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Abstract

In this computational study, the collective translational motions of 1-ethyl-3-methylimidazolium 

triflate, characterized by its current correlation function and its collective dipolar displacement, are 

interpreted in terms of an ion cage around a central ion. Thereby, a coincidence of the relevant 

time constants is observed. Furthermore, the ion cage is long living and its composition is rather 

heterogeneous. Besides high numbers of counter ions, several ions of like charge populate the 

first shell around a central ion. In contrast to the strong influence of the local environment on the 

collective translational motion, rotations are strictly collective. In other words, a local picture falls 

short of describing the overall antiparallel alignment of ionic dipoles.

A further issue of this work is the interpretation of the initial region of the collective dipolar 

displacement. It can be related to all collective translational processes showing up in the 

computational dielectric spectrum. In particular, slow translational processes which are invisible in 

the current correlation function can be detected. The inclusion of these slow processes allow for an 

excellent computational reconstruction of the experimental spectrum of the generalized dielectric 

constant.

I Introduction

Molecular ionic liquids are a fascinating class of soft matter

These organic salts typically consist of imidazolium based cations with weakly basic 

anions and combine the characteristics from charged and dipolar species on the very 

same molecule.1–3 Because of their hybrid nature, a single molecular ion can contribute 

to the translation of charges as well as to the rotation of dipoles thus combining the 

properties of ionic melts and neutral molecular liquids. Focusing on their ionic character 

one would expect a translational ordering resembling that of a crystalline structure. Indeed, 

one observes a typical charge ordering4–7, i.e. a sequence of charge layers of alternating 

sign8–12. But ionic liquids are more than a mere liquid salt. Their observed translational 

and rotational dynamics, however, contrasts with the picture of a quasi-crystalline system 

since a pronounced molecular mobility is found13,14. Consequently, there must exist forces 

which counteract these strong electrostatic forces causing charge ordering. Obviously, the 

steric and electronic anisotropy of cations (and to a minor degree of anions) as well as their 

difference in size and shape are an important sources of counteraction.15

The hybrid character of the molecular ions can also be visualized on a mesoscopic level 

in computational dielectric spectroscopy.1 The transport of charges is characterized by the 
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dielectric conductivity ϑ(ω) whereas the rotational and intramolecular motions contributes 

to the dielectric permittivity ϵ(ω). While experiments can only provide the sum of these 

two components, the so-called generalized dielectric constant Σ*(ω), computational studies 

can evaluate ϑ(ω) and ϵ(ω) separately.16–21 The decomposition of the generalized dielectric 

constant into dielectric conductivity and permittivity corresponds to a split up of the total 

collective dipole moment into its translational and ro-vibronic collective dipole moments. 

Although these collective dipole moments are uniquely defined,22 some problems due to 

periodic boundary conditions occur when computing the collective translational dipole: 

Molecules which leave the simulation box during the simulation period are reinserted at 

the opposite side in order to keep the number of molecules in the simulation box constant. 

This poses no problems for the non-translational collective dipole moment but causes huge 

jumps in the translational dipole moment. One remedy to cope with this discontinuity 

is the a posteriori unfolding of the simulation data yielding a so-called “itinerant dipole 

moment”.23,24 Alternatively, one may derive the dielectric conductivity from the collective 

current which is continuous because ionic velocities are conserved when crossing the box 

surface. The benefits or drawbacks of both methods will be a central issue of the present 

study.

A second issue is the high collectivity of ionic motion, i.e. translational motion of ions in an 

ionic liquid cannot be understood as the migration of an ensemble of single independent 
ions. If this would be so, the diffusion coefficients of the larger imidazolium cations 

should be much lower than those of the smaller anions, e.g. triflate, which is not the 

case.25–27 Therefore, the translational motion of ions must be coupled in some sense to 

their environment. Another evidence of this coupling is visible in the Δ-parameter of the 

Nernst-Einstein equation of the static conductivity:

σNE 0 = ρq2

kBT D+ + D− 1 − Δ (1)

The coupling parameter Δ does not describe the ratio of ion pairs to single ions, but the 

reduction of the conductivity due to the collective interactions of all cations and anions 

with all other cations and anions. Of course, long-lived individual ion pairs — should they 

be present in the sample – will contribute to Δ. The values of Δ have a large range from 

roughly 0.1 to 0.9 in molecular ionic liquids.1 This shows on the one hand the uniqueness of 

each cation-anion combination. On the other hand, the interactions of some compositions of 

molecular ionic liquids seem to have a very strong collective character.

In diluted ionic solutions the central ion will be surrounded by a “cloud” of ions of 

the opposite charge. Two effects will reduce the conductivity of the sample: First, the 

“relaxation effect” or “asymmetry effect” is the rebuilding of the ion clouds when cations 

and anions are accelerated in opposite directions by the electric field.28 As a result, the 

center-of-mass of the ion cloud lags behind the center-of-mass of the central ion. Second, the 

“electrophoretic effect” is caused by the additional friction due to the opposite direction of 

the velocities of the central ion and its ion cloud. A simple description of this situation is 

the well-known Debye-Hückel theory with a spherical ion cloud and an uniform dielectric 
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constant.28–30 However, in a pure molecular ionic liquid the situation is more complex. 

The solution is not dilute. Consequently, the local environment cannot be represented 

by a continuum with an uniform dielectric constant. 31 Since the cations are anisotropic 

(thus having a non-spherical first shell) the ion cage must be anisotropic, too. Therefore, 

traditional shell models with their inherent sphericity based on radial distribution function 

cannot be applied. Distance based-shells, however, are plagued by the introduction of a 

large set of parameters which have to be calibrated for the specific situation. Therefore, 

we will apply a general parameter-free concept of ion cage which is based on the Voronoi 

tessellation of space.32–35

Of course, the central ion reacts to distortions or relaxations of the cage. In traditional force 

field models this “reaction” was restricted to translation and ro-vibronic motion. However, 

the central ion can also respond to the local environment by a reorganization of its charge 

distribution. At the electronic level this would be a rather complicated procedure36–40 but 

it can be mimicked by the inclusion of polarization forces.41,42 Furthermore, it turned out 

that many body polarization forces accelerate the ion dynamics and thus bring computational 

dynamics closer to the experimental one. 25,26,43–45

II Methods

A detailed description of the simulation is given in Ref. 26 and 46. Therefore, we give 

only a brief summary here: We simulated 1000 polarizable 1-ethyl-3-methyl-imidazolium 

triflate (EMIM+CF3SO3
−) in a cubic box with a box length of 67.195Å under periodic 

boundary conditions for a simulation period of 35 ns with a time step of 0.5 fs. The classical 

force field parameters stemmed from Ref. 47–49. The permanent partial charges qiβ of 

EMIM+ were changed to the values reported in Ref. 50 in order to better reproduce the 

experimental viscosity.17,20,21 The polarization of the atoms was modeled by the so-called 

“Drude oscillators”: Here, mobile Drude particles were bound by a harmonic spring with a 

force constant kiβ
δ  to their reference atoms

kiβ
δ = 1

4π ∈0
⋅ qδ 2

2αiβ
(2)

and carried in our case a charge qδ of -1.0 e. They had an uniform mass of mδ = 
0.1 amu which was subtracted of the mass of the corresponding atom.51,52 The atomic 

polarizabilities αiβ of the non-hydrogen atoms were taken from Ref. 53 and hydrogens were 

left unpolarizable. It was shown in Ref. 46 that these polarizabilities resulted in a reasonable 

high frequency limit ϵ∞=1.94 which is in close proximity to the experimental value of 2.3. 

The induced dipole moment μiβ
ind of the atom iβ equals the distance vector diβ between the 

mobile Drude particle and its reference atom times the Drude charge qδ.

The interactions between permanent charges qiβ and Drude pairs were excluded 

betweenatoms which shared a bond or an angle.54 The interaction between the 

corresponding Drude pairs were screened by an exponential Thole function with a radius 

of 1.3 Å according to Ref. 54. The Drude particles were thermostatted at 1 K with a 
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relaxation time constant of 5 fs.55 All non-Drude particles were thermostatted at 300 K 

by a Nose-Hoover thermostat with a relaxation time constant of 100 fs. In Ref. 26 we 

have shown that these Drude parameters ensure the proximity of the Lagrangian method to 

self-consistency.

Nonbonded and image lists were updated heuristically using a 16 Å neighbour list distance. 

Lennard-Jones energies and forces were smoothly switched off between 11 and 12 Å. The 

electrostatic forces of both, Drude particles and the attached atoms, are treated by the PME 

technique.56,57 The “cutoff” for the real-space part interactions was 12 Å and the damping 

constant for the reciprocal-space interactions is 0.410 Å–1. The grid spacing equals 1.05 Å 

and a sixth-order spline interpolation of the charge to the grid was used.

III Theory

Exposing an overall neutral sample to a spatially homogeneous, external electric field of 

harmonic frequency ω induces a dielectric polarization P(ω). In case of a small-amplitude 

electric fields the dielectric polarization P(ω)

P ω = Σ * ω
4π E ω (3)

scales with the internal Maxwell electric field E(ω) which counteracts the external field. The 

susceptibility Σ*(ω) is called “generalized dielectric constant” (GDC) and can be computed 

from equilibrium simulations of polarizable systems by

Σ * ω = 4π
3V

1
kBT ℒ − d

dt Mtot 0 ⋅ Mtot t + 4π
3V tr A . (4)

The macroscopic polarizability tensor A represents the electronic degrees of freedom 

causing a high-frequency limit of 4π tr A /3V = ∈∞ − 1.26,58 The frequency-dependent part 

of the GDC is made up by the Fourier-Laplace transform of the negative time derivative of 

the auto-correlation function of the total collective dipole moment Mtot(t). It is defined by

Mtot t = ∑
i

∑
β

qiβ ⋅ riβ + μiβ
ind

(5)

= MD
perm t + MJ t + MD

ind t (6)

The summation runs over all atoms β of all molecules i. The sum of all induced atomic 

dipoles μiβ
ind result in a collective induced dipole moment MD

ind(t) which shows similar time 

behavior as the collective ro-vibrational dipole moment MD
perm(t).26 The computation of both 

properties from trajectory data of an molecular dynamics simulation is straight forward. 

Since their auto-correlation functions behave similar in time, one may unite both collective 
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dipole moments MD
ind(t) and MD

perm(t) to the non-translational collective dipole moment 

MD(t).

A Collective translation in a toroidal system

Unfortunately, the collective translational dipole moment MJ(t) causes problems and 

prohibits a direct computation of the total collective dipole moment Mtot(t) and its auto-

correlation function. Since molecular dynamics simulations are subject to periodic boundary 

conditions, MJ(t) suffers from toroidal jumps of charged molecules i from one side of the 

box to the other. Neutral molecules do not cause problems since they are not contributing 

to MJ(t). Since we are practically interested in large ensembles of cations and anions, the 

simulation box size L is very large, so the jump qi. L experienced by MJ(t) due to the 

toroidal shift is large as well. In principle, there are two possibilities to circumvent this 

problem:

First, The jump of a charged molecule i changes its coordinates and thus the center-of-mass 

ri but its center-of-mass velocity vi remains unchanged. Hence, the collective current 

J(t) = ∑
i

qi ⋅ vi = dMJ(t)/dt is not plagued with toroidal jumps. As a result, the Fourier-

Laplace transform in Eq. (4) may be reformulated in terms of J(t) and MD(t)

ℒ − d
dt Mtot 0 ⋅ Mtot t = MD

2 + iωℒ MD 0 ⋅ MD t

− 2ℒ MD 0 ⋅ J t + i
ωℒ J 0 ⋅ J t

(7)

using −d2/dt2 MJ 0 ⋅ MJ t = J 0 ⋅ J t .1,21 The last equation also elucidates the 

traditional interpretation of the GDC, i.e. its splitting into a dielectric permittivity

∈ ω − ∈∞ = 4π
3V kBT MD

2 + iωℒ MD 0 ⋅ MD t − ℒ MD 0 ⋅ J t (8)

and dielectric conductivity

ϑ ω = 4πi
3V kBTω

ℒ J 0 ⋅ J t + iωℒ MD 0 ⋅ J t = 4πi
ω σ ω . (9)

The cross term J 0 ⋅ J t  contributes marginally and can thus be neglected for practical 

purposes.16 Therefore, the conductivity σ(ω) is given by

σ(ω) ≃ ℒ J 0 ⋅ J t
3V kBT . (10)

The current correlation function J(0) ⋅ J(t)  can be represented by a sum of damped 

oscillator functions
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fJJ(t) = ∑
k

Akcos ωkt + δk exp −t/Tk (11)

which can be easily Fourier-Laplace transformed.21 However, fJJ(t) may also be used to 

calculate the static conductivity σ 0 = lim
t ∞

σJ t . The running integral σj(t) is given by

σJ t = 1
3V kBT ∫

0

t

J 0 ⋅ J t′ dt′ . (12)

Because of the exponential character of the fit function only the lower limit of this 

integral contributes to the static conductivity. Furthermore, σj(t) obtained from the numerical 

integration of J(0) ⋅ J(t)  can be used to detect translational relaxation processes with time 

constants Tk of a few picoseconds which are not directly visible in J(0) ⋅ J(t) .20 Relaxation 

processes at longer times cannot be extracted from σj(t) due to its noisy character in these 

time regimes. Therefore, one has to look for alternative ways to detect these processes.

The second possibility to avoid the jumps affecting MJ(t) is the unfolding of the trajectory 

post simulation. In other words, during the simulation the molecules which pass a boundary 

of the simulation box are reinserted at the opposite side of the box due to the periodic 

boundary condition. For the analysis, however, these reinsertions are undone, i.e. the 

molecules translate outside the original box. As a result, this unfolded MJ(t) has no jumps 

and is called “itinerant dipole moment” in literature.23,24 However, it increases with time as 

the charged molecules depart more and more from the original box. This implies that the 

auto-correlation function MJ 0 ⋅ MJ t  of the unfolded MJ(t) depends on the length of the 

simulation trajectory. In other words, the complete MJ 0 ⋅ MJ t  is shifted upwards with 

increasing length of the trajectory.1

This drift in absolute values can be removed by considering the relative quantity ΔMJ(t) = 

MJ(t) –MJ(0). As shown in Ref. 16 its mean-squared displacement is related to the current 

by

ΔMJ
2 t = 2 t∫

0

t

J 0 ⋅ J t′ dt′ − ∫
0

t

t′ J 0 ⋅ J t′ dt′ (13)

= 2 t ⋅ 3 V kBTσJ t − ∫
0

t

t′ J 0 ⋅ J t′ dt′ (14)

Schröder Page 6

J Chem Phys. Author manuscript; available in PMC 2022 November 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



In the asymptotic limit the second term approaches the constant 

MJ
2 = − ∫

0

∞
t′ J 0 ⋅ J t′ dt′ while the first term becomes a linear function

lim
t > > tc

ΔMJ
2(t) = 6 V kBTσ 0 t + 2 MJ

2
(15)

after the correlation length tc is reached. In other words, tc is that time beyond which the 

integral in Eq. (12) reaches a plateau value, the static conductivity σ(0). On the one hand 

the last equation is frequently used to compute σ(0).16–18,20,59–61 This “Einstein-Helfand” 

relation is to be preferred to “Green-Kubo” equation (12).62,63 On the other hand, it 

demonstrates that the relative ΔMJ(t) leads to a constant, bound value of MJ
2  although 

it is computed from the unfolded MJ(t) which increases with time.

So far, our focus was on the asymptotic behavior of ΔMJ
2 t  which is essentially a linear 

function for t≫tc. For shorter times the behavior is much more complex. One way of 

characterization is the study of their derivatives: The first derivative of ΔMJ
2 t  with respect 

to time is given by

d
dt ΔMJ

2(t) = 6 V kBTσJ t (16)

showing the equivalence with the running integral of the conductivity in Eq. (12). Therefore, 

all translational processes which can be detected by σJ(t) can also be found in ΔMJ
2 t . 

Additional processes in the transition region (t ≃ tc) can be extracted from ΔMJ
2 t . In order 

to convert all these processes to components of a dielectric spectrum the second derivative

d2

dt2 ΔMJ
2(t) = 2 J 0 ⋅ J t . (17)

serves as a link. The last equation can also be easily deduced from the second derivative of 

Eq. (13). The fit of ΔMJ
2 t  can thus be converted to contributions of the currentcorrelation 

function. From the considerations above an appropriate fit function may look like

fΔMJ2 t = ∑
k

Ak ⋅ e−t/Tk − Ak + σ ⋅ t . (18)

The slope σ of the last term divided by 6VkBT yields the static conductivity and the 

negative sum of Ak gives 2 MJ
2 . The corresponding amplitudes Ak for J(0) ⋅ J(t)  are 

Ak/2Tk
2. As a result, slow relaxing, translational processes have very small amplitudes Ak 

and are consequently invisible in a plot of J(0) ⋅ J(t)  but not in a plot of ΔMJ
2 t . Having 
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collected the complete set of translational parameters (including the slow processes), the 

ϑ(ω)-spectrum is finally computed by Eq. (9). At zero frequency a static external field 

induces a current in a sample composed of charged species. In order to eliminate this effect, 

experimental and computational dielectric spectra are corrected for this conductance.

ϑ0 ω = 4πiσ ω − σ 0
ω (19)

At the level of our fit function of fΔMJ2 t  this corresponds to a neglect of the last term.

B Cage resolved collective translational motion

Translational motion of ions is strongly coupled to their environment. The strongest 

coupling of an ion will be to its next neighbors, i.e. its cage. Although the intuitive picture of 

an ion cage is very attractive for interpretation, cage dynamics is not easy to rationalize. One 

way is the concept of a residence function ni
j t  of molecules i around a central ion j:

ni
j t = 1, i ∈ first shell of j at time t

0, otherwise (20)

Since re-occurence of molecule i at a later time is not recognized as the entrance of a new 

particle, the molecular identity i is conserved. The average measure of residence is given by 

the correlation function Ci
j t = ∑

i
ni

j 0 ⋅ ni
j t . The summation may be restricted to a subset 

of molecules, e.g. all anions. In order to extract the characteristic residence times from Ci
j t

one can use a multi-exponential fit

fnn t = n∞ + ∑
k

nk ⋅ e−t/Tk
(21)

for its representation. The mean residence times is then given by 

T = ∑knkTk/∑knk . n∞ represents the “steady state” value of Ci
j t  and should not be 

mixed up with the coordination number CNi
j  which is defined by the initial value of the 

correlation function, Ci
j 0 :

CNi
j = ∑

i
ni

j(0) 2 . (22)

Here, j and i denote the reference species and species the surrounding molecules, 

respectively.

The concepts presented so far all depend on the definition of the first shell. Traditionally, 

shells are constructed as concentric spheres around a reference particle. The coordination 

number is then computed as the integral over the radial distribution function up to its first 
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minimum. This poses two classical problems: First, the integration limit differs for each 

ij-combination. Second, and even more critical is the anisotropy of the central molecule. 

In order to account for this anisotropy one could introduce a shell thickness, i.e. a typical 

distance of atoms of the counter ions to selected atoms at the surface of the solute. This 

would introduce a lot of parameters and arbitrary selections. A parameter-free approach 

to determine direct neighbors is the Voronoi tessellation used in this work.32–35 It creates 

space-filling disjunct polyhedra, each containing all space closer to its associated atom than 

to any other atom. For the interpretation, the atomic polyhedra were merged to molecular 

polyhedra. If two molecular polyhedra share a face, the corresponding molecules are direct 

neighbors.

IV Results And Discussion

Collective translational behavior of an ionic liquid is characterized by its current J(t) which 

is the time derivative of the collective translational dipole moment MJ(t). The current 

auto-correlation function J(0) ⋅ J(t)  of an ionic liquid shows a strong oscillatory behavior 

which seems to be totally damped within the first few picoseconds.5,16,20,63,64

A Current correlation function

In case of EMIM+CF3SO3
− the current correlation function J(0) ⋅ J(t)  is given in Fig. 1a 

(gray solid line). It can be represented by fJJ(t) with three components k = 1, 2, 3 and 

the parameters given in Table I: The first component (k = 1) describes the oscillatory 

behavior of the current correlation function at very short times which may be associated 

with the cage vibrations of the molecular ions. The frequency of this vibration ω1 =17.732 

ps−1 corresponds to ν =94 cm−1 which agrees nicely with experimental FIR spectra of 

imidazolium based ionic liquids showing peaks at frequencies between 62101 cm−1.65,66 

This vibration has an oscillations period T1 = 1/ω1 =0.056 ps and reaches its relaxation 

time τ1 =0.123 ps within two oscillation periods. The high frequency ω1 show the local 

character of this oscillations, while the strong damping can only be explained as a collective 

effect, i.e. a strong cage of several neighbors. Anyway, this effect cannot be attributed to an 

intermolecular vibration with a single counter ion since these kind of vibrations should be 

much less damped.66 The oscillation period of the second component k = 2 (black dashed 

line in Fig. 1a) is approximately 20 ps as compared with the relaxation time τ2 of roughly 

0.2 ps. This ratio of two orders of magnitude prohibits the formation of a full oscillation. 

As a result, the second component appears more as a function with a shallow minimum 

than an oscillatory motion. As we will see later on, this component may be associated with 

ultra-fast motions of the cage. At first sight, the two components discussed so far seem to 

reproduce the current correlation function J(0) ⋅ J(t)  in Fig. 1a. First doubts arise when 

computing the static conductivity σ(0) on the basis of these two components:20 Fig. 1b 

compares the running integral of the conductivity σJ(t) derived from the two component fit 

(black dash-dotted line) and obtained by numerical integration.20,62,67 In fact, the asymptotic 

value σ(0) = 3.6 S/m of the two fit components is by an order of magnitude larger than the 

numerical value of 0.75 S/m. The gap between the black dash-dotted line and the numerical 

gray line can be closed by a third k = 3-component with zero frequency and zero phase shift 

(c.f. Table I). Taking into account all three k-components one obtains the black dotted line in 
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Fig. 1b. However, the third k-component (black solid line) is almost invisible in the current 

correlation function in Fig. 1a. This is a first indication of the problems discussed already in 

the Theory section when working solely with the current correlation function.

It is interesting to compare the contributions of the fit components σk(0) to the static 

conductivity σk 0 = ∑kσk 0  which are given by

σk 0 = AkTk
3V kBT

cos δk − Tkωksin δk
1 + Tk

2ωk
2 . (23)

For k = 1, 2, 3 one gets σk(0) = 25.56S/m, -21.97S/mand-2.84 S/m, respectively. The sum 

of these three contributions yields σ(0) = 0.75 S/m. The very large contribution of the first 

component is almost completely compensated by the other two components. Unfortunately, 

the three detected processes may represent σJ(t) in the first six picoseconds as visible in 

Fig. 1b but fail to reproduce the long-term limit which is approximately 20% of 0.75 S/m. 

This fact indicates that there are additional processes which cannot be properly determined 

by J(0) ⋅ J(t)  or σJ(t). The time constant of this additional process (k = 4) is in the range 

of 50 to 200 picoseconds. Furthermore, to be honest, σk(0) in Eq. (23) strongly depends on 

the time constants τk. In particular, in case of δ2 ≃ π/2 and the large amplitude A2 small 

variations of τ3 significantly changes the value of σ2(0) and consequently σ(0). Altogether, 

the computation of the static conductivity σ2(0) on the basis of J(0) ⋅ J(t)  or σJ(t) is an 

intricate procedure. However, as shown below, more reliable results, especially for the slow 

modes, can be gained from the collective dipolar displacement.

B Relaxation of the ionic cage

From a chemist point of view, the first k = 1 component may be seen as the conductive 

motion of the central ions which is hampered by the lag of their surrounding ion cage. 

Hence, the second and third component should be related to the ion cloud, i.e. the cage. 

A typical ion cloud around EMIM+ is shown in Fig. 2. For clarity’s sake the hydrogens 

of the surrounding cations and the oxygens and fluorines of CF3SO3
− are not displayed. 

In contrast to the intuitive view that the cation is surrounded by a cage of anions, the 

higher number of neighboring cations is interesting. The location of the cationic neighbors 

is not restricted to the side chain of the central cation; they also approach the imidazolium 

ring. The anions are very often found in close proximity to the three acidic hydrogens 

of the cationic imidazolium ring. However, the coordination is not strictly monovalent as 

demonstrated by the two triflates around the H2 of EMIM+ in Fig. 2. A further striking 

feature of the cage is the alternating sequence of cations and anions. This could be explained 

by the fact that the repulsion between two like ions is suppressed by an intercalated counter 

ion.

Fig. 3 shows the anionic cage which occupies less space compared to the cationic cage. 

Furthermore, the number of counter ions is now higher with a typical ratio of approximately 

2:1 and probably due to a highly concentrated negative charge as compared to the more 

diffusive cationic charge distribution. In other words, the anionic cage is essentially 
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determined by electrostatic interactions while in the cationic cage steric effects play a role, 

too.

These pictures are significant snapshots of the local environment around a selected cation 

and anion. In order to draw quantitative conclusions of the cationic and anionic cages 

from all ions and from the whole trajectory one may apply the parameter-free Voronoi 

method to detect the cages. As a first result, the distribution of cage members CNi
j, i.e. the 

mutual coordination numbers, for different combination of ion types can be obtained and are 

displayed in Fig. 4. The first remarkable result is that the central ions EMIM+ j have more 

direct cationic neighbors (black dotted distribution) than triflate (gray solid line). This may 

be due to the larger surface of EMIM+ compared to CF3SO3
− which offers more “docking 

places”. The distribution of coordination numbers between like charges is broadened. Here, 

the mutual orientation of both ions is of greater concern. The attraction between unlike 

charges narrows the width of the respective distribution.

The rough balance of cationic and anionic members around a central EMIM+ and the 

2:1 ratio of cations and anions around CF3SO3
− can also be conducted from the average 

coordination number CNi
j  in Fig. 4. Another fact to mention is that all coordination 

numbers CNi
j  are very high. For example, each triflate anion has direct contact to eight 

EMIM+ on average which makes the classification of “ion pairs” a little bit dubious. 

Even more, each hydrogen of the imidazolium ring have almost always direct contact 

to at least one triflate during the whole simulation period which was also found by 

Kohanoff et al.36 Comparable high coordination numbers are found for other ionic liquids 

as well.9,37 These two references also show the difficulties in determining coordination 

numbers from radial distribution functions. Ref. 9 stated two different coordination numbers 

for cation–cation, anion–anion and cation-anion depending on the distance criterion of the 

shell. Ref. 37 depicted a coordination number as function of the distance to the central 

ion without specifying the first shell criterion explicitly. The difficulties in determining 

coordination numbers become even worse when considering anisotropic, non-spherical ions, 

e.g. imidazoliums with larger side chains. The Voronoi method does not suffer from these 

problems: The determination of the direct neighbors is done without a “shell parameter” and 

solely due to contacts of molecules.33 Consequently, the Voronoi shells are not spherical but 

adapt to the anisotropic shape of the reference molecules.

Based on the findings of the cage structure the dynamics of the cage may be characterized 

by the auto-correlation of the residence function ni
j 0 ⋅ ni

j t  displayed in Fig. 5. Together 

with the inset which zooms the subpicosecond and picosecond range these correlation 

functions are found to cover three time regimes: subpicoseconds, a few picoseconds and 

several nanoseconds. The fit function fnn(t) of Eq. (21) offers the possibility to quantify 

these time regimes. The resulting parameters are given in Table II and the corresponding 

fit as gray lines in Fig. 5. Within the time window shown, the asymptotic value, n∞ ≃ 2, 

shows that two of eight neighbors of the central ion of opposite charge stay during the whole 

simulation period. The mutual residence time between cations and anions is the longest time 

constant with a value of 9990 ps. It would be tempting to associate this long time constant 
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or the “steady-state” value n∞ with the existence of ion pairs. The respective amplitudes of 

5.41 and 2.05, however, are far beyond a 1:1 ion pair. In other words, we have a long lived 

ion cage but not an ion pair.

Remarkably, the time constants of the k = 2 and k = 3-component for cation-cation, 

cation-anion and anion-anion look very similar to the time constants gained from the 

J(0) ⋅ J(t)  fit. This coincidence stresses that the translational processes responsible for the 

collective current can be retrieved in the cage relaxations which are representative for a 

local environment. In other words, although being a collective property, the current J(t) 
and hence the conductivity σ(0) are determined by a local environment. However, this 

statement makes also clear, that a correct description of the interaction between a molecule 

and its local environment is crucial to gain reliable results for the conductivity. Therefore, 

the polarizability which model the reaction of a molecule to its environment should be an 

intrinsic part of molecular dynamics simulations of ionic liquids.

C Collective dipolar displacement

The analysis of the cage dynamics revealed slow processes beyond the scope of the current 

correlation function J(0) ⋅ J(t) . In principle, these slow processes must show up in the 

collective translational properties. As explained in the Theory section, the collective dipolar 

displacement ΔMj
2 t  is more sensitive to these slow translational processes. Fig. 6 shows 

both, the numerical data of ΔMj
2 t  as well as the corresponding fit. In order to elucidate 

the short time behavior an inset covering the first 120 picoseconds is given, too. The fit 

function fΔMJ2 t  (orange dashed line) is multi-exponential plus an asymptotic linear part. 

The corresponding fit parameters are given in Table I. The first two time constants τ1 + 2 and 

τ3 are similar to 0.24 ps and 2.6 ps found in a dielectric study of Asaki et al.68

As expected from Eq. (17), the time constants k = 1… 3 of J(0) ⋅ J(t)  are also found in 

the collective dipolar displacement ΔMj
2 t . Since oscillations are difficult to detect in a 

mean-squared displacement, only the superposition of k = 1 and k = 2 is found. Furthermore, 

a relaxation constant τ4 of 60.8 ps appears which agrees very well with the ~ 60 ps detected 

in the cage relaxation processes and lies in the range of time constants suspected from 

the σJ(t) fit. A possible explanation for the invisibility of this process in J(0) ⋅ J(t)  is the 

down-scaling of the amplitude Ak = Ãk/2τk. For slow processes, i.e. for high values of 

τ the amplitude is suppressed and hardly visible in the current correlation function. The 

“theoretical” values of the amplitude Ak are given in brackets in Table I. The ratio between 

A1+2 = -3306 e2 A2 ps−2 and A4 = -0.141 e2 A2 ps-2 is so large, that the slow process k 
= 4 is masked by the statistical noise of J(0) ⋅ J(t) . Although playing a different role for 

slow and fast translational processes the dipolar displacement and the current correlation 

function must match at an intermediate level. In fact, if one integrates J(0) ⋅ J(t)  to get σJ(t) 

(see Eq. (12)) or differentiates ΔMj
2 t  (see Eq. (16)) the consistency of the two completely 

different fits of J(0) ⋅ J(t)  and ΔMj
2 t  can be checked. Fig. 7 presents the result of this 

consistency check. The numerical integration of J(0) ⋅ J(t)  is again shown as gray solid 
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line. The fits of J(0) ⋅ J(t)  according to fJJ(t) and of ΔMj
2 t  according to fΔMJ2 t  are 

represented as black dotted and orange dashed line, respectively. Except for very short times 

below 0.5 ps the agreement is fairly good. The deviation at very short times stems from 

the oscillatory behavior at short times which cannot be represented by the multi-exponential 

function fΔMJ2 t . The final value of σJ(τ) are given by Eq. (23) in case of the current 

correlation function and σ in case of ΔMj
2 t  after all exponential processes have decayed. 

From the slope of the linear region (t > 400 ps) of ΔMj
2 t  one may get a static conductivity 

σ(0) value of 0.16 S/m which is a little bit less than the value of 0.17 S/m gained from 

the current correlation function if one adds the k = 4-component of ΔMj
2 t . Based on the 

Nernst-Einstein equation (1) this corresponds to a collectivity factor Δ of 0.17.

D Dielectric spectrum

In Fig. 7 we have demonstrated the agreement of the two independent fits of J(0) ⋅ J(t)
and ΔMj

2 t  in the time domain. The close correspondence in frequency space is illustrated 

in Fig. 8 for the translational part of the dielectric spectrum ϑ0(ω). In the high frequency 

range between 1 and 50 THz the two oscillatory components of the current (black dashed 

and dotted line) contribute two distinct peaks while the single exponent of the dipolar 

displacement appears as a single broad peak (orange dash-dotted line). Nevertheless, this 

single broad peak approximates sum of the two current peaks quite well. Although being 

the major player for the shape of J(0) ⋅ J(t) , the contribution of the first component k = 1 

is quite less important for the spectrum of the dielectric conductivity ϑ0(ω). One way of 

explanation would be that the k = 1-component mainly characterizes the static conductivity 

σ(0) which is subtracted from σ(ω) in the computation of ϑ0(ω). Therefore, major parts of 

the k = 1-component are not part of ϑ0(ω) any more and the contribution to the static value 

of the dielectric conductivity shrinks to 0.04. Nevertheless, the frequency ω1 is still visible 

in the spectrum by the crossing of the ω-axis at 17.7 THz. The negative values above 17.7 

THz show that the contribution of the k = 1-component counteracts the contribution from k 
= 2 at these frequencies. The non-oscillatory character of the k = 2-component manifests in 

a approximately Lorentzian-shaped peak (black dotted line) in the dielectric spectrum and 

contributes to ϑ0(0) with a value of 0.81 which is 20 times higher than the first component. 

In J(0) ⋅ J(t)  the k = 2-component decreased the static conductivity and was attributed to 

ion cage effects which are still present in the dielectric spectrum after the subtraction of 

the static conductivity. The third component of 〈J(0)·J(t)〉 -fit (black solid line) with a time 

constant of τ3 =3.52 ps contributes slightly more to ϑ0(0) with a value of 1.13. As can be 

already seen in Table I the k = 3-component gained from the collective dipolar displacement 

is almost identical to that of the J(0) ⋅ J(t)  -fit. Consequently, the respective peaks at ~ 0.3 

THz coincide and their contribution to ϑ0(0) is of equal weight. The major contribution to 

the dielectric conductivity spectrum ϑ0(ω) stems from the slowest detectable process (k = 

4) of the collective dipolar displacement and is located at ~ 0.02 THz. Converting this peak 

by Kramers-Kronig to a contribution to the static dielectric conductivity yields a value of 

roughly 4 which is two-thirds of the total ϑ0(0). The sum of all contributions to ϑ0(0) is 

slightly higher than the value approximated in Ref. 26.
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Up to now, we have discussed the translational part of the dielectric spectrum. In order to 

compute the spectrum of the generalized dielectric constant Σ0(ω) one needs the dielectric 

permittivity ∈(ω) as well. ∈(ω) may be gained by Fourier-Laplace transform of a fit of 

〈MD(0)·MD(t)〉 according to Eq. (8) and is shown in Fig. 9 as solid black line. It may 

be decomposed into contributions from the cations (dotted black line) and anion (dashed 

black line) and their cross-term (not shown). Since the translational processes could be 

explained on a local level of an ion with its cage, one is tempted to apply a similar 

procedure40,69 for the rotational correlation of the dipole moments. The straightforward way 

to find out the influence of collectivity would be the approximation of dipolar relaxation 

by the sum over the individual auto-correlation functions of the molecular dipole moments. 

For the cations (orange dotted line) and anions (orange dashed line) these single-particle 

correlation functions are shown in Fig. 9. Their shift to lower frequencies as compared to 

their collective analogues is striking, particularly for the anions. In other words, the coupling 

between molecular dipole moments speeds up rotational dipole relaxation. Thereby, the 

term “rotational” comprises all non-translational contributions. In particular, it contains 

the contributions from the induced dipoles mimicking the electronic response to the local 

environment.

The discrepancy between the corresponding black and orange curves clearly demonstrates 

the impact of collectivity. A measure of this collectivity in rotational relaxation is the 

Kirkwood GK-factor

GK = MD
2

N μ2 (24)

originally developed for neutral molecular liquids. 70–72 Applying this relation separately 

to cations and anions we find values of GK
+ = 0.58 and GK

− =0.65. This indicates that the 

dipoles of like charges seem to prefer an overall anti parallel alignment which quenches the 

collective dipole moment as compared to the sum of individual dipoles. From the theory 

of Kivelson and Madden one would expect that collective and single particle rotational 

relaxation times scale with the corresponding GK-factors.71,72 Values below unity are 

indicative of a speed up of collective rotation as compared to single particle rotation. For 

the present case the acceleration is even faster showing the high cooperativeness of the 

molecular ions.

Altogether, the dielectric permittivity ϵ(ω) (black dotted line) and the dielectric conductivity 

ϑ0(ω) (black dashed line) sum up to the generalized dielectric constant ∑0 (ω) (black 

dash-dotted line) shown in Fig. 10. It is important to note that the central peak of ∑0(ω) can 

be neither attributed solely to ϵ(ω) nor to ϑ0(ω). In fact, it results from the superposition 

of both part of the spectrum which strongly overlap. The good agreement between the 

computational and the experimental spectrum (gray line in Fig. 10) of Ref. 46 provides 

strong evidence that the findings and conclusions made so far are representative of the 

experimental situation. We state that this consensus between simulation and experiments 

depends on the inclusion of the slow process detected in the dipolar displacement. This 

demonstrates once more that the translational part of the dielectric spectrum of molecular 
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ionic liquids cannot be computed solely from the current correlation function. Rather, the 

combination with the dipolar displacement is essential in order to detect slow processes. 

Therefore, we have used the motional parameters from the current correlation function 

augmented by the slow process (k = 4) from ΔMj
2 t .

V Conclusion

The dielectric behaviour of the molecular ionic liquids EMIM+CF3SO3
− can be neither 

derived from single-particle motion nor from the motional coupling of ion pairs. In fact, it 

is intrinsically collective. However, there is a difference between translational and rotational 

(including induced and vibrational) contributions:

In case of translational processes the inclusion of the ion cage accounts already for the 

translational cooperativeness. Thereby, the ion cage is rather heterogeneous: On average the 

cage is build up from eight counter ions. But also contains ten EMIM+ or four CF3SO3
− in 

case of a central EMIM+ or CF3SO3
-, respectively. All time constants found in J(0) ⋅ J(t)

and ΔMj
2 t  are also present in the residence correlation functions ni

j(0) ⋅ ni
j(t)  around the 

cations and anions.

However, collective rotation involves the complete set of interacting dipoles. An 

approximation in single-particle terms would result in a dielectric spectrum differing 

substantially from experiment. This demonstrates the long-range coupling of dipolar rotation 

which also manifests in Kirkwood GK-factor below unity for cations and anions.

Traditionally, the collective dipolar displacement ΔMj
2 t  is only used to compute the static 

conductivity σ(0) from the linear region of this function. In this work we showed that the 

initial nonlinear region is essential for the determination of slow translational processes 

which contribute significantly to the dielectric spectrum at lower frequency. Furthermore, 

the agreement between the information gained from the current correlation function 

J(0) ⋅ J(t)  and the collective dipolar displacement MJ 0 ⋅ MJ t  for the high frequency 

part of the generalized dielectric constant ∑0* ω  is demonstrated. The combination of these 

information brings one into the position to compute a dielectric spectrum which agrees well 

with the experimental one.
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Fig. 1. 
a) Auto-correlation function of the current J(t) and its decomposition into its components k 
= 1 … 3. (b) The importance of the k = 3-contribution becomes visible in σJ(t) which is the 

running integral of J(0) ⋅ J(t) .
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Fig. 2. 
A snapshot of first shell members of 1-ethyl-3-methyl-imidazolium. For the sake of 

simplicity the hydrogens of the surrounding imidazoliums and the fluorines and oxygens 

of triflate are not displayed.
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Fig. 3. 
A snapshot of first shell members of triflate. For the sake of simplicity the hydrogens of the 

surrounding imidazoliums and the fluorines and oxygens of triflate are not displayed.
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Fig. 4. 
Distribution of mutual coordination numbers. j denotes the central ion species and i the 

surrounding species.
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Fig. 5. 

Mutual mean residence function Ci
j t . j denotes the central ion species and i the surrounding 

species (black curves). The inset represents the first 150 picoseconds. All curves can be 

fitted according to fnn(t) (respective gray curves) with the parameters in Table II.
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Fig. 6. 
Mean squared-displacements of the unfolded collective rotational dipole moment MJ(t). The 

solid gray curve is gained from the whole simulation period. The orange dashed curve 

represents the fit to fΔMJ2(t) with the values given in Table I. The inset displays the first 120 

ps. As can be seen from the dotted line of MJ
2  the inset is far away from the linear regime.
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Fig. 7. 
Running integral σJ(t). The gray line represents the numerical integration of J(0) ⋅ J(t) . The 

black dotted line and the orange dashed line display the fit fJJ(t) and fΔMJ2 t  with the values 

given in Table I.
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Fig. 8. 
Juxtaposition of the individual fit components of J(0) ⋅ J(t)  (orange) and MJ 0 ⋅ MJ t
(black) contributing to the dielectric conductivity ϑ0(ω).
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Fig. 9. 
Imaginary part of the dielectric permittivity ∈(ω) (black solid line). It is built up by the 

cationic contribution (black dotted line), the anionic contribution (black dashed line) and the 

cross-term between cations and anions (not shown). If one completely neglects collectivity, 

the contribution of the cations and anions is given by the orange dotted and orange dashed 

line respectively.
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Fig. 10. 
Dielectric loss spectrum of the generalized dielectric constant ∑0* ω  (dash-dotted line). 

It can be decomposed into the dielectric permittivity ϵ(ω) (dotted line) and the dielectric 

conductivity ϑ0(ω) (dashed line). For comparison the experimental spectrum is given by the 

gray line.46
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Table I

The top table shows fit parameter of J(0) ⋅ J(t)  according fjj(t). The bottom table shows the corresponding 

fit values of ΔMj
2 t  according to fΔMJ2(t). The values of Ak in brackets in the bottom table are derived via 

Ak = Ak/2τk
2 .

J(0) ⋅ J(t) fJJ t = ∑
k

Ak cos ωkt + δk exp −t/τk

k Ak e2 Å2 ps−2 τk [ps] ωk [THz] δk ϑ0(0)

1 9052 0.123 17.732 -0.513 0.04

2 254800 0.167 0.04418 1.571 0.81

3 -11.84 3.52 0.00000 0.000 1.13

ΔMj
2 t fΔMJ2 t = ∑

k
Akexp −t/τk − Ak + σ ⋅ t

k Ak e2 Å2 ps−2 Ak e2Å2 τk [ps] σ/6V kBT S/m ϑ0(0)

1+2 (-3306) -291.589 0.210 0.16 1.12

3 (-12.77) -314.655 3.51 1.22

4 (-0.141) -1042.45 60.8 4.01
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Table II

Fit parameters of the correlation of the residence function ni
j 0 ⋅ ni

j t  according to 

fnn t = n∞ + ∑
k

nk ⋅ exp −t/Tk .

central ion j surrounding ion i k n ∞ nk τk / ps

EMIM+ EMIM+ 2.15

2 0.47 0.195

3 0.26 2.85

4 0.62 61.3

5 6.29 6560

〈τ〉 5410

EMIM+ CF3SO3
− 2.05

2 0.19 0.240

3 0.072 3.58

4 0.30 61.2

5 5.41 9990

〈τ〉 9050

CF3SO3
− CF3SO3

− 0.87

2 0.70 0.206

3 0.19 3.82

4 0.66 59.0

5 1.65 5050

〈τ〉 2610
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