopy.

We extended EDA to study the final stages of division of the alphaproteobacterium 

Caulobacter crescentus. We imaged cells expressing the cytoplasmic fluorescent protein 

mScarlet-I, and the bacterial divisome protein FtsZ-sfGFP (Figure 4a, Supplementary Note 

4) with the iSIM. In newborn C. crescentus, FtsZ forms a punctum associated with one 

cell pole. As cells elongate, FtsZ depolymerizes and appears diffuse, before assembling 

into a narrow band of filaments that coordinates constriction at mid-cell. The band shrinks 

as the cell constricts, and finishes as a punctum at the division site. We found that our 

event detection network developed for mitochondrial constrictions could recognize the final 

stages of C. crescentus division without any additional training (Supplementary Note 3). 

This transferability is likely due to morphological similarities in constriction shape and the 

presence of a functionally similar molecular marker. High event scores remained specific 

to states close to division, preventing actuation from being triggered by the punctate polar 

arrangement of FtsZ at the beginning of the cell cycle (G0).

C. crescentus cells at all stages of cell cycle were plated onto an agarose pad (Methods), 

with several hundred in the iSIM FOV. We collected data on cells at a fixed slow imaging 

speed of 6.7 frames/hour, a fast imaging speed of 20 frames/hour, or a variable speed 

switched by EDA. The bleaching decay rate diminished compared with the fixed fast 

imaging rate by a factor of 1.7 (Figure 4b). As for mitochondria, we found that constrictions 

measured with EDA had significantly smaller diameters on average compared with fixed 

slow imaging (Figure 4c), with the overall distribution shifted to lower values. This confirms 

that EDA improves access to details of bacterial cell division that are difficult to capture 

using a fixed imaging speed, and uses the photon budget more efficiently.

We also used EDA to image bacterial populations that were first synchronized into the 

beginning of the swarmer (G0) phase of cell cycle through density centrifugation (Methods). 

Initially, EDA maintained a slow imaging speed during the lag phase while bacteria 

increased in length without dividing (Figure 4d). This allowed a low light dose, so that cells 

could develop without division arrest and filamentation which occurred at faster imaging 

speeds. After several hours, the first wave of divisions in the population occurred, and EDA 

triggered high-speed imaging. In this manner, EDA captured many divisions simultaneously, 

as a consequence of a population-wide high and stable event score. After the population 

fully divided, imaging went back to the slow imaging speed, preserving the photon budget 

for the next wave of divisions (Extended Data Figure 4). Synchrony allowed for a further 

boost in events of interest, with EDA sensing and responding with the suitable timing based 

on cell-cycle progression.
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Discussion

Overall, our results highlight the advantages of the EDA framework for biological systems 

with intermittent events of interest, even those operating at dramatically different timescales 

(seconds versus hours). Imaging of mitochondrial divisions benefits from extended imaging 

duration to increase the odds of capturing such rare events, and fast imaging speed 

once constrictions form to capture the structural intermediates of membrane remodelling. 

For C. crescentus, EDA allows us to follow the entire cell-cycle and image the final 

states of division at high temporal resolution. In both systems, as observed from the 

measured constriction diameters, EDA data gathered from individual cells contained smaller 

constriction sizes, difficult to capture by traditional imaging approaches due to their 

transience. Beyond that, EDA generates data with higher event-specific content density: 

more frames are dedicated to active time periods enriched in events of interest.

The EDA framework is generalizable to other microscopes capable of on-the-fly adaptation 

of acquisition parameters. For users seeking to implement it, we provide a Micro-Manager 

plugin (Supplementary Note 1), to assist in its adaptation to different imaging methods 

and biological systems. The plugin is compatible with multithread processing based on 

a user-provided neural network; thus, with sufficient computational power the response 

time of the adaptive feedback is limited by the time to process a single frame. While our 

implementation adapts the imaging speed in a discrete manner, EDA could evoke more 

complex responses such as multi-level or continuous actuation of the frame rate, as well 

as controlling other acquisition parameters such as the excitation power or exposure time. 

The benefits of applying EDA will depend on the specific dynamics of the observed events 

- the greatest advantages are expected if the sample and microscope are amenable to a 

large difference in imaging speeds. Brief, dynamic and rare events that can be predicted in 

advance are therefore best suited for observation using EDA.

As with all adaptive microscopies, care should be taken to decouple variations in 

experimental parameters from real biological changes. For example, phototoxicity varies 

non-linearly with the light dose40, and individual experiments using EDA will differ in the 

cumulative light dose based on the event-specific content of the sample. Consider the case 

of altered genetic backgrounds that change the frequency of events of interest: EDA would 

result in a different mean cumulative light dose for measurements of the same duration. 

Therefore, events collected under similar doses should be compared, and large sample sizes 

and randomization will be beneficial when pooling datasets acquired using EDA.

Our work contributes to the developing field of ‘smart’ or ‘self-driving’ microscopes2,41. 

By adapting acquisitions on-the-fly, microscopes can protect a sample from unnecessary 

illumination9–16, generate faster42,43 or better quality data44–46, optically highlight cells 

for genetic screening23, pinpoint single molecules with vanishingly small numbers of 

photons47, or manipulate nanoscale objects48. On the other hand, machine learning has 

proven useful for many image analysis tasks, allowing the detection of increasingly complex 

sample features. As event recognition networks become increasingly accessible, EDA can 

enhance the relevance of gathered data by repurposing such networks to actuate changes 
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in acquisition routines. The synergy between nuanced detection and multifaceted adaptation 

offers a powerful means to boost biological discovery.

Methods

Sample preparation

Cos-7 cells for mitochondrial imaging—African green monkey kidney (Cos-7) 

cells were obtained from HPA culture collections (COS7-ECACC-87021302) and were 

cultured in Dulbecco’s modified Eagle medium (DMEM, ThermoFisher Scientific, 

31966021) supplemented with 10% fetal bovine serum (FBS) at 37°C and 5% CO2. For 

imaging, cells were plated on 25 mm, #1.5 glass coverslips (Menzel) 16-24 h prior to 

transfection at a confluency of ~1×105 cells per well. Lipofectamine 2000 (ThermoFisher 

Scientific, 11668030) was used for dual transfections of Cox8-TagRFP and Emerald-DRP1. 

Transfections were performed 16-24 h before imaging, using 150 ng of plasmid and 1.5 

μl of Lipofectamine 2000 per 100 μl Opti-MEM (ThermoFisher Scientific, 31985062). 

Imaging was performed at 37°C in pre-warmed Leibovitz medium (ThermoFisher Scientific, 

21083027).

Caulobacter crescentus cells for bacterial imaging—Liquid C. crescentus cultures 

were grown overnight at 30 °C in 3 ml of 2x PYE1 (Peptone, Merck, #82303; Yeast Extract, 

Merck, #Y1626) medium under mechanical agitation (200 rpm). Liquid cultures were 

re-inoculated into fresh 2x PYE medium to grow cells until log-phase (OD660=0.2-0.4). 

Antibiotics (5 μg ml−1 kanamycin and 1 μg ml−1 gentamicin) were added in liquid cultures 

for selecting cells containing fluorescent protein fusions. To induce the expression of FtsZ-

sfGFP and mScarlet-I under the Pxyl and Pvan promoter respectively, 0.5mM of vanillate 

and 0.2% weight/volume xylose were added to the culture 2 hours before imaging or 

synchronization2.

C. crescentus cell cultures were spotted onto a 2x PYE agarose pad for imaging. To make 

the agarose pad, a gasket (Invitrogen™, Secure-Seal™ Spacer, S24736) was placed on a 

rectangular glass slide, and filled with 1.5% 2x PYE agarose (Invitrogen™, UltraPure™ 

Agarose, 16500100) containing 0.5mM of vanillate and 0.2% of xylose. No antibiotics 

were added. Another glass slide was placed on the top of the silicone gasket, and the 

sandwich-like pad was placed at 4 °C until the agarose solidified. After 20 min, the top 

cover slide was removed, and a 1-2 μl drop of cell suspension was placed on the pad. After 

full absorption of the droplet, the pad was sealed with a plasma-cleaned #1.5 round coverslip 

of a diameter of 25mm (Menzel). For imaging the synchronized cells, a 1x PYE agarose pad 

was used to let cells grow slower.

iSIM imaging

Imaging was performed on a custom built instant structured illumination microscope (iSIM), 

previously described in detail3. Emerald/sfGFP and TagRFP/mScarlet-I fluorescence was 

excited using 488 and 561 nm lasers respectively. A system of microlens and pinhole 

arrays together with a galvo actuated mirror allows for instant super-resolution imaging on 
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the camera chip (Photometrics Prime95B sCMOS). The implementation of a mfFIFI setup 

allows for homogeneous excitation over the full field of view3.

Event detection

Construction of input and output datasets—Detection of potential division events 

was performed using a neural network with U-net architecture4. An input dataset was 

constructed using 3700 dual-color images labeling mitochondria and DRP1, 1000 of which 

contain states close to division. This dataset was enhanced 10-fold by rotating the images, 

to make up the final dataset (37000 images). This data set was recorded on a fast dual-

color SIM setup at Janelia Research Campus5 and published previously6, but processed via 

Gaussian filtering to imitate the expected resolution of raw iSIM data before deconvolution. 

The output ground truth dataset was generated from the fluorescence channels, followed 

by manual curation. Briefly, to identify division sites in the presence of a molecular 

marker, we identified constriction sites by looking for local saddle points. Saddle points 

are characterized by opposing principal curvatures, or eigenvalues of the local Hessian 

matrix. The product of the principal curvatures, or the Gaussian curvature, will therefore be 

negative - as will be reflected by the determinant of the local Hessian matrix. Therefore, 

computing the Hessian matrix for both the mitochondrial and the DRP1 channel highlights 

saddle-points in the mitochondrial channel overlapping with high-intensity DRP1 spots.

GT = max − Hmito, 1 × Hmito, 2 × HDRP1, 1 × HDRP1, 2 × IDRP1, 0 (1)

where Hchannel,i represents the largest or smallest eigenvalue of the Hessian matrix for i 
= 1, 2 respectively, Ichannel represents the raw fluorescence channel and × element-wise 

multiplication. The final GT matrix is normalized so that the full range is rescaled to 0-255 

to make 8-bit heat-maps, with higher values representing more likely constriction sites.

Since mitochondrial division sites represent a large fraction, but not all events with DRP1 

overlapping with mitochondrial saddle points, the processed frames were then curated 

manually to increase accuracy for real constriction events by visually removing false 

positives or ensuring consistent detection of active constriction sites. False positives most 

frequently corresponded to close mitochondrial contacts with nearby DRP1 bound to the 

outer membrane (but not constricting), very bright DRP1 spots and mitochondria with 

bi-concave disk-like shapes where thinning of the mitochondrion gets mistaken for a 

constriction site. False negatives were most often due to very late stages of fission or 

moments after fission as well as the onset of constriction which is nuanced and develops 

progressively. This ensured that the event detection network was able to discriminate events 

of interest with high accuracy. The dataset was then split 80:20 into training (29600 images) 

and testing (7400 images) datasets.

Network architecture and training—The network was trained on 29600 dual-color 

images (128x128x2) of mitochondria and DRP1 as input, and using the ground-truth images 

(128x128) marking the respective locations of divisions as output (Supplementary Note 3). 

We used pixel-wise mean-squared error as loss function, and trained the model using the 

Adam optimizer for 20 epochs with a batch size of 256. As neural network architecture we 

used a U-Net4 of depth 2 and kernelsize 7x7, with the number of initial feature channels set 
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to 16 that were doubled after every pooling layer. Training was performed using tensorflow/

keras and python 3.9.7.

Assessment of network prediction accuracy—To assess the accuracy of the 

network, individual event scores were first isolated from the heat maps using an intensity 

threshold of 80, since weak predictions and weak ground truth signals represent a low 

relative event probability and as such, will not contribute to the decision making step of 

the acquisition. Then, instead of counting discrete events, each event was weighed by its 

ground truth or predicted intensity: true positives were weighed by normalized ground truth 

intensity (representing what was the true value of the event that was detected), false positives 

were weighed by normalized predicted intensity (representing how wrong the prediction 

was, given no event was present) and false negatives were weighed by normalized ground 

truth intensity (representing the cost of missing the ground truth event). This way the 

strength of the prediction and true underlying signal is taken into account when evaluating 

the performance of the network. The total score for true positives was then divided by 

the sum of total true positives (false positives and false negatives) to produce an accuracy 

metric.

With this, the network reaches an accuracy of 86.7% when tested on test data, that was 

not used during training, with 5.4% false positives and 7.9% false negatives. The output 

of inference is a two dimensional map of relative division probabilities in the range 0 to 

255. Inspecting false positives shows that events that most frequently contributed to false 

positives were close mitochondrial contacts with nearby DRP1 bound to the outer membrane 

(but not constricting), very bright DRP1 spots and mitochondria with bi-concave-disk-like 

shapes where thinning of the mitochondrion gets mistaken for a constriction site. False 

negatives were most often due to very late stages of fission or moments after fission as well 

as the onset of constriction which is nuanced and develops progressively.

Event-driven acquisition for adaptive temporal sampling

The different parts of the EDA framework were implemented in separated modules that 

allowed for continuous and independent testing of the components.

Data handling—The EDA framework is distributed over Micro-Manager8 for general 

microscope handling, and Matlab (MathWorks) for the control of the timing of the 

microscope components and Python for network inference. Furthermore, the Python module 

was used on a machine in the network due to hardware restrictions on the local computer 

used for microscope control. A network attached storage (NAS) unit was used to allow for 

communication of the different components of the system over the local 10 Gbit network. 

Recorded frames were stored as single .tif files to the NAS by Micro-Manager. A server 

implemented using the watchdog module (Python) on the remote machine detected new files 

for inference. After calculation of the decision parameter, the value was saved to a binary 

file that was used by Matlab to calculate the values for the next sequence of imaging.

Event Server—When a new file for each channel respectively was detected on the NAS, 

the event server implemented in Python running on a remote machine first performed data 
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preparation on the recorded frames. The frames were resized by a factor of 0.7 to match 

the pixel size of the training data. Both frames were smoothed using a Gaussian with σ 1.5 

px with an additional background subtraction in the DRP1 channel (Gaussian with σ 7.5 

px). The frames were tiled into overlapping 128x128 px sized tiles to match the size of the 

training data. The individual tiles of the structure (mitochondria/C. crescentus) channel were 

again normalized individually.

Inference was performed on pairs of structure/foci tiles and the output was stitched together. 

The maximum value from the stitched frame was recorded as the highest relative probability 

in the frame for a division event and saved to the binary file on the NAS.

Hardware control—The timing of the microscope hardware is controlled using a PCI 

6733 analog output device (National Instruments). The device is used in background mode 

requesting data when the existing sequence buffer has 1 s remaining. For mitochondria 

imaging, the slow mode sends a sequence containing one frame over five seconds (0.2 Hz) 

and a sequence containing five frames in one second (5 Hz) in the fast mode. For bacterial 

imaging, sequences with one frame over 3/9 or 2/12 minutes is provided for slow/fast 

and normal or synchronized colonies respectively. The parameters are chosen depending 

on which value was read from the binary file on the NAS that contains the latest event 

information written by the event server. In addition to a threshold, a hysteresis band is 

implemented here by defining an upper and a lower threshold. Fast acquisition starts at 

surpassing the upper threshold and is only stopped when the event score falls below the 

lower threshold. For C. crescentus imaging, the number of fast frames was further set to a 

minimum of three.

Due to the fast imaging rates in the mitochondria imaging, the new sequence is calculated 

before the event server has calculated the relative probability map for the last frames, leading 

to a delay in the reaction of the EDA framework. This is overcome for the C. crescentus 
imaging by delaying the calculation of the new sequences by 10 seconds allowing for mode 

switching on the newest data available.

Data Analysis

Statistical significance of differences in averages reported by asterisks was calculated using 

the the independent two-sample t-test for minimal constriction widths (Figures 3 & 4) and 

the Welch’s t-test for event scores (Suppl. Note 3) and number of events (Figure 3). Equality 

of variances in the data sets to decide between the two was tested for by the Levene test. All 

implementations were used as provided by the scipy.stats Python package.

Photobleaching Decay—The different photobleaching kinetics of the modes were 

characterized by the intensity contrast of the samples. The channel of the structural feature 

(mitochondria and caulobacter outline) was segmented using a Otsu-thresholding method 

after a median and Gaussian filter were applied (kernel size of 5 px each). The intensity 

contrast was then calculated as the mean intensity in the segmented region divided by the 

mean intensity in the rest of the image. Variation in the starting contrast between series 

was accounted for by normalization of the starting intensity contrast values. The decay 

constant was then obtained by fitting an exponential decay function (y = a exp(−bx) +c) to the 
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intensity contrast over time data and extracting the b term. The reported imaging time ratios 

were calculated from the times from start of imaging to 90% of intensity contrast for each 

series.

Cumulative Light Dose—The cumulative light dose over time was taken to be 

proportional to the number of previously recorded frames. This is appropriate here, since 

the iSIM has a constant scan speed, and we did not modulate the laser intensity. Therefore, 

each sample received a fixed light dose per frame. Experiments were truncated after a 

user-defined minimum intensity contrast (SNR) was reached (1.1 for mitochondria and 1.02 

for C. crescentus).

EDA Event Evaluation

The number of frames per event was calculated by counting the number of frames recorded 

for a fixed time after EDA triggered fast imaging or would have triggered fast imaging 

in slow mode. Events of interest were defined by a minimum value of the neural network 

output of 80 (90 for C. crescentus). Frames were analyzed until a maximal observation time 

of 20 seconds (1 hour for C. crescentus) was reached.

Constriction Width—The slow and EDA imaging modes were compared by calculating 

the minimal width of constriction measured during an event as described above. The 

measurement method was similar to that described in6. The deconvolution of the images 

was performed using the Richardson Lucy algorithm as implemented by the flowdec Python 

package with 30 iterations9. Segmentation, skeletonization and spline fitting the resulting 

points led to a backbone of the mitochondrion in a frame of 20 x 20 pixels around the 

position of the detected event. 100 perpendicular lines were generated around the closest 

point of the backbone to the event position. The intensity profile along those lines was fitted 

using a Gaussian profile. The full width at half maximum (FWHM) of the Gaussian profile 

with the smallest σ was recorded as the measured width for the frame. The minimal width 

measured for an event was calculated as the minimal FWHM over the observation time 

times the pixel size of the iSIM setup (56nm).
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Extended Data

Extended Data Fig. 1. Example maximum event score regions which triggered EDA.
The event score output by the neural network can also be used to extract events of high 

interest from the datasets, after the acquisition is complete. Here, events that triggered EDA 

in different datasets are shown. The highest event score was used to define a region of 

interest around the event, representing a time and location of highest interest in the sample. 
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Some regions appear twice, when the neural network event score was high enough to trigger 

EDA multiple times. Frames are shown in no specific order. Scale bars: 1 μm

Extended Data Fig. 2. Bleaching behavior of a mitochondria sample during EDA imaging.
The different modes of imaging can clearly be seen in the bleaching curve represented by 

the signal-to-noise ratio calculated from the intensity inside the mitochondria compared to 

the signal outside of the mitochondria. For some parts with low frame rate, even a slight 

recovery of signal can be observed. (representative of n = 4 independent experiments)
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Extended Data Fig. 3. EDA delivers additional frames during events of interest.
Top row: mitochondrial division as it would have been recorded with the slow fixed imaging 

rate without EDA. Vertical frames: additional frames captured thanks to EDA switching to 

the fast imaging speed showing more detail of the dynamics of the event. Both the final 

constriction state and the fade of the DRP1 peak can be observed with higher temporal 

resolution, enhancing the relevant content of the dataset. This division event can also be seen 

in Supplementary Video 3.0. (Scale bars: 1 μm, representative of N = 33 events in n = 4 

independent experiments)
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Extended Data Fig. 4. EDA imaging of synchronized bacteria populations.
C. crescentus, the strain used in this study, were synchronized via density centrifugation to 

obtain a population of cells that are all at the beginning of their cell cycle (G0, swarmer). 

This leads to a time lag before the next divisions take place. As they are synchronized, many 

bacteria in the sample will then divide at the same time. We used EDA to sense the onset of 

divisions in the sample and increase imaging speed during the divisions for high SNR and 

temporal resolution. We tested different times between images for fast and slow speeds, as 
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well as different threshold event scores (grey band). a, slow: 9 min, fast 3 min. b and c, 
slow: 12 min, fast 2 min. (Scale bar: 1 μm, n = 4 independent synchronizations)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Event driven acquisition (EDA) concept.
a, The feedback control loop for EDA is composed of three main parts: 1) sensing by 

image capture to gather data, 2) computation by a neural network to detect events of interest 

and generate a heat map of event score, and 3) adaptation of the acquisition parameters in 

response to events in the sample. b, Schema of experiment duration and cumulative light 

exposure for different fixed imaging speeds or with EDA to switch between the two. The 

total excitation light dose (shaded areas in upper panel, final light exposure value in lower 

panel) is constant for all experimental configurations to represent the fixed photon budget.
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Figure 2. Event recognition of mitochondrial divisions during an iSIM acquisition.
a, Images of a COS-7 cell expressing mitochondrion-targeted Mito-TagRFP and Emerald-

DRP1, including those containing events of interest (white arrow) that triggered a change in 

the imaging speed. (Scale bar: 1 μm; image intensities were corrected for photobleaching, 

N = 33 events in n = 4 independent experiments) b, Corresponding event score maps and 

measurement timeline (grey, slow speed; blue, fast speed). c, Time course of the maximum 

event score computed for each frame of the acquisition (black), and the adaptive imaging 

speed actuated by the event score (red). The upper boundary of the grey band denotes the 
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maximum threshold above which the iSIM switches to fast imaging, and the lower boundary 

the minumum threshold below which it returns to slow imaging.
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Figure 3. EDA versus fixed-rate imaging of mitochondrial divisions.
a, Mitochondrial dynamics (TagRFP-Mito, grey; Emerald-DRP1, red) captured by EDA 

(Scale bar: 1 μm, time first frame to last frame: 114 s). Below, measurement timeline 

indicating the approximate capture time of each image (grey, slow speed; blue, fast speed; 

red, frame capture, N = 33, n = 4). b, Decay constants obtained from exponential fits to 

the time-dependent mean intensity in the mitochondria (Extended Data Figure 2). Each 

point corresponds to a separate FOV. c, Cumulative light dose, defined as the laser power 

multiplied by the exposure time summed over all previous frames. EDA sometimes achieves 

a higher total light dose than fast imaging alone, due to recovery during slow imaging 

(Extended Data Figure 2). d, Number of frames with a constriction diameter below 200nm 

during the 20 seconds after the event score exceeded the threshold value. (P < 0.0003, 

Welch’s test) e, Minimal constriction width measured during the frames in d. (P < 0.005, 

independent two-sample t-test) slow: N = 360 frames in n = 3; fast: N = 765, n = 2; EDA: N 

= 1516, n = 4; Box plots mark the first quartile, median and third quartile with the whiskers 

spanning the 5th and 95th percentile.
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Figure 4. EDA versus fixed-rate imaging of bacterial divisions.
a, Representative images of C. crescentus (cytosolic mScarlet-I in grey and FtsZ-sfGFP in 

red) division events captured at different imaging speeds using an event-driven acquisition 

(Scale bar: 1 μm, time first frame to last frame: 5.8 h). b, Decay constants obtained from 

exponential fitting of the mean intensity in the bacteria over time. c, Minimal constriction 

width measured when following a constriction event over time. (P < 0.001, independent 

two-sample t-test) d, Event score and imaging speed for an EDA triggered experiment 

on cell-cycle synchronized bacteria. Long lag phase and many divisions at the same time 

imaged in high temporal resolution triggered by EDA. (slow: N = 228, n = 2; fast: N = 296, 

n = 3; EDA: N = 182, n = 5). Box plots mark the first quartile, median and third quartile 

with the whiskers spanning the 5th and 95th percentile.
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