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Abstract

In the last decade, DNA nanostructures have made the leap from small assemblies of a handful 

of oligonucleotides to megadalton objects assembled from hundreds or thousands of component 

DNA strands. Most DNA designs today are either lattice based with simple and reliable design 

tools or lattice free with a larger shape space but more challenging design and lower rigidity. 

In parallel with the development of DNA nanostructures, software packages for the simulation 

of nucleic acids have seen rapid development allowing for the simulation of the dynamics of 

full DNA nanostructure assemblies. Here, we implement an unsupervised software based on the 

coarse-grained molecular dynamics package oxDNA to simulate DNA origami structures and 

evaluate their rigidity. From this, the software autonomously produces mutant structures by adding 

or removing base pairs or modifying the positions of internal supports. These mutant structures 

are iteratively generated and evaluated by simulation to create an in-silico evolution towards more 

rigid DNA nanostructures.
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Constructing nanoscale assemblies from nucleic acids was first proposed in the 

early 1980’s1 and in the following two decades several theoretical, and experimental 

demonstrations showed that the concept was feasible. These early demonstrations typically 

used a handful of synthetic oligonucleotides to construct discrete2,3 or polymeric4 2D 

and 3D structures. The field of DNA nanotechnology was revolutionized in 2006 by the 

introduction of DNA origami5. In DNA origami a long strand called scaffold strand is 

folded by hybridizing with many shorter synthetic oligonucleotides called staple strands. By 

using scaffold strands close to 10 000 bases long and hundreds of staple strands, discrete 
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megadalton assemblies with sizes in the order of 100 nm can be assembled with close to 

perfect yield.

The geometry of DNA is a fundamental factor in the design of DNA nanostructures, 

most notably its helical twist, making a full turn in roughly 10.5 base-pairs.6 Most 3D 

DNA origami design consists of parallel DNA strands packed in a square7 or honeycomb8 

lattice. The structures are held together by four-arm junctions formed by crossovers of the 

scaffold or staples strands between adjacent helices. The positioning of these crossovers 

should follow the twist of the DNA in the connected helices to minimize strain in the 

structure, and this essentially creates simple design rules for DNA structures based on 

parallel packed helices. The first DNA origami structures were designed by hand or with 

limited computer assistance. This was quickly overcome by the introduction of dedicated 

design software, most notably caDNAno,9 where the design rules form an integral part 

allowing for the quick design of lattice-based DNA origami structures. DNA origami 

structures based on parallel packing have been successfully assembled in diverse shapes, 

and the addition of functional groups have yielded structures with promising applications 

in drug delivery,10,11 nano-fabrication,12,13 plasmonics14 and as tools for biophysical and 

life-science studies.15–17

We recently introduced a method for automatically generating wireframe DNA origami 

designs from polyhedral meshes.18 Other tools have been demonstrated for the production of 

lattice free DNA origami structures,19,20 including with edges composed of two21 or more22 

DNA double helices.

Wireframe designs are routinely used in macroscopic engineering as it offers superior 

strength to weight ratio compared with solid beams. One of the goals of wireframe design 

of DNA nanostructures is to harness this effect on the nanoscale. Although wireframe DNA 

origami can fold with high yield to its designed shape, it is evident from experiments that 

their rigidity is below that of designs relying on the parallel packing of DNA.23

During the last decades, molecular dynamics simulations have evolved as a powerful tool 

for studying molecular systems.24 In all-atom molecular dynamics, every atom of the system 

of interest is simulated as separate particles including solvent molecules. As the number 

of simulated atoms increases so does the computational cost, limiting this approach to 

small systems for short simulated time. This approach has been demonstrated on DNA 

origami structures with simulated times on the order of hundreds of nanoseconds, requiring 

supercomputers.25

In parallel with the computationally heavy all-atom molecular dynamics simulations, 

alternative models have been developed where the systems are simplified to reduce 

computational complexity. One of the most widely used systems for simulating DNA 

origami structures is CanDo where DNA is modeled as deformable cylinders in a finite 

element solver.26,27 The simulations are performed rapidly through a web interface, but the 

model lacks a description of electrostatics and DNA base pairing. Another popular tool 

is coarse-grained molecular dynamics, here the studied biomolecules are represented by 

few-body models with simplified interactions, and the solvent is only modeled implicitly, 
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one such approach is the oxDNA model. In the oxDNA system, every DNA base is modeled 

as two bodies, representing the backbone and a base.28,29 These bodies can interact through 

base pairing, stacking and electrostatic interactions. This simplification dramatically reduces 

computational cost, and it is now possible to simulate large DNA origami systems for up to 

1 μs per day on a single GPU,30 and the model can reproduce the geometry of DNA origami 

with high precision.31

With the increase of computational power over the last decades it has become possible 

to predict the properties of designs made from diverse materials through simulation. This 

has revealed that human intuition cannot always predict the properties of a design, and 

as a result may be incapable of predicting designs with optimal performance. From this 

realization, the concept of shape optimization has emerged where desired properties and 

constraints for a design is specified by a user together with initial designs. The design is then 

evaluated by simulation and compared to its specifications after which it is automatically 

modified; this cycle is repeated iteratively to find designs that perform better according to 

the specifications. This approach has been applied from the microscopic scale to produce 

photonic cavities,32 to the macroscopic scale for the optimization of the internal structures of 

airliner wings.33

In the field of rational protein design, significant computational resources are now 

routinely used to algorithmically develop proteins with novel structures and properties.34 

In DNA nanotechnology, simulations are regularly used to evaluate individual designs, but 

autonomous evaluation and algorithmic improvement of DNA structures have not yet been 

demonstrated.35 In this paper, we use the oxDNA package to estimate the flexibility of 

wireframe DNA origami structures. We then modify our DNA origami design pipeline to 

allow for automatic modification of the DNA nanostructure design, we combine these two 

to create a system for iteratively generating mutant DNA nanostructures that we evaluate 

by oxDNA simulations. The system automatically retains structural modifications that yield 

lower flexibility leading to an in-silico evolution of structural rigidity.

Results And Discussion

Even when using GPU acceleration, the computational time of oxDNA simulations is 

considerable and grows with the number of nucleotides. We started by optimizing a 

relatively small structure with 60 helices and around 2200 base-pairs. Simulating this 

structure on a modern GPU (Nvidia GTX 1080) for 108 time steps (corresponding to 

approximately 1.5 μs) takes about 20 hours. We can control the size of the explored search 

space by altering the number of iterations in combination with the number of mutant 

structures we simulate in each iteration. It is most practical to run one simulation per 

GPU, and we implement our simulations on two compute nodes with four GPU’s each 

meaning that we typically use eight mutant structures in each iteration. We created a 

server software that we run on the compute nodes that configures and runs the oxDNA 

simulations as well as performs pre-processing on the output data. In addition to this we 

use a master node that runs a modified version of vHelix18 that is capable of generating 

mutant structures, converting these to the oxDNA simulation format, and sending them 

over network to the compute nodes. When the compute nodes finish their simulations, 
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they return the pre-processed data to the master node over network and the master node 

software evaluates the simulations and uses this information to generate the next generation 

of mutant structures. This software is capable of running completely autonomously and send 

a progress log over email after each finished iteration.

The primary metric of flexibility used in this study is the time-series of the end-to-end 

distances of the helices that compose the wireframe DNA origami structure. In an ideal 

wireframe DNA structure, the helices representing the edges should be rigid and thus have 

small fluctuations in end to end distances during the simulation. These time-series can be 

extracted from simulation trajectories and be tracked in a plot, or the standard deviation of 

the time-series can be used as a single metric for the performance of a helix. Supplementary 

figure 1 shows the extracted end-to-end distances of each helix of a small wireframe DNA 

origami structure. The dynamic behavior of two adjacent helices can be drastically different, 

many helices behave rigidly with lengths close to the design, while some are on average 

considerably shorter than designed and show large standard deviations in their end-to-end 

distance fluctuations. Deformations of the structure can also be caused by the junctions 

transitioning between stacked and unstacked conformations during the simulation. It should 

be noted that helices could take stable bent states in the simulations, and this would yield a 

lower average length but a low standard deviation.

The standard deviation in end-to-end distance can be used to rank the helices of a structure 

from most to least rigid. The least rigid helices should be the most significant contributors 

to the flexibility of a structure. In our first approach (Figure 1) to increase rigidity, we 

individually modify the four least rigid helices by adding or removing base-pairs to create 

eight mutant structures. Adding or removing a base-pair from a helix will have two effects: 

It will increase or decrease the length of the helix causing an additional push or pull on the 

two vertices that the helix connects to. Secondly, due to the helical twist of DNA, it will alter 

the preferred angle between the ends of the helix, leading to increased or decreased strain in 

the connected vertices. These effects can change the behaviour of the helix (Supplementary 

figure 2), and could conceivably propagate through the structure and have non-local effects 

on rigidity.

We then simulate these structures and use the average standard deviation of all helices of the 

structures as a metric of rigidity. If this metric is reduced, we conclude that the modification 

was positive and include it in the structure.

We use two iteration schemes to select how to proceed. In the simplest scheme called 

“constant progression” the mutant structure with the lowest average standard deviation was 

used as a template structure for the next iteration. This is done regardless of the modification 

makes the structure more rigid than the previous iteration. If the modified helix is again one 

of the least rigid edges of the structure, it will be again modified in the next generation of 

mutant structures, and the modification may revert. The second iteration scheme is called 

“selective progression”, here the best mutant structure is compared with the previous best 

structure score. The modification made in the mutant structure is only retained if it generates 

a lower overall score. If the new structure score is not better than the previous best, the 

mutation will be discarded and the software will try to modify the second to worst set of 
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helixes of the best structure. One crucial difference between the iteration schemes is that 

the “selective progression” scheme may run out of edges to modify in the best structure and 

thus terminate, in what may be a local minimum. The “constant progression” scheme will 

continue modifying the helices of the structure indefinitely.

After running the two iterations schemes on the small barrel-shaped DNA origami structure 

for 31 and 25 Iterations respectively, we could see a gradual decrease in mean standard 

deviation (Figure 1c-d). The “constant progression” scheme showed a decreasing trend 

throughout, but the lowest value of the simulation constant was found already at iteration 

17. The “selective progression” scheme did not show the same type of trend but rapidly 

found modifications leading to a lower average standard deviation. To test the effect of 

simulation time we evolved a smaller structure with five times longer simulations, using 

the “constant progression” scheme (Supplementary figure 3). For this small structure, the 

iterative evolution initially showed a positive trend, but then appeared to get caught in a 

minima where the same edges were consistently mutated.

An iterative scheme that makes only one modification per simulated structure is intrinsically 

slow, and the effect of single base pair modifications on a full structure could be minimal 

for larger origami structures. To overcome this, we implement a multiplexed modification 

scheme where several modifications are introduced in the same mutant structure at random 

(Figure 2) but with a constraint that they are spatially separated. After simulation, the 

modifications are evaluated individually by scoring the modified edge and the edges that 

share a vertex with it and comparing these with the score for the same edges on a reference 

simulation without this mutation. All positive modifications that yield an improvement 

larger than a threshold is then incorporated in the structure used in the next iteration. 

We tested this iterations scheme with a full-size DNA origami structure (around 8 000 

base-pairs) with up to 10 modifications in each structure for a total of up to 70 modifications 

in each iteration. For the large structure, the initial iterations showed a decreasing trend in 

the flexibility, but after six iterations a single modification was incorporated that increased 

the flexibility. These mutations led to very modest effects on the rigidity of the structure, 

and it is possible that scoring the effect only locally around the mutation is inadequate as 

mutations may have long-range effects on the structures. In our evaluation of the multiplexed 

strategy, we performed over 500 independent simulations of variants of a hexagonal rod 

and implemented and evaluated over 4 000 mutations. These mutations were introduced at 

random, and in the tested structure, only a fraction (389) were beneficial. This fraction could 

be increased if it was possible to predict what edges could benefit from a mutation.

We took a machine learning approach and used this data to train a convolutional neural 

network on predicting if an edge could benefit from a mutation (Supplementary figure 5). 

After training the network we simulated a spherical wireframe structure and evaluated the 

simulation data of the individual edges with the neural network, yielding a prediction of 

what edges where most likely to benefit from adding or removing a base pair. We modified 

the 10, 20 or 30 edges that where most strongly predicted to benefit from modification, 

compared to 10, 20 or 30 random modification. Interestingly, when we evaluated the local 

effect of these mutations, we found that the neural network was better at predicting edges 

that benefited from modifications compared to random modifications, but the overall score 
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of the structure did not improve by these modifications, again indicating that modifications 

can have long range effects, and that local evaluation may not be adequate. Machine learning 

approaches are used in many other design problems, including protein structure prediction,36 

and could be implemented in multiple ways in DNA nanostructure design. Additional 

simulations would also yield a larger training data set, potentially improving the accuracy of 

a machine learning model.

Addition or removal of individual base pairs represent modest modifications and appears 

to give modest improvements to structure performance, but iterative strategies can also 

be based on more significant modifications of the designs. We created a scheme where a 

hollow DNA structure is internally supported by edges connecting two helices of the original 

mesh. This was achieved by designing staple-staple protrusions that connect internally 

by hybridization. In each iteration, eight separate mutant structures are generated by 

disconnecting one end of one internal support and reconnecting it randomly to another helix 

(within a maximum permitted distance). These mutant structures are simulated, evaluated, 

and a top performing structure is selected as template for the next iterations of mutations. 

This allows internal supports to “walk” inside the structure and find positions in the structure 

where they contribute the most to the performance of the structure. We tested this concept 

by designing a prismatic wireframe rod with a square cross-section and 13 subunits, initially 

designed to have one internal support running through each subunit. The global performance 

of this structure was evaluated by tracking the distance between the top and bottom subunits 

of the structure, in a rigid rod, this distance should be constant. We implemented two 

algorithms: gradient descent, where in each iteration the mutant structure with the best 

performance is chosen, and simulated annealing, where a decreasing probability of choosing 

suboptimal mutant structures in each iteration should lower the risk of getting caught in local 

minima. The optimization using gradient descent showed a rapid reduction in end-to-end 

fluctuations of the structure in the first ten iterations and then appeared to level off with a 

decrease of fluctuations of almost 50 %. The simulated annealing showed a slower decrease 

in fluctuations and was also able to reach a state of almost 50% less fluctuation after 23 

iterations. After optimization with simulated annealing, the position and orientations of the 

internal edges have gone from an ordered pattern to a seemingly random configuration 

(Figure 3c). A plot of the end to end distance of the rod (Fig 3d) shows that the fluctuations 

are smaller in the optimized structure compared to the initial state. We attempted to validate 

these results by assembling the initial and optimized structures experimentally. The initial 

structure assembled, but did not appear rod-like in electron microscopy, while the optimized 

structures did appear rod-like (supplementary figure 6).

Wireframe DNA origami structures may be of use in biomedical applications but are 

less rigid than structures based on the parallel packing of helices. Here we demonstrate 

a method to evaluate the rigidity of wireframe DNA nanostructure in silico using coarse-

grained molecular dynamics simulations. We use this to create an iterative evolution of the 

nanostructures where mutant structures are generated by the addition or removal of base 

pairs from selected helices, or by moving the position of internal supports. These mutant 

structures are simulated in oxDNA, and the effect of their modification is evaluated on the 

entire structure or in the region around the modification. Modifications that are beneficial to 

the rigidity of the structure are incorporated in the next generation that serves as the base for 
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new mutant structures. We tested this on DNA origami structures of varying sizes and saw 

moderate improvements with single base modification and improvements on the order of 50 

% for modification of internal supports. We also used the large dataset generated from these 

simulations to train a neural network to predict what edges could benefit from insertions or 

deletion. This neural network was capable of identifying mutations that where locally, but 

not globally beneficial to the structure.

The iterative evolution of structures by simulations is not limited to the simple scoring 

metric used here but could be modified depending on the desired application of the structure. 

If a moving part is being designed, the dynamics of the structure can be used as metric, if 

a high degree of similarity to the initial design is needed, the root-mean-square deviation 

(RMSD) between the simulated structure and the initial model could be used as a metric. 

The long simulation time on current hardware makes this refinement slow, but we believe 

that this approach still has merit as the modularity of DNA origami means that a single well 

optimized design can find many applications through addition of different functional groups. 

Additionally, the computing power of GPU’s is increasing with every hardware generation, 

meaning that what we do on clusters today may be done on a laptop in the future.

Methods

DNA nanostructure design

Wireframe meshes was designed in Autodesk Maya, exported in the STL format and then 

converted to the PLY format using the software Meshlab. The software package BSCOR 

(available from www.vhelix.net) was used to automatically find a scaffold route through the 

mesh and then construct a DNA nanostructure geometry based on the mesh. The resulting 

DNA geometry is output to a file in the RPOLY file format that describes the length, 

position, orientation and connectivity of the DNA helices.

Iterative simulation and evaluation of DNA origami structures in oxDNA

A software package consisting of three components, capable of running without supervision 

was designed. A standard workstation running Windows was used as a master node. On it, 

a main script running inside the python interpreter of Autodesk Maya copied and modified 

the RPOLY file to include the desired modifications to helices of the structure. The script 

then sequentially imported the modified DNA nanostructure to vHelix, assigned a scaffold 

sequence and saved the structure to the MA file format. The script then executed a converter 

to the oxDNA input format (TOP and CONF), this converter had been modified to also 

extract the ID of a nucleotide on the second to first and second to last base pair of each 

helix and save these to a file. This script was set up to generate 8 mutant structures for 

each iteration. In parallel with this script, a server script was running in a separate python 

interpreter on the master node, when it detected that all mutant structures had been generated 

and converted it sent the simulation files over network to the compute nodes, after sending 

these files, the server script sent an email to a determined address with a logfile of the 

modifications and the progress of iterative evolution and then waited for the compute nodes 

to perform the simulations.
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The compute nodes were based on dell T630 servers with double Intel Xeon e5-2620 v4 

CPUs, 64 GB of RAM and four consumer GPUs (Nvidia GeForce 1080 or 1080Ti) and 

ran Ubuntu Linux. On the compute nodes, a server script waited for the simulation files 

to be sent over network and then started running one oxDNA simulation per GPU for 

108 simulation time steps. After the simulations finished, the server script extracted the 

coordinates of the nucleotide ID’s as specified for the end of the helices from the simulation 

trajectory frames and saved these to a reduced size simulation trajectory. This reduced size 

trajectory was sent back over network to the master node server script.

When the data from all simulations had been sent to the master node it would trigger the 

main script to begin evaluating the results of the simulations by calculating the end to 

end distance of each helix through the simulation from the reduced size trajectory. The 

standard deviation of these datapoints was used to estimate the flexibility of each helix, 

and the average standard deviation of all helices was used to estimate the flexibility of the 

entire structures. The script then used this information to determine what mutant structure to 

proceed with and what helices to modify in it.

Simulations were run in molecular dynamics mode on oxDNA version 2.2.2 (new-relax 

branch) with CUDA acceleration, mixed back-end precision and the oxDNA2 interaction 

type. Simulation parameters were temperature: 30 C, salt concentration: 0.15 M or 0.5 M, 

and an Anderson-like thermostat. Simulation frames were saved every 20 000 timesteps to 

the trajectory file.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the iterative evolution through simulation.
a. A wireframe DNA origami is used as template for the first iteration, the structure is 

modified by introducing or removing base pairs from individual edges, creating a new 

generation of mutant structures that are all simulated. The simulated structure with the 

highest performance is selected as the template for the next generation of mutations. b. A 

barrel-like wireframe origami was used as the starting point, and optimized with “constant 

progression” (c.), and “selective progression” (d.) Here the score is the average standard 

deviation of the fluctuation in all helices of the best structure in the iteration compared to the 
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initial structure, for the selective progression the best structure will not be retained if it does 

not perform better than the previous best.
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Figure 2. Multiplexed iterative evolution of DNA nanostructures.
a. The original structure is simulated together with mutant structures with several random 

modifications (magenta edges). The modifications are evaluated individually by scoring 

the change in the length fluctuations of the modified edge and its neighbors (green) and 

comparing this with the same edges on the reference. All modifications that improve the 

edge more than a threshold is then incorporated in the next iteration (blue edges). b. A 

full-size DNA origami rod was used as a template with up to 70 modifications per iteration. 

C) The progression of the fluctuations in the structure compare to the initial structure over 
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26 iterations. Here the score is the average standard deviation of the fluctuation in all edges 

of the structure compared to the initial structure. Additional analysis in supplementary figure 

4.
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Figure 3. Iterative refinement of DNA origami structures through placement of internal 
supports.
a. A structure is designed with internal supports, mutant structures are then generating by 

reconnecting one end of an internal support. These mutant structures are then individually 

simulated and scored and mutations are incorporated to the next generation either through 

gradient descent or simulated annealing. b. The performance of a rod structure is evaluated 

by the amount of fluctuation in the overall end-to-end distance. c.) Renderings of a 13-unit 

rod before (top) and after (bottom) 23 iterations of simulate annealing-based refinement, 
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internal supports are highlighted in red. d. End-to-end fluctuations of the rod structure in a 

simulation, before and after refinement.
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