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Abstract

Many animal behaviours require orientation and steering with respect to the environment. For 

insects, a key brain area involved in spatial orientation and navigation is the central complex. 

Activity in this neural circuit has been shown to track the insect’s current heading relative to 

its environment, and has also been proposed to be the substrate of path integration. However, it 

remains unclear how the output of the central complex is integrated into motor commands. Central 

complex output neurons project to the lateral accessory lobes (LAL), from which descending 

neurons project to thoracic motor centres. Here, we present a computational model of a simple 

neural network that has been described anatomically and physiologically in the LALs of male 

silkworm moths, in the context of odour-mediated steering. We present and analyze two versions 

of this network, one rate-based and one based on spiking neurons. The modelled network consists 

of an inhibitory local interneuron and a bistable descending neuron (‘flip-flop’), which both 

receive input in the LAL. The flip-flop neuron projects onto neck motor neurons to induce 

steering. We show that this simple computational model not only replicates the basic parameters 

of male silkworm moth behaviour in a simulated odour plume, but can also take input from a 

computational model of path integration in the central complex and use it to steer back to a point 

of origin. Furthermore, we find that increasing the level of detail within the model improves the 

realism of the model’s behaviour, leading to the emergence of looping behaviour as an orientation 

strategy. Our results suggest that descending neurons originating in the LALs, such as flip-flop 

neurons, are sufficient to mediate multiple steering behaviours. This study is therefore a first step 

to close the gap between orientation circuits in the central complex and downstream motor centres.
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1 Introduction

Insects display an astonishing range of behaviours that include highly directed movements. 

For example, male moths navigate towards females emitting pheromones (Marsh et al., 

1978; Obara, 1979) and female crickets move towards singing males (Simmons, 1988; 

Balakrishnan and Pollack, 1996). Other insects use visual cues to maintain a straight heading 

over short or long distances (dung beetle: (Dacke et al., 2003b; Baird et al., 2012); Monarch 

butterfly: (Mouritsen and Frost, 2002); Bogong moth: (Dreyer et al., 2018)), and can 

even rely purely on memory to navigate home (Srinivasan, 2015; Honkanen et al., 2019). 

While the cues used for navigation are different in these examples, they elicit very similar 

behaviours: upon encountering an appropriate stimulus, the animal chooses a direction with 

respect to that stimulus and begins moving in that direction. If the stimulus is temporarily 

lost, searching behaviour is initiated. Thus, the motor patterns elicited by different kinds of 

stimuli can be remarkably similar.

The spatial context for orientation and navigation is computed in the central complex (CX), 

the only unpaired and midline-spanning neuropil in the insect brain (Fig. 1; (Heinze, 2017)). 

In recent years, progress has been made in understanding and modelling this ‘compass 

system’ of insects. Neurons in the CX integrate external inputs with self-generated angular 

velocity cues, thus providing a reliable internal representation of the animal’s heading 

(Green et al., 2017; Kakaria and de Bivort, 2017). An extended model of the CX network 

furthermore showed that the CX is a possible substrate for path integration (Stone et 

al., 2017), i.e., continuously integrating velocity to maintain an estimate of the direction 

and distance to a reference location. This model also demonstrates how CX output can 

serve directly as a steering command: the summed activity of columnar output neurons 

in each hemisphere is compared and any imbalance between the two hemispheres should 

produce a turn towards the relevant side, while a balanced output results in straight 

movement. However, the model does not postulate a biologically plausible mechanism to 

achieve steering, and instead summarises the entire steering system as one theoretical motor 

command. Despite our increasingly complete understanding of CX networks, a question 

that remains unanswered is how CX output is translated into motor control; i.e. how it is 

transmitted to thoracic motor centres to influence behavioural decisions.

The answer likely lies in the lateral accessory lobes (LAL), a paired neuropil flanking the 

CX. The LAL forms part of the pheromone-processing pathway that has been described 

in detail in the silk-worm moth (Namiki et al., 2014; Kymre et al., 2021). While the CX 

integrates information from modalities such as vision and mechanoreception, it does not 

appear to process olfactory information. Odours, including pheromones, are integrated in 

higher-order neuropils including the lateral horn, mushroom bodies and finally the LAL. 

The LAL has been described as a pre-motor centre, as several types of descending neurons 

that project to thoracic motor centres have post-synaptic endings in the LAL (Namiki et 

al., 2018a). It has been suggested that interactions between the two LALs are sufficient 

to mediate search behaviours triggered by e.g. pheromone input, but that goal-oriented 

behaviours require CX input into the LAL network (Namiki and Kanzaki, 2016; Álvarez-

Salvado et al., 2018). Indeed, CX output neurons project to the LALs, but how they 

interact with the LAL circuitry is currently unknown. Additionally, how descending neurons 
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encode motor commands on a population level is currently not well understood, although 

multiple recent studies have been able to dissect single neural circuits that underlie specific 

behaviours (e.g. (Schnell et al., 2017; Cande et al., 2018; Namiki et al., 2018b)).

One such behaviour, which has been examined in detail, is the pheromone-following 

behaviour of silkworm moths. Male silkworm moths display a highly stereotyped 

behavioural sequence when following a female’s pheromone plume. Upon first contact with 

the plume, the moth responds with a ‘surge’, that is a straight movement towards the source 

of the odour. When the odour plume is lost, several ways of re-acquiring the plume have 

been described; most notably ‘casting’, during which the moths walks in a zig-zag pattern 

until it finds a new odour pocket, and looping downwind (review: (Cardé and Willis, 2008)). 

Early studies have identified several descending neuron types whose activity correlates 

with turning behaviour when a male moth orients in a pheromone plume (Mishima and 

Kanzaki, 1999). Among these, the most notable are “flip-flop” neurons, which are bistable 

neurons that switch between a high-activity and a low-activity state in response to a trigger 

stimulus (Olberg, 1983; Kanzaki et al., 1994; Mishima and Kanzaki, 1999). That is, the 

same stimulus can cause the neuron to increase or decrease its firing, depending on whether 

it is in the low or high activity state, respectively, when that stimulus occurs.

These neurons have post-synaptic terminals in the LALs, and their axons descend through 

the ventral nerve cord and synapse onto neck motor neurons, which in turn activate neck 

muscles that control head movements (Kanzaki and Mishima, 1996; Mishima and Kanzaki, 

1998). Thus, if the left-descending flip-flop neuron is in its high-activity state, the left neck 

motor neuron and the left neck muscle are also active, causing the head and consequently 

the moth to turn left. Although this network has been described in the context of pheromone 

following, other studies have shown that flip-flop neurons can also be triggered by light 

flashes (Olberg, 1983) and sound (Zorovic and Hedwig, 2011). It therefore seems likely 

that flip-flop neuron mediated steering may constitute a general form of targeted steering, 

independent of the stimulus modality that drives the behaviour (Steinbeck et al., 2020).

In this study, we aim to evaluate whether a basic flip-flop neuron network can produce 

naturalistic steering in (a) a simulated odour plume and (b) when presented with compass 

input via a neural model of the central complex. To this end, we present a rate-based and a 

spiking computational model of a simple flip-flop network. The two models presented here 

allow us to compare two different implementations of the same network, where both models 

follow the same connectivity pattern. The rate-based model uses continuous-valued sigmoid 

neurons, while the spiking model uses leaky integrate-and-fire (LIF) spiking neurons. Both 

models are effective at navigating in the simulated olfactory and visual tasks, however 

the spiking model produces more realistic trajectories. Comparing the behaviour of our 

models to behavioural data from male silkworm moths, we find that this simple flip-flop 

based neural circuit is sufficient to replicate the basic characteristics of the moths’ paths. 

Furthermore, we describe looping behaviour as an emerging orientation strategy when 

sensory input is directionally ambiguous. Finally, we demonstrate for the first time that 

the flip-flop network can work as a general steering network when combined with a 

computational model of the CX (Stone et al., 2017). This study is therefore a step towards 
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closing the gap between higher processing centres in the brain that make navigational 

decisions, such as the CX, and the thoracic motor circuits that ultimately move the insect.

Materials and methods

The neurons modelled here were physiologically and anatomically described in (Olberg, 

1983; Kanzaki et al., 1992; Mishima and Kanzaki, 1999; Kanzaki et al., 1994). We infer 

input and output regions of neurons from their anatomical appearance, i.e. smooth terminals 

are assumed to be inputs, while varicose terminals are assumed to be outputs. Two neurons 

are assumed to be connected if the input region of one neuron overlaps with the second 

neuron’s output region. The model connections are furthermore based on the network 

proposed in (Mishima and Kanzaki, 1999) with some small modifications.

The network consists of two pairs of neurons: One flip-flop neuron (FF) and one 

protocerebral bilateral neuron (PBN; Fig 1A) per hemisphere. Both cell types receive input 

directly from the plume, or from the output neurons of the central complex (CPU1/PFL 

neurons) when connected to the path integration network (PI). PBN neurons were proposed 

to provide bilateral inhibition between the two LALs (Mishima and Kanzaki, 1999; Kanzaki 

et al., 2005) and are therefore modelled to inhibit the contralateral FF neuron. FF neurons 

have excitatory connections directly onto the contralateral motor, based on the finding that 

FF neuron activity correlates with neck motor neuron activity (Kanzaki and Mishima, 1996).

We present two different implementations of this network, which we call ‘rate-based model’ 

and ‘spiking model’. The rate-based model uses continuous-valued sigmoid neurons, which 

is the most common neural model used in insect brain network models. However, while 

such neurons are easier to work with and build models from, they abstract away many 

of the underlying biological details. To complement this, we also present a spiking model 

built from leaky integrate-and-fire (LIF) neurons, bringing richer temporal dynamics to the 

model. While still abstracted, we will show that the spiking model leads to more realistic 

behavior.

The general approach for creating the spiking model is known as the Neural Engineering 

Framework (NEF; Eliasmith and Anderson (2003)). This allows us to take any particular 

desired dynamics (such as the dynamics of a flip-flop neuron) and construct it using 

more basic components (such as a group of spiking LIF neurons). In particular, here we 

approximate one FF neuron using 100 recurrently-connected spiking LIF neurons. The NEF 

treats this as an optimization problem and finds the ideal connection weights among those 

components, such that the overall system produces behavior that is as close as possible to the 

desired rate-based description of a FF neuron. Our interpretation of the model is that this is 

one flip-flop neuron with 100 internal components, and the flip-flop behaviour arises out of 

these internal interactions.

Both models are described in detail below. The source code is available at https://

github.com/stanleyheinze/insect_steering. The spiking model was implemented using the 

software toolkit Nengo (Bekolay et al., 2014).
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Models

Rate-based model—For the rate-based model, we use continuous-valued sigmoid 

neurons, with one addition described below for the FF neurons. If the total input to the 

neuron is J, then the output r from the neuron is generally defined as

r = 1/ 1 + e−aJ − b (1)

where a and b are the gain and bias constants for the neuron, respectively. The total input to 

the neuron is the weighted sum of the rates of all incoming connections

Jj = ∑wijri (2)

The weights w are either 0 (no connection), 1 (excitation), or -1 (inhibition), with gaussian 

noise of standard deviation 0.01 added when the model is created. We also add random noise 

ϵ ↪ N(0, σ2) with σ2= 0.02 to the input to each neuron on every time step. These two 

sources of randomness are meant to give some individual variation to the models. For both 

PBN and FF neurons, we also add the neurons’ previous output to its own input, to allow 

for the sustained activity that has been described for these neurons. This gives them the 

following equation, where rt is the output for time step t, which is what we use in our model.

rt = 1/ 1 + e−a J + rt − 1 + ϵ − b
(3)

For the FF neurons, we added a mechanism to produce flip-flop behaviour, where an input 

stimulus will switch a neuron from a high state to a low state and vice versa, depending 

on the state of the neuron preceding the stimulus. Since sigmoid neurons by themselves are 

too simple to produce this behaviour, we added a feature to the rate-based model where if 

the current output r is large (>0.8) and the input is large (>0.5), then the output of this FF 

neuron is reduced by 0.5 and the opposite FF is increased by 0.5. This produces the required 

flip-flop behaviour (Fig S1), but does not postulate a plausible mechanism whereby this 

behaviour is produced. We present a more realistic mechanism in the next section on the 

spiking model.

Spiking model—As described above, each neuron in the spiking model is represented by 

a group of 100 LIF neurons. The NEF approach to doing this is to start by writing out the 

particular desired dynamics as a differential equation dx
dt = f(x, u) where x is the internal 

state and u is the input. In the case of our flip-flop neuron, we can write the flip-flop 

mechanism as given in Equation 4.

dx
dt =

1 − x,  if x > 0.5 and u < 0.2 (if FF is high and no input, stay high) 
0 − x,  if x > 0.5 and u > 0.2 (if FF is high and input, go low) 
0 − x,  if x < 0.5 and u < 0.2 (if FF is low and no input, stay low) 
1 − x,  if x < 0.5 and u > 0.2 (if FF is low and input, go high) 

(4)
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This differential equation will give similar behaviour to the sigmoid FF neuron described 

above. In particular, note that if a differential equation is outputting a value of the form T – 

x, then the value x will move towards T until T = x. This means that in the first and last cases 

above, the state of the FF neuron will go to 1 (i.e. the FF is high), and in the second and third 

cases, the FF neuron will go to 0 (low). This gives us a differential equation approximation 

of the sigmoid FF.

The next step is to train a feed-forward single-hidden-layer neural network that 

approximates y = τ f (x, u) + x. Importantly, we use LIF neurons in the hidden layer, 

but we have no non-linearity at all in the input and output layers. These hidden layer neurons 

will eventually become the recurrently connected internal components that will approximate 

a FF neuron. To train this network, the training data is a set of randomly generated x values 

and the y values are generated using Equation 4. The τ parameter is the time constant of 

the post-synaptic currents that will be used in the next step, which we choose here to be 

100 ms. While any neural network training approach can be used (e.g. back-propagation of 

error), here we take the simple approach of randomly generating the first layer of weights 

and using regularized leastsquares minimization (i.e. ridge regression) to find the second 

layer of weights. This is a fast approach which works for any neuron model and avoids 

the difficulties of applying back-propagation to spiking neurons (Eliasmith and Anderson, 

2003).

Given this network, we now connect the output of the network back to its own input, and 

include an exponential synapse model (h(t) = e–t/τ/τ for t > 0; i.e. every time a neuron 

spikes, the current it produces in the neurons it is connected to follows an exponential 

decay). Surprisingly, the resulting recurrent neural network will approximate the desired 
dx
dt = f(x, u). To prove this, we note that the synapse will have the effect of convolving the 

output of the network with h(t). Since this output is also the input to the network, we have 

x(t) = (τf (x(t)) +x(t)) * h(t). Taking the Laplace transform, X(s) = (τF(s) +X(s))H(s). Since 

the Laplace transform of the synapse model is H(s) = 1/(1 + sτ), this gives:

X(s) = (τF(s) + X(s))/(1 + sτ)
X(s)(1 + sτ) = τF(s) + X(s)
X(s) + s(s) = τF(s) + X(s)

sX(s) = F(s)

Finally, converting back to the time domain, we get dx
dt = f(x, u). That is, this recurrently 

connected set of LIF neurons will approximate the desired flip-flop dynamics. Furthermore, 

since our feed-forward network has no non-linearity at the input or output, we can convert 

the system into a single pool of 100 LIF neurons whose recurrent connection weights are 

given by W = WoutWin, where Win is the weights from the input to the hidden layer and 

Wout is the weights from the hidden layer to the output.

This overall method (Eliasmith and Anderson, 2003) lets us take any desired dynamics 

(written as a differential equation) and convert it into a pool of basic components (here we 

use 100 LIF neurons) that are connected to each other using exponential synapses. As the 
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number of components increases, the accuracy of this approximation will improve, up to the 

limit of how well the feed-forward neural network approximates y = τ f (x, u) + x. We can 

think of the resulting system as defining a spiking attractor network whose dynamics are 

governed by that function.

Note that we are not suggesting the flip-flop neurons must have recurrent connections, 

but rather that these neurons have a sufficiently complex internal state that such feedback 

is necessary to capture their properties. The resulting spiking model produces a notably 

different time course of response compared to the rate-based model, although the key 

qualitative characteristics are maintained. One crucial difference between the rate-based and 

spiking models is in how synchronization between the two FF cells is achieved. In the 

rate-based model, we have explicitly added a rule that forces the contralateral flip-flip to 

its up-state when an input pushes the ipsilateral flip-flop to the down-state, and vice versa. 

This is not necessary in the spiking model, as the internal components of a FF neuron 

can successfully switch the activity state of the neuron. However, there is no way for the 

internal components of one FF neuron to directly affect the contralateral FF neuron. There 

is, however, an inhibitory connection between the PBN and the contralateral FF, so this 

allows the system to push the contralateral FF to a low state when the ipsilateral FF and 

PBN get input from the sensor. This allows for some asynchrony to emerge in the spiking 

model, rather than forcing it as in the rate-based model. Note that this type of asynchronous 

flip-flopping behaviour can be most easily observed when using artificial input (Fig. S1A). 

It becomes less obvious when the agent is exposed to a naturalistic stimulus, such as the 

simulated odor plume (Fig. 1). In this more complex scenario, it is evident that the spiking 

model is only an approximation of the ideal equations given, and as such it is possible for 

both FFs to be high or low at the same time.

Experimental situation 1: Following an odour plume

Our model is directly inspired by the flip-flop neurons that have been implicated in 

pheromone tracking in moths, hence we first evaluate its ability to control the behaviour 

of a simulated agent in an odour plume (Fig 2A). To simulate a realistic plume, we 

use an efficient model of odor dispersion in a turbulent medium (Farrell et al., 2002), 

as implemented with the python-based module pompy (https://github.com/InsectRobotics/

pompy, by Matthew Graham, Insect Robotics Group, Edinburgh University). This model 

was validated against measured gypsy moth plume data (Jones, 1983) and generates 

meandering plumes (Farrell et al., 2002), while still being efficient enough to be run at 

a very fine time scale (5 ms) to capture the high-frequency changes observed in moth plumes 

(≈ 0.1s; Mafra-Neto and Cardé (1994); Vickers et al. (2001); Levakova et al. (2018)). 

The plume was dispersed by a weak constant wind (2 m/s) flowing from the direction 

of the odour plume source towards the agent’s starting point. The agent was equipped 

with two fronto-lateral sensors which were designed to mimic antennae. The antenna size 

and angle (away from the centre line) from each other was adjusted to match real moths 

(Loudon and Koehl (2000); see table 1 for moth parameters). We set a maximum antenna 

sensitivity, above which the response is saturated, i.e. any higher concentration does not 

elicit a stronger response. We then chose a maximum response value to correspond to this 

level of concentration, and scaled the response linearly between this value and zero for lower 
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concentrations. These two parameters were adjusted manually. At each point in time, the 

network processes the input and makes a steering decision, which is applied to the centre of 

mass of the agent and scaled by the maximum rotation speed (table 1), analogous to (Stone 

et al., 2017). The agent’s walking speed was determined by an acceleration and a drag 

parameter, analogous to (Stone et al., 2017) (see table 1). The agent’s acceleration setting 

in the simulation was adjusted to match the actual walking speed of moths (Loudon and 

Koehl, 2000). The resulting forward speed was not influenced by the headwind, but agents 

were given a weak tendency to turn upwind in the absence of plume input, in accordance 

with observations in silkworm moths (Cardé and Willis, 2008). Unless otherwise specified, 

all parameters were tuned manually to match the behaviour of real moths as closely as 

possible. Certain arbitrary parameters of the models, such as the maximum output value 

for the antennae and the maximum rotation speed, were set such that the resulting tracks 

approximated the tracks of silkworm moths as reported in (Ando et al., 2013).

Ando et al. (2013) presented a robot that was steered through an odor plume by an on-board 

moth walking on a track ball. The moth’s movement on the trackball was translated into 

wheel speeds for the robot. The authors presented trajectories for both the moth-controlled 

robot and the moth only in the odor plume. Here, we adjusted the parameters of this model 

such that the agent’s trajectories were similar to the moths’ trajectories presented in (Ando 

et al., 2013), based not only on the trajectories, but also quantitatively on the turn duration, 

turn angle and turn velocity.

Using their robot, Ando and colleagues performed further experiments where they added a 

bias to the turning of the robot. That is, a constant signal was added to the left (or right) 

wheel, while the moth was controlling the robot. This causes the moth to drift to the edge of 

the pheromone plume, but they show the moth is able to compensate for this and continue to 

follow the plume. We performed the same experiment in our simulation by adding a constant 

bias (in rad/s) to the moth rotation, causing the simulated agent to have an extra tendency 

to turn in a particular direction. Ando and colleagues show that moths’ plume-following 

behaviour is robust to this sort of manipulation, and that the resulting paths tend to follow 

along the edge of the plume.

Behavioural measurement thresholds were defined in accordance with (Ando et al., 2013), 

to allow for comparing the models to data from male silkworm moths. A turn was identified 

if the agent’s turn duration was larger than 0.5 s, the turn angular velocity was larger than 

5 deg/s, and the turn angle was larger than 30° (Fig 2B, C; Ando et al. (2013)). Loops were 

detected based on their high rotation rate, above 30 deg/s for at least 5 s. An experiment was 

considered successful if the agent arrived within 5 cm of the goal. All data was analysed in 

Python 3.5.5.

Experimental situation 2: Path integration

A second motivation for our model was to understand how output from the central complex 

is translated to steering behaviour. Specifically, we connected our steering system to a 

previously developed CX path integrator model using sigmoid neurons (Stone et al., 2017). 

This model is based on the neuroanatomy of the central complex, and we take the output 

neurons from the model (CPU1/PFL; figure 6A) and project them to the lateral accessory 
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lobes in our model, where they may interact with the flip-flop descending neurons as well 

as the protocerebral bilateral neurons modelled here. Since there are eight CPU1 cells per 

hemisphere whose summed activity is thought to activate the motor, but only one flip-flop 

neuron in our model, the activity of all 8 neurons was summed by projecting onto the same 

flip-flop cell.

In the plume experiments, the value of each sensor was between 0 and 1, so that the absolute 

difference between the two sensors could also fall between 0 and 1. However, the output 

from the path integrator had a narrower spread (0.5 to 1). While our models worked with 

that smaller difference, we also re-scaled the path integrator output to a scale of 0 to 1 to test 

whether this would improve the models’ behaviours.

To evaluate the behaviour in this situation, we used exactly the same simulator as before 

(pompy), but removed the odour plume. We then caused the agent to take a random 

exploratory path by setting its rotation rate to be a Gaussian white noise process with σ 
= 0.1rad/s while moving forward at a constant speed (see table 1), for 15 seconds in total. 

The agent then attempted to return directly home using the CX output combined with our 

steering model. The simulation was continued for another 40 seconds. An experiment was 

considered successful if the agent arrived within 5 cm of the starting location.

Results

In order to determine how realistic the behaviour of our model is, we compared the 

simulated tracks quantitatively to data from silkworm moths (Bombyx mori, originally 

published in (Ando et al., 2013), Fig. 3). The total turn duration of the rate-based model 

falls within the standard deviation of real moth data but was slightly higher for the spiking 

model (Fig. 3A). The total turn angle of both models fell within the standard deviation of 

real moth data (Fig. 3C), while the mean turn velocity of both models was 10-15 % lower 

compared to real moths (Fig. 3B). However, both models performed well with respect to 

finding the origin of the plume, with a success probability of 0.84-1.0 (Fig. 3D). The tracks 

of both models display both cross-wind zigzagging and straight surges, as well as loops (Fig. 

3E, F), with the rate-based model having straighter paths than the spiking model. Overall, 

when comparing the rate-based and spiking models to moth data, we find that both models 

replicate real moth data reasonably well.

A further way of testing how well our models replicate real moth behaviour was to add a 

turn bias to the simulation. When given a turn bias, silkworm moths were shown to track the 

edges of the odour plume instead of the centre (Ando et al., 2013). This was also the case for 

our models (Fig. 4). When analysing the angle between the current position of the agent and 

the source of the odour plume, we found that the models shift away from the centre of the 

plume already at a turn bias of 1 rad/s (Fig. 4A, B). With increasing turn bias, the models’ 

success rates decrease, and at a turn bias of 3 rad/s, no agent simulated by the rate-based 

model reaches the goal. The spiking model is more robust but starts failing at a turn bias 

of 5 rad/s (data not shown). While these results are more difficult to compare quantitatively 

to real moth data owing to the different ways of implementing the turn bias, it is clear that 
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qualitatively the models behave very similarly to real moths, as they track the edge of the 

plume rather than the centre when given a turn bias.

Interestingly, looping behaviour emerges from the spiking model, but is only rarely observed 

in the rate-based model (Fig. 5A, B). In fact, we were unable to find ways of modifying the 

rate-based model to create these tight loops while still being able to successfully follow the 

plume (Fig. S3, S4). It should be noted that, while it is possible to observe clean flip-flop 

behaviour in ideal circumstances (Fig S1A), with more realistic input the model exhibits 

a much richer array of behaviours (Fig S1B), including times where both flip-flops are 

active, and times when neither are active. This is due to the fact that the spiking model uses 

internal components to approximate the ideal flip-flop algorithm, but this approximation is 

imperfect. Thus, the spiking model may be able to get into a transient stable state where 

both flip-flops are on, but one is slightly stronger, causing a long turn in one direction. 

Alternatively, there may be other low-level differences between the components used for 

the two sides of the model, leading to subtle asymmetries in the model. With this in mind, 

further examination of the looping behaviour is warranted. Since moths have been described 

to perform loops when they lose the odour plume (Baker and Haynes, 1996), we analysed 

the sensor values during looping. Loops were detected automatically based on their high 

rotation rates, allowing us to divide the trajectory into looping and non-looping stretches 

(Fig. 5A). Analysing the difference in value between the two sensors during looping, we find 

that looping occurs proportionally more often when the two sensors have similar or equal 

values (Fig. 5C-E), suggesting that looping emerges from the model when the sensor data 

is non-directional. Furthermore, the average difference in sensor values is consistently lower 

during a loop than during a turn, and both terminate when the difference between left and 

right sensor increases (Fig. 5C). During a loop, FF neurons switch activity state less and 

their output tends to remain stable on one side as compared to a turn (Fig. 5E).

To investigate what a possible advantage of looping could be, we compared the spiking 

FF network to a control agent in which the sensors were connected directly to the motor 

and which showed no looping behaviour. We removed the tendency to turn upwind in the 

absence of sensory input, to simulate a situation in which the agent solely relies on the odor 

plume, and tested both agents in successively sparser plumes. Under these conditions, the 

spiking FF agent had a significantly higher success rate than the control brain (Fig. 5F). 

Surprisingly, at very low plume concentrations, the control brain had a high success rate. We 

suspected that this may be a side effect of the agent pointing towards the odour source at the 

start of the simulation, and simply walking straight in the absence of sensor input. Indeed, 

when we changed the starting angle such that the agent faced 90 degrees to the right of the 

odour source, the success rate of the control brain was reduced to almost zero while the 

spiking FF agent remained successful at finding the source of the plume. This indicates that 

looping is indeed an orientation strategy that, in the absence of all other sensory information, 

can aid in locating the target.

Having established that the simple flip-flop networks are able to reliably replicate several 

characteristics of male silkworm moth behaviour, we then proceeded to test whether 

the models could also take CX output as input signals. For this experiment, we used 

a computational model of the CX that computes path integration in an anatomically 
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constrained network (Fig. 6A; (Stone et al., 2017)). In short, path integration is a 

computation that combines, at each time step, the current heading of the animal (represented 

in TB1/delta7 neurons, Fig. 6A) with its forward speed (represented in TN/LNO neurons, 

Fig. 6A). The resulting vector (updated in the CPU4/PFN memory loop, Fig. 6A) points 

in the direction of the path’s origin, and the length of the vector represents the distance of 

the animal from that origin. Thus, an animal that continuously updates this vector during 

an outbound path has the possibility to return back to its origin in a straight line. Once 

the animal decides to return, the desired heading (encoded in the CPU4/PFN vector) is 

compared to the current heading (TB1/delta7 neurons), and mismatches between the two 

are transferred to an unspecified motor via CPU1/PFL neurons. As CPU1 neurons project 

from the CX to the LAL, it is plausible that they interact with flip-flop neurons there. 

Importantly, steering signals are encoded as an imbalance between the summed activity of 

all CPU1 neurons in the right hemisphere and those in the left hemisphere. We therefore 

used the summed CPU1 activity as input to the flip-flop network. Using the same model 

parameters as for odor-plume experiments, both the rate-based and the spiking model steer 

an agent back to its origin based on path integrator output (Fig. 6B), albeit with a lower 

success rate than the ideal path integrator (Fig. 6C). We assessed the accuracy of homing 

by analysing the orientation of the agent relative to the origin, where 0° indicates that the 

agent is perfectly tracking along the straight line between the end of the outbound path and 

its origin (Fig. 6D). Without any connections to the steering model, the ideal path integrator 

peaks at an orientation of 0° and has a standard deviation of 15.4°. The spiking model also 

peaks at 0° but has a wider standard deviation of 67.9°. Interestingly, the rate-based model 

has one peak at 0°, a standard deviation of 50.2°, and two additional peaks at ± 90°.

Due to this odd distribution of orientations, and due to the relatively low success rate for the 

two models (0.7 and 0.57, respectively), we examined different ways of connecting the path 

integrator to our steering system. There is no a priori reason for expecting an output value 

of 0.5 from the path integrator to mean the same thing as a 0.5 from the odour detection 

system. However, we do not want to postulate complex neural mechanisms between these 

two systems. Two simple things to adjust are the gain of this connection (which would 

correspond to increasing the number of synapses, or moving the synapse closer to the spike 

initiation zone) and the bias current (which would correspond to changing the threshold 

at which the neuron will fire). While neither of these on their own significantly improved 

behaviour, we found that adjusting both gain and bias such that a path integrator value 

of 0.5 is mapped to a 0 input to the steering system and a value of 1.0 stays at 1.0 (and 

intermediate values are linearly interpolated between these) greatly improved performance 

while keeping the same qualitative effects (Fig. 6). When re-scaling the path integrator 

output to a scale between 0 and 1, we find that both models are significantly more successful 

as well as more accurate in tracking along a straight line back to the origin (Fig. 6C-F). At 

a sensor difference of 0.5 or above, the rate-based model’s percentage of successful runs 

increases from 0.7 to 0.78, and the spiking model increases from 0.57 to 0.92 (Fig. 6C). 

Thus, the flip-flop circuit can be used to steer using multiple input sources, with minimal 

modifications.
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Discussion

We modelled a simple flip-flop network based on neurons that have been described in detail 

in the silkworm moth. The computational model has only two pairs of neurons: the flip-flop 

neurons (FF), which are bistable neurons, and the PBNs, which provide inhibition between 

the two flip-flops and thereby synchronise the two hemispheres. Note that in our model, 

there are no other connections between the two hemispheres, thus this synchronisation is 

entirely mediated by the PBNs. This network was modelled both as a rate-based model and 

as a spiking model. Surprisingly, both models were able to replicate the behaviour of real 

moths in an odor plume reliably, despite their simplicity. We found that additional neurons 

were not necessary to produce the behaviour presented in this paper (Fig. S2).

We also tested whether this simple steering network could serve as an interface between the 

CX and downstream motor centres by combining it with the CX path integrator network 

(Stone et al., 2017). We could show that both the rate-based and the spiking model can take 

input from the path integrator and use it for steering towards a target, and that the efficiency 

of steering depends on the scaling of the input into the system.

In the following, we will discuss our findings with respect to the models, their behaviours 

and the predictions and conclusions we can draw from these experiments.

Rate-based vs. spiking model

When comparing the rate-based and the spiking models, both produced similar overall 

plume-following behaviours, despite the difference in complexity. This reflects that rate-

based models are, to a certain degree, a valid way of modelling neural networks, despite 

the many simplifications they involve. However, the more subtle behaviours of the system 

seem to be more realistic in the spiking version, in particular for looping behaviour and 

for the influence of turning bias. Interestingly, when a turning bias is introduced (Fig. 4B), 

the spiking model produces the same edge-following behaviour observed in the original 

experiment (Ando et al., 2013), while the rate-based model exhibits some shift, but with 

a wider spread. Overall, this indicates that the spiking model produces more realistic 

behaviour.

A major open question is how flip-flopping can be achieved in a real neuron. In the spiking 

model presented here, we combine low-level components, which consist of voltage build-

up and spikes, to approximate the flip-flop behaviour. While this produces more realistic 

behaviour than the rate-based approach, more details could be added. In particular, various 

models of neural bistability currently exist (e.g. (Camperi and Wang, 1998; Gruber et al., 

2003)) that might serve as the basis for a more accurate model of flip-flop neurons.

Model behaviour

When evaluating the behaviour of both models, the turn angle, turn angular velocity and 

turn duration agree well with values reported for male silkworm moths and fall within the 

mean ± one standard deviation of moths (Ando et al., 2013). The high positive deviation of 

the spiking model’s turn duration (Figure 3A) can be explained by this model’s tendency 

to loop, leading to more and longer turns. The rate-based model also produced looping 
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behaviour, but at a much lower rate than the spiking model. Loops occurred when the 

difference between the two sensors’ values was very low and the directional information of 

the sensory input was therefore ambiguous. We could show that looping conferred a distinct 

advantage in sparser odor plumes, leading to significantly higher success rates as compared 

to a non-looping control agent. This suggests that looping is a basic orientation strategy that 

allows an insect to sample its entire local environment, and may be especially useful if the 

insect orients relative to an external cue, or towards the source of an intermittent cue such 

as an odor plume. As an orientation strategy, looping has been described in several insects: 

For example, fruit moths perform a loop as a search mechanism when they lose the odor 

plume (Baker and Haynes, 1996); dung beetles perform a circular dance on their dung ball to 

take a ‘snapshot’ of skylight cues before rolling their dung ball in a straight line relative to 

these cues (Baird et al., 2012; el Jundi et al., 2016), and perform another dance after losing 

their bearing; and desert ants use a similar strategy to learn their visual surroundings during 

learning walks (Fleischmann et al., 2017). Looping therefore appears to be a robust strategy 

to sample and learn the local sensory environment, as well as to re-acquire a sensory signal 

that has been lost. Note that this orientation strategy would not be expected in simple taxis 

behaviours, in which the animal navigates purposefully towards or away from a sensory cue. 

In this situation, a very small difference between the two sensor values would be expected to 

elicit a straight walk, with the aim of keeping the difference as small as possible.

Central complex output can be used for steering

In addition to steering towards the source of an odor plume, we have shown that the models 

also steer well when getting input from the CX path integrator (PI) network published in 

Stone et al. (2017) (Stone et al., 2017). The output from this network is in essence a steering 

signal that represents the difference between the intended heading and the current heading. 

This signal is asymmetric between the right and left hemisphere, depending on whether the 

agent needs to correct to the right or to the left.

Our steering models can take this input and steer the agent towards its point of origin, 

using the same parameters that were used for odor-based steering. This was surprising, 

considering that the sensory input experienced in an odor plume is quite different from the 

input provided by the PI. Odor plume input is intermittent and varies at a high temporal 

frequency, whereas PI output is constant, changes smoothly without sudden jumps, and 

ideally varies within a relatively small range around the intended heading. Re-scaling the PI 

output to match the range given by the odor plume resulted in successful control behaviour 

without necessitating fundamental changes to the model. Biologically, this re-scaling could 

be achieved by the presence of interneurons and/or neuromodulators in the inputs to the 

flip-flop system, and facilitate adapting to new sensory environments.

Our results suggest that the flip-flop system can take and integrate input signals from 

multiple modalities, including the CX, to generate downstream steering commands. One 

important limitation is that the multimodal input signals need to be directional, that is, there 

must be an imbalance between the signals in the right and left hemisphere. Here, we tested 

input signals that are derived from visual cues, but there is no reason to assume that the input 

should be restricted to olfactory and visual cues alone (Steinbeck et al., 2020). Silkworm 
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moth flip-flop neurons are known to switch state in response to odor cues as well as light 

flashes, and bistable neurons of a similar morphology were found to switch state in response 

to auditory input in the cricket (Zorovic and Hedwig, 2011). Our data therefore supports the 

idea that this neural network may work as a general purpose steering network at least in the 

context of targeted orientation behaviours (excluding taxis behaviours).

Purpose of the flip-flop system

One important question is whether the flip-flop neurons convey any actual advantage to the 

steering circuit. Indeed, the path integrator model without a flip-flop steering component 

works perfectly well ((Stone et al., 2017); see also the “ideal” model in Fig. 6). Similarly, 

pheromone plumes could be followed by directly connecting the left and right sensor data 

to downstream motor neurons, bypassing the flip-flop network altogether (Fig. 5F, S3). 

However, we have shown that one advantage of using the flip-flop network when following 

an odor plume is the emergence of looping behaviours, which increase the robustness of 

the behaviour to disturbances such as intermittent loss of sensory input. Furthermore, the 

flip-flop models produce paths that cover a wider part of the available space, while still 

successfully finding the plume source. We thus conclude that one purpose of the flip-flop 

system is to support reliable goal-directed behaviours while also facilitating exploratory 

behaviours that cause the insect to vary its position and orientation, rather than following a 

direct path.

Predictions

Our analysis generates several testable predictions. First and foremost, CPU1 neurons 

that project from the CX to the LAL are expected to have either direct or indirect 

excitatory synaptic connections with flip-flop neurons. To our knowledge, only two similar 

connections have been described so far: In the fruit fly, CPU1 neurons (PFL in Drosophila 
nomenclature) were shown to synapse onto bilateral LAL interneurons (Franconville et al., 

2018) (see also (Hulse et al., 2021), as well as the ipsilaterally-descending LAL neuron 

DNa02 (Rayshubskiy et al., 2020). However, whether CX output neurons also project onto 

contralaterally-descending neurons in the LAL remains unknown. Finding the interaction 

sites between CX output neurons and LAL descending neurons, such as the flip-flop neurons 

modelled here, will be an important step towards understanding how the CX controls 

behaviour.

Secondly, our findings support that the flip-flop network does not only underlie olfactory 

steering, but that it can be a multimodal steering network. If this is correct across insects, 

we would expect flip-flop neurons to switch state in response to any stimulus that elicits 

targeted locomotion (excluding taxis behaviours). Here, we will discuss three examples of 

targeted locomotion: straight line orientation, migration, and path integration.

Dung beetles perform short-distance, straight-line orientation when rolling their ball away 

from the dung pile (Dacke et al., 2003a). To keep their path straight, they rely on skylight 

cues such as the position of the Sun, the polarization pattern of the sky, and the sky’s 

spectral gradient (Dacke et al., 2003b, 2004, 2013; el Jundi et al., 2014). These cues are 

integrated in the CX to generate a current heading (el Jundi et al., 2016), which can be used 
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to steer the animal along its straight path and adjust for deviations. We therefore expect 

that dung beetle flip-flop neurons should respond to a change of the skylight cue, such as a 

sudden rotation of the polarization pattern, with a state change.

When it comes to long-distance migration, the Monarch butterfly and the Bogong moth are 

well-known insect models for diurnal and nocturnal migration, respectively (Reppert et al., 

2016; Warrant et al., 2016). The Monarch butterfly uses a time-compensated Sun compass, 

as well as the geomagnetic field to migrate from its breeding grounds in North America to 

overwintering regions in central Mexico (Mouritsen and Frost, 2002; Guerra et al., 2014). 

The Bogong moth uses the geomagnetic field in combination with visual landmarks to 

migrate from its breeding grounds in southern Queensland and western New South Wales 

(Australia) to its overwintering sites in the Australian Alps (Dreyer et al., 2018). The CX 

path integration network processes Sun compass information and has been proposed to 

be a possible substrate for computing long-distance migration (Heinze and Reppert, 2011; 

Honkanen et al., 2019), thus making it likely that the resulting steering commands are 

passed on to LAL descending neurons. We would expect flip-flop neurons in the Monarch 

butterfly and the Bogong moth to switch state in response to sudden changes in the skylight 

cues or landmark configuration that they use to orient. Furthermore, many flying insects use 

optic flow for flight control, including moths (Fry et al., 2009; Weir et al., 2014; Stöckl and 

Kelber, 2019; Mauss and Borst, 2020). One might therefore expect flip-flop neurons to also 

respond to a change in the rotational component of optic flow with a state change.

Finally, path-integrating ants and bees are obvious targets for measuring flip-flop neuron 

responses, considering that we use the PI network as an input for our steering models. 

However, since the flip-flop neurons are not driven directly by sensory input that can be 

controlled in an experimental situation, but rather by a memory state, it is more difficult to 

test how flip-flop neurons respond during homing. One could however test optic flow cues 

and compass cues separately, to dissect how the different components of the path integrator 

drive the flip-flop neurons. Alternatively, it may be possible to perform extracellular tetrode 

recordings from flip-flop neurons during natural homing on a track ball (Dahmen et al., 

2017).

Conclusions and outlook

Of course, motor control mediated by descending neurons is much more complex than 

the simple model presented here. In the silkworm moth, several other neuron types were 

described to play a role in pheromone-mediated steering, which can be added to the model 

for increased complexity and biological relevance. Additionally, complex motor patterns are 

most likely mediated by not just one cell type, but by a population code across a number of 

descending neurons (Namiki et al., 2018a). Creating larger and more integrated models of 

this form is a useful tool for a more complete understanding of these complex interactions.

We believe that the model we have developed and presented here is one small step 

towards understanding the connection between the heading direction system in the CX 

and downstream motor centers. Importantly, the approach we have taken to develop this 

model is flexible and suitable for a wide range of model features. To date, this is the 
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most complex insect-based model developed using the Nengo neural modelling software. 

However, Nengo has also been used for a wide variety of mammal-based models, including 

Spaun, a large-scale model of the human brain (Eliasmith et al., 2012). While modelling 

insect brains offers different challenges than mammalian brains, we believe our work has 

shown that this sort of large-scale model is possible, and can lead to more realistic behaviour 

than some traditional modelling approaches.

Developing a more complete model cannot be done by a single group of researchers. We 

have made our model freely available at https://github.com/stanleyheinze/insect_steering, 

and we hope that a community of researchers can, over time, add neuron types and neural 

systems to increase the complexity of the model and advance our understanding of this 

general steering system in insects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The flip-flop network. Protocerebral bilateral neurons (PBN) and flip-flop neurons (FF) 

both get input directly from the ipsilateral sensor. PBNs inhibit the contralateral FF. FF 

neurons activate the motor. For the spiking model, each neuron is comprised of 100 spiking 

components, recurrently connected so as to achieve an approximation of the rate-mode 

behaviour. The output from each neuron is a weighted sum of the output of its components. 

The final output controls the turning rate of the moth, and is computed as the left FF output 

minus the right FF output times a fixed scaling factor. Activity shown here is for the spiking 

network. See Fig. S1 for a comparison of activity propagation through the rate-based vs. 

spiking model given artificial input. See supplementary video for an animated version of this 

figure.
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Figure 2. Overview over the odor plume experiment.
A: The pheromone plume is released from the source and dispersed by wind. Shown is 

one frame of the plume, with the grey value reflecting the pheromone concentration on a 

scale from 0 to 1, where 0 translates into no input to the agent’s sensor and 1 into maximal 

sensory input. The agent is expected to navigate towards the source using the odor plume. In 

the absence of input, the agent turns upwind. B: Typical path of the rate-based model, with 

right turns indicated by filled grey circles and left turns indicated by empty black circles. C: 

The rotation rate defines whether a rotation is classified as a turn. Detected turns are marked 

(right turn = grey, left turn = black). Definition as in (Ando et al., 2013).
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Figure 3. Behaviour of both models in a simulated odor plume.
A-D: Comparison of the rate-based and spiking model to data from silkworm moths. Bar 

plots represent the median, with the error bar giving the bootstrapped 95 % confidence 

interval. The moth mean ± standard deviation (black line and grey area) and the moth 

median ± median absolute deviation (dark blue line and blue area) are given for comparison. 

Moth data reproduced with permission from Ando et al. (2013). E-F: Example trajectories 

for the rate-based (E) and spiking (F) models, with different colours denoting individual 

trials. For additional paths, see Fig. S2
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Figure 4. Turn bias.
A: Proportion of time the agent spent at a specific angle relative to the source of the odor 

plume. Only successful trials were included. When a turn bias was added to the left motor, 

the agents shifted away from the center of the plume towards the plume’s edge. At a turn 

bias of 3, the rate-based model failed consistently. B: Paths of the rate-based and spiking 

models with increasing turn bias. N = 40 per condition. Dotted line = center of the odor 

plume; dashed outline = area of odour concentration of at least 10 percent of the maximum 

detectable level, averaged across 3000 time steps; blue dot = plume origin; grey circle = area 

around plume origin that needs to be reached in order to count as success.
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Figure 5. Looping behaviour of the spiking model.
A: Example track of a spiking model agent orienting in an odor plume, with loops 

highlighted in purple. B: During tracks lasting on average 253 seconds, the spiking model 

spends over 20 s looping, while loops almost never occur in the rate-based model. C, D: The 

difference in sensor input is consistently lower during a loop than during a turn. E: Z-score 

of the sensor activity and FF neuron output during loops (blue) vs. turns (grey). Sensor 

activity is substantially more similar during a loop than during a turn, while FF neuron 

output tends to remain on one side. F: Comparison of the spiking FF brain to a control brain 

in which the sensors are directly connected to the motor, at starting angles of 0 degrees and 

90 degrees relative to the origin of the plume. The spiking FF model is significantly more 

robust to increasingly sparse plumes, with a high success rate down to a puff release rate of 

10 puffs per second, independent of starting angle.
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Figure 6. Integrating the flip-flop models with the central complex path integrator.
A: Schematic of the integrated network. The path integrator receives compass input via 

CL1a neurons, and speed input via TN neurons. TB1 neurons compute the current heading 

direction. CPU4 and pontine (Pon) neurons form a memory loop which integrates the current 

heading direction with the current speed, resulting in a vector that points to the path’s 

origin. When the agent wants to return home, CPU1 neurons compare the current heading 

(represented in TB1 neurons) to the desired heading given by the CPU4 home vector. CPU1 

neuron output is then fed directly into the flip-flop networks, with the same input driving 

both the inhibitory protocerebral bilateral neurons (PBN) and the flip-flop neurons (FF). B: 

Example paths of the path integrator without a steering network (ideal), with the rate-based 

model, and with the spiking model. C: Success rate of the integrated models compared to 

the ideal path integrator. The success probability of both models increases when the CPU1 
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output is rescaled to a range of 0 to 1. Error bars represent the bootstrapped 95 % confidence 

interval around the median. D: Proportion of time the models spend at a certain angle 

relative to the path’s origin. E: With rescaled input, the distribution of the rate-based model 

becomes almost identical to that of the ideal path integrator. F: With rescaled input, the 

distribution of the spiking model has a smaller spread around 0° and becomes more similar 

to the ideal path integrator. N = 50 for all path integrator experiments. Only successful trials 

were considered in D-F.
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Table 1
Simulation parameters.

Parameter Value

Number of LIF components to implement one neuron 100

Random noise added to neurons N (0,0.02)

Wind speed 2m/s

Plume puff release rate 50 Hz

Plume puff initial radius 0.1 m

Antenna size 7.5 mm

Antenna angle 45°

Antenna maximum sensitivity 100

Antenna maximum output value 3.0

Moth maximum rotation speed 8.0 rad/s

Moth acceleration 0.2m/s2

Moth drag 0.5 m/s

Moth turn-into-wind rate 0.1 rad/s
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