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Abstract

This is a commentary on Campbell and Schacter (2016), ‘Ageing and the Resting State: Is 

Cognition Obsolete?’. Campbell and Schacter argue that resting state data have a limited ability 

to contribute to the study of neurocognitive ageing and that the field should focus more on results 

from carefully controlled experimental designs. In this commentary, we argue for a different 

perspective on future research directions in neurocognitive ageing. Specifically for the need to 

use a more integrative approach; combining rest and task data as well as information from 

different modalities to obtain a better understanding of the neural mechanisms that underlie 

healthy cognitive ageing. Potential benefits of this integrative approach are illustrated with a 

number of examples. In addition, we discuss some of the advantages of using resting state data as 

part of this integrative approach.

The field of neurocognitive ageing is aimed at identifying the neural mechanisms behind 

the effects of ageing on cognitive functioning. The most popular methods to investigate this 

include task and resting state functional magnetic resonance imaging (fMRI). The opinion 

paper reported in this issue of “Language, Cognition and Neuroscience”, by Campbell and 

Schacter (2016), claims that the resting state approach only has a limited ability to contribute 

to the study of neurocognitive ageing. As an alternative, Campbell and Schacter argue for 

more emphasis on carefully controlled experimental designs, where individual differences in 

task performance can be linked to differences in regional activity and connectivity.

In this reply, we argue for a different alternative - while both rest and task states provide 

means to study neuronal activity, separately they offer a limited characterisation of the 

effects of ageing on neurocognitive processes. The approach proposed here is based on 

established research practices in neuroscience (Cicchetti & Blender, 2006; Grillner, Kozlov, 

& Kotaleski, 2005; Poznanski, 2002), where various imaging data are integrated in order 

to improve our understanding of the neural mechanisms shaping age-related decline as 

well as preservation of cognitive function. The focus of this paper is on integration of 
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resting state with task based fMRI data and on the benefits of integrating structural and 

functional data. There are many other ways in which an integrative approach could benefit 

neurocognitive ageing research which will not be discussed here, such as the integration 

of resting electrophysiological and fMRI measurements in order to combine different spatio-

temporal scales and understand individual differences (Betzel & Bassett, 2016; Hipp & 

Siegel, 2015; Muthukumaraswamy, Edden, Jones, Swettenham, & Singh, 2009) and age 

differences in cortical neurodynamics (Balsters et al., 2013; Cicchetti & Blender, 2006; 

Voytek & Knight, 2015). We start by providing examples of this integrative approach, 

combining rest and task data as well as structural and functional data. Next, we illustrate a 

number of important benefits of using resting state data within this integrative framework. 

Finally, we will discuss some of the specific issues mentioned by Campbell and Schacter 

(2016).

One of the most significant findings in neurocognitive ageing research, is the finding of 

“compensation”; the observation that age-related over activation of specific (frontal) brain 

regions during task execution is associated with improved performance (Cabeza, 2002; 

Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008; Park & Reuter-Lorenz, 2009). This finding 

has sparked a lot of interest in the field and suggests that higher levels of activation can 

be used to counter the effects of challenges to the neural system, such as those imposed 

by age-related declines in gray and white matter integrity (Park & Reuter-Lorenz, 2009). 

However, over-activations are not consistently associated with better performance, and 

appear to be a sign of age-related cognitive decline in some other studies (Grady, 2012). 

More importantly, such observations do not lead to a mechanistic understanding of the 

neural processes underlying successful neurocognitive ageing. Even if we know that the 

activation of certain regions is associated with higher level of cognitive performance, there 

are still many unknowns. Why are these regions more active in some people than others? 

What is causing these higher levels of activation, and does this reflect a domain-general 

or a domain-specific mechanism? Such questions have led to increasing demands for more 

sophisticated interpretation of fMRI data (Morcom & Johnson, 2015), such as a shift away 

from localization (the study of regionally specific activity), towards functional integration 

(the study of brain connectivity) (Razi & Friston, 2016). However, a shift from activity to 

connectivity is not sufficient to obtain a mechanistic understanding of age-related changes 

in cognition. It is therefore important to move towards a more integrative approach in which 

we aim to answer such questions by combining dataset and data features from different 

modalities and cognitive states.

Integrating task and resting state functional MRI data

The combination of resting state and task data is one example of how an integrative 

approach can lead to a more mechanistic understanding. The study of functional networks 

has demonstrated age-related changes in the communication of brain regions within and 

between different brain networks; both during task performance and in resting state 

(Geerligs, Maurits, Renken, & Lorist, 2014; Salami, Pudas, & Nyberg, 2014; Spreng, 

Stevens, Viviano, & Schacter, 2016). Such results suggest that the phenomenon of over 

activations (or compensatory responses) during task performance, which are typically 

interpreted as a change that is linked to a specific cognitive state, could actually reflect 
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a more persistent change in the brain network architecture of older adults. This idea is 

supported by previous research, where task-related patterns of regional co-activation were 

shown to be highly similar to resting state networks based on functional connectivity (Toro, 

Fox, & Paus, 2008), and where direct associations have been found between resting state 

connectivity and task-evoked activity (Mennes et al., 2010; Zou et al., 2013). Moreover, an 

important recent study by Tavor et al. (2016) showed that individual variability in patterns 

of functional connectivity in resting state could be used to accurately predict individual 

differences in regional activity across a variety of tasks. This link between task-activations 

and connectivity patterns in rest has been attributed to similarities between rest and task 

states in the information flow between brain regions (Cole, Ito, Bassett, & Schultz, 2016).

Studies of resting state connectivity in ageing have shown an age-related increase in 

connectivity between specific networks, leading to a more integrated mode of information 

processing in older adults (Betzel et al., 2014; Chan, Park, Savalia, Petersen, & Wig, 2014; 

Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015; Song et al., 2014). Therefore, if patterns 

of information flow are similar in task and rest, we would expect to see more widespread 

activation patterns during task performance in older adults, particularly in higher-order 

association areas where the age-related loss of network segregation appears to be most 

pronounced (Chan et al., 2014). This is in line with the results of a meta-analysis, showing 

that age-related over-activations are highly prevalent in fronto-parietal regions across a wide 

range of tasks (Li et al., 2015). If a direct association between age-related changes in 

task-induced activation and resting state activity or connectivity can be shown, this will 

change the interpretation of the age-related changes in regional activation. What is currently 

interpreted as a compensatory response related to a specific task may be explained by a more 

stable age-related change in the connectivity or information flow between different brain 

regions, potentially due to neuroanatomical changes.

Previous work has shown that part of the observed differences in functional connectivity 

between individuals reflect a stable difference in brain function (Finn et al., 2015; Geerligs, 

Rubinov, Cam-CAN, & Henson, 2015). These stable changes could be due to differences 

in the structural connectivity between brain regions, which have been shown to indirectly 

affect age-related changes in functional connectivity (Betzel et al., 2014). Alternatively, 

they could be related to changes in neurotransmitter systems (van den Brink et al., 2016), 

or changes in gray matter volume or differences in past experiences (Lewis, Baldassarre, 

Committeri, Romani, & Corbetta, 2009; Luo et al., 2012). The other aspects of observed 

differences in functional connectivity are associated with the specific state participants are 

measured in (Geerligs, Rubinov, et al., 2015). When such transient differences are associated 

with better task performance, this suggests that the flexibility of the functional architecture 

is important in maintaining high levels of functioning. Previous work has demonstrated 

that moving between different cognitive states, such as rest and task, is associated with 

widespread changes in functional connectivity. Some regions appear to be generally more 

flexible in their connectivity patterns, and are able to flexibly connect to other task relevant 

regions in order to facilitate task performance (Cole et al., 2013). Such flexible coupling 

may be especially important to ensure high level of cognitive functioning with advancing 

cognitive age (Gallen, Turner, Adnan, & Esposito, 2016; Geerligs, Saliasi, Renken, Maurits, 

& Lorist, 2014). State and trait aspects of functional connectivity cannot be disentangled if 
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we only focus on the activation or connectivity patterns that are associated with a specific 

task or resting state. In this context, resting state is one (of multiple) measures which can 

be compared to different task states to help disentangle trait and state differences in brain 

function.

Integrating structural and functional MRI data

Another way to investigate mechanisms behind individual differences in activity and 

connectivity is to directly combine functional and structural MRI data (Burzynska et 

al., 2013; Salami, Pudas, et al., 2014; Salami, Rieckmann, Fischer, & Bäckman, 2014). 

The compensation theory of neurocognitive ageing suggests that the additional activations 

observed in older adults offset the effects of lack of function in other brain regions, possibly 

due to age related structural decline in other brain regions (Park & Reuter-Lorenz, 2009). 

Therefore, one can argue that the association between task performance and regional activity 

will depend on the participants’ level of structural decline; specifically in participants with 

high levels of structural decline we would expect to observe that performance is dependent 

on the recruitment of additional regions during task performance (Kalpouzos, Persson, & 

Nyberg, 2012).

Resting state data may also be useful in the context of integration of structural and 

functional data. One important question is how the ongoing communication between brain 

regions is shaped by the regional loss of while matter in older adults (Davis et al., 

2009). Declines in white matter integrity in older adults have been shown to have direct 

implications for cognitive functioning in old age (Madden, Bennett, & Song, 2009; Penke 

et al., 2012; Salami, Eriksson, Nilsson, & Nyberg, 2012), presumably by affecting the 

ability of different brain regions to communicate efficiently (Hermundstad et al., 2013; 

Honey et al., 2009). Age-related declines in white matter have a constant impact on regional 

communication; not just in task situations but also in rest (Betzel et al., 2014). Therefore, 

resting state data may be especially appropriate to get a better understanding of how changes 

in white matter affect the connectivity within and between different brain networks. A 

follow up question would be how this affects the function of affected regions during the 

performance of specific cognitive tasks and how this in turn affects performance.

Measuring multidimensional age-related change

Another important reason to use a more integrative approach, instead of focusing on 

a single cognitive task, is that different cognitive functions are not independent. The 

cognitive dedifferentiation hypothesis suggests that ageing modulates the interplay between 

different cognitive processes (Baltes & Lindenberger, 1997; de Frias, Lövdén, Lindenberger, 

& Nilsson, 2007), with correlated rates of decline across different cognitive domains 

(Lindenberger & Ghisletta, 2009; Wilson et al., 2002). Furthermore, not all cognitive 

abilities decline at same rate, some remain spared or even improve in performance with 

increasing age (Salthouse, 2010b). The neural basis of these age-related differences and 

interactions remain largely unknown. The evidence for bidirectional interactions between 

resting state and task-based neurodynamics (Mastrovito, 2013; Northoff, Qin, & Nakao, 
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2010) suggests that the use of resting state in combination with multiple task states may lead 

to a better characterization of interacting neurocognitive processes across the lifespan.

In addition to purely focusing on the neural mechanisms behind age-related changes 

in cognitive functioning (Campbell and Schacter, 2016), another important question in 

neurocognitive ageing research is how environmental and lifestyle factors are associated 

with more successful cognitive ageing (Park & Reuter-Lorenz, 2009; Whalley, Deary, 

Appleton, & Starr, 2004). In this context, our interest is in understanding which factors (e.g. 

diet, smoking, vascular health, education, exercise) are important in determining age-related 

changes in cognition and how these changes in cognition are mediated by changes in brain 

structure and function (Debette et al., 2011; Gajewski & Falkenstein, 2016; Ronan et al., 

2016; Sabia et al., 2012; Stern, Stern, Gurland, & Tatemichi, 1994). While some lifestyle 

factors may influence domain-specific functions and may be most adequately studied in the 

context of specific cognitive tasks; many of these factors would be expected to have broader, 

domain general impacts on cognitive functioning in older adults. Therefore, measures 

of brain health which are not associated with one specific task, such as those obtained 

with structural MRI and in resting-state, may be especially suitable to identify the neural 

correlates associated with different lifestyle factors (Smith et al., 2015).

Specific advantages of resting state data

While functional connectivity between brain regions and networks can be measured in 

datasets which are not collected in resting state (e.g. Cole, Bassett, Power, Braver, & 

Petersen, 2014), there are a number of unique advantages to using resting state as a baseline 

connectivity measure. For example, longitudinal task-based studies are biased by practice 

effects (Salthouse, 2010a), which are less problematic for resting state measurements. In 

addition, resting state is uniquely suited to obtain information about brain function in 

participants who are unable to perform certain cognitive tasks. If an older participant can 

no longer perform a certain task, it is questionable how informative measurements of brain 

activity during that task are. Will they inform the researcher about why this participant is 

not able to perform the task, or merely about the neural correlates of not performing the 

task? The work by Tavor et al. (2016) showed that it may be possible to obtain information 

about task-related regional activity in a wide range of domains from a single resting state 

scan. While resting state is typically used to study functional associations between brain 

regions, recent methodological advances have made it possible to examine the direction 

of connectivity between brain regions during resting state, using spectral DCM (Friston, 

Kahan, Biswal, & Razi, 2014). This technique has recently been successfully applied to 

investigate age- and cognition-related differences in neural connectivity, independent of age 

differences in neurovascular coupling (Tsvetanov et al., 2016). Finally, the most important 

reason for not discarding resting state data in the study of neurocognitive ageing is the 

unparalleled availability of resting state data. Because resting state is now being used by a 

large portion of fMRI researchers, there is the opportunity to integrate data across centres 

and participant sets (Miller et al., 2016). By pooling data in aggregate analysis we can obtain 

much more accurate estimates of effect sizes, both of group differences and of individual 

variability in relation to cognitive function (Biswal et al., 2010). This could not easily be 

achieved with any cognitive task, or with naturalistic stimuli which participants may respond 
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to differently when they are viewed repeatedly. However, we agree with Campbell and 

Schacter (2016) that the comparison of resting state data between groups should be a starting 

point instead of an end goal. Group differences should be used to develop hypothesis about 

effects on cognitive functioning as well as mechanistic underpinnings, which can then be 

tested by integrating different types of data.

Mental activities during the resting state

Campbell and Schacter (2016) mentioned two specific limitations of resting state 

connectivity studies, which we would like to comment on here. The first limitation is that 

age-related differences in resting state connectivity may be associated with age differences 

in mental activities at rest. Indeed, it is likely that there are systematic group differences in 

the nature of spontaneous thought. However, this issue of differences in mental activities 

may be a more general problem in the study of neurocognitive ageing which is not 

limited to resting state measures. With age, the amount of effort that is experienced while 

performing demanding cognitive tasks increases, even in the absence of age differences in 

performance (Hess & Ennis, 2014). In addition, older adults are more motivated to avoid 

errors leading to differential response strategies (Forstmann et al., 2011; Starns & Ratcliff, 

2010). Such systematic differences in the approach to cognitive tasks will likely affect 

the observed task activation (Blumen et al., 2012; Bogacz, Wagenmakers, Forstmann, & 

Nieuwenhuis, 2010). For example, Davis at al. (2014) observed no age-related differences in 

the expression of the language network during natural listening conditions; age-differences 

in the prefrontal network only emerged after participants were asked to judge the syntax of 

the sentences. This suggests that it is the engagement in a task, rather than the language 

processing itself that leads to observed age-related differences (Davis, Zhuang, Wright, & 

Tyler, 2014), potentially associated with the strategies and effort invested in this task by 

older and younger adults. Even in the case of naturalistic stimuli, it is unclear whether 

older and younger adults are engaged in the same mental processes. Recently, Campbell 

et al. (2015) showed that the engagement in a common experience across participants (e.g. 

movie watching) led to highly synchronized brain responses between different individuals. 

Interestingly, this synchronization was much stronger in younger than older adults, which 

appeared to be related to age-related deficits in selective attention. Together, these findings 

suggest that equating mental engagement, effort and response strategies across participants 

is an important but challenging problem in both resting and task-based studies of ageing. 

This observation actually strengthens the case for incorporating both resting state and task-

based studies in research on neurocognitive ageing, as the age-related differences in mental 

activities would probably not be consistent across rest and task contexts. Therefore, stable 

differences in functional connectivity that can be observed in different task conditions would 

be clear evidence for a trait effect which is not due to differences in mental experience.

Systematic noise in fMRI data

The second limitation that Campbell and Schacter (2016) mentioned is the susceptibility 

of resting state analyses to motion and physiological artefacts. In response to this, we 

would like to point out that this is a problem that is general to all analysis of functional 

connectivity, both in task and resting state. In both cases it is difficult to separate time-
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dependent variations in neural activity from time-dependent artefacts due to head motion, 

breathing or heart rate variability (Birn, Diamond, Smith, & Bandettini, 2006; Chang 

et al., 2013; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). In task contexts, it 

is possible to contrast two different task conditions, which should reduce the impact of 

these nuisance variables. However, with this approach we lose the rich information about 

individual variations in the consistent patterns of information flow (connectivity) that are 

present in both task conditions. When two conditions are contrasted, the assumption is made 

that physiological artefacts will remain relatively constant across conditions. However, even 

this assumption has been shown to be invalid in specific cases. For example, task-correlated 

motion (Gavrilescu et al., 2004), or task-related breathing or heart rate changes can occur in 

tasks which are highly cognitively demanding, involve emotional stimuli or require focused 

or sustained attention (Birn, Murphy, Handwerker, & Bandettini, 2009; Hillenbrand, Ivry, 

& Schlerf, 2016). Therefore continued efforts to improve functional connectivity pipelines, 

so that connectivity estimates are less affected by a variety of physiological and mechanical 

artefacts, are critical for this field.

Related to the issue non-neural physiological signals in fMRI studies of ageing is also the 

concern that differences in activity of task-based fMRI signal may partly reflect differences 

in vascular health (Logothetis, 2008), which may not be related to underlying differences 

in neural connectivity (Balsters et al., 2013). Without careful correction for age differences 

in vasculature, differences in task fMRI activity can be erroneously regarded as neuronal 

differences. Recently, a method using resting state fMRI data was proposed (Kannurpatti & 

Biswal, 2008) and validated (Tsvetanov et al., 2015) as a way to correct for these vascular 

differences, without the need for separate scans with breath holding or hypercapnia (Liu, 

Glover, Mueller, Greve, & Brown, 2012). This illustrates that there are different ways in 

which rest and task data can be integrated effectively in the study of neurocognitive ageing.

Conclusions

In conclusion, it is important to start moving beyond traditional resting state or task-based 

analyses. In order to gain better insights in the brain mechanisms underlying cognitive 

change in relation to age, we need to adapt a more integrative approach, combining multiple 

data features across modalities and cognitive states to allow more robust inferences about 

cognitive ageing in terms of functional reorganisation of brain-behaviour relations and 

their underlying neurobiological mechanisms. To optimally move from the results of such 

integrated studies to mechanistic interpretations, it will be important to extend current 

theoretical models of neurocognitive ageing to generate predictions about different imaging 

modalities and cognitive states.
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