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Abstract

This work deals with the development of an appropriate set of fit functions for describing 

dielectric spectra based on simulated raw data. All these fit functions are of exponential character 

with properly chosen co-functions. The type of the co-functions is different for translation, 

rotation and their coupling. As an alternative to multi-exponential fits we also discuss Kohlrausch-

Williams-Watts functions. Since the corresponding Fourier-Laplace series for these stretched 

exponentials has severe convergence problems, we represent their Fourier-Laplace spectrum as 

a Havriliak-Negami expression with properly chosen parameters. A general relation between the 

parameter of the Kohlrausch-Williams-Watts and the Havriliak-Negami parameters is given.

The set of fit functions is applied to the concrete simulation of the hydrated ionic liquid 1-ethyl-3-

methyl-imidazolium triflate with H2O. The systematic variation of the water mole fraction permits 

to study the gradual transition from a neutral molecular liquid to molecular ionic liquids.

I Introduction

Among the physico-chemical properties of molecular ionic liquids [MIL] accessible to 

experiments,1–6 dielectric spectra7–11 are of special importance: On the one hand they 

enable a description of MILs at the macroscopic level in terms of collective motion 

involving all possible couplings between species and molecules. On the other hand 

the frequency-dependent generalised dielectric constant [GDC] may serve as a global 

characterization of solvation properties. In fact, the results of “solvation spectroscopy” can 

be interpreted in dielectric terms.12–14

Due to the inherent collectivity of dielectric spectra, their interpretation is far from trivial. 

Very often, different contributions from various species or various types of motion, e.g. 

rotation and translation, superimpose and interact in a complicated manner leading to 

rather broad spectra extending over several orders of magnitude in frequency.9,10,15,16 

In this situation detailed computer simulation have proven to be a valuable tool for 

interpretation.9,16,17 This computational dielectric spectroscopy in turn needs an appropriate 

computer-adapted dielectric theory in order to convert the simulation box to a piece of 

dielectric material. As one cannot mimic the behaviour of a macroscopic sample in finite 

simulation box the inherent Coulomb forces have to be handled with great care. In fact, 

these forces are modified in a way in order to reproduce the behaviour of a large sample 

by the small simulation box. This is the art of “Finite system electrostatics”.18–21 Among 

the different modifications of Coulomb forces available the Ewald technique taking periodic 

boundary conditions seriously has been found to have the lowest size dependence.20–26
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The proper treatment of size dependence, however, is only one part of the story. The 

time dependence is important, too. Based on “Linear Response Theory”27 one needs the 

time correlation functions [TCF] of collective dipole moments and currents to compute 

the dielectric spectra via Fourier-Laplace transform of TCFs.28 These TCFs are evaluated 

from time series of the corresponding collective properties obtained from the trajectories of 

atomic coordinates and velocities. Practical calculations have shown that simulations shorter 

than several dozens of nanoseconds are inappropriate to yield reliable TCFs. Even for TCFs 

confined to the picosecond range this long-term simulations are essential to achieve the 

necessary statistical quality.

The concept of using fit functions copes with the dual problem: On the one hand it removes 

numerical noise. On the other hand the complex time behaviour can be described with a 

few motional parameters, i.e. amplitudes, time constants, frequencies and time shifts. In this 

way the respective TCFs can be revived from these parameters even if the corresponding 

raw simulation data are not available any more. Another advantage of fit functions is their 

independence of time step between two function values. As a result, the fit functions can 

be computed at very high frequencies without any problems as opposed to the numerical 

Fourier-Laplace transform of the unfitted TCF.

The basis of all fit functions used in the present work is the exponential function which 

guarantees the decay to zero of all compound functions. This is essential for the Fourier-

Laplace transform. The present study shows that this basic exponential function can be 

augmented by co-functions which are typical for the type of collective motion to which they 

refer: rotation, translation and their cross-term. The self-developed program GENDICON 

converts the TCFs to dielectric spectra on the basis of the raw correlation data as well as the 

fit functions.

The capability of the program GENDICON can be demonstrated by applying it to the 

concrete system EMIM+CF3SO3
−/water which was chosen for the following reasons: As the 

anion has a major influence on the properties of a MIL we have first selected triflate 

CF3SO3
−  because of its high polarity. This high polarity is caused by the large differences in 

electronegativity of the constituent atoms. Furthermore, the direction of dipole coincides 

with the C–S bond which is the major axis of the molecule. Since most cations in 

MILs are substituted imidazoliums we chose 1-ethyl-3-methyl-imidazolium [EMIM+]. This 

asymmetric cation has the advantage of short side chains reducing the viscosity.

Since the time constants of TCFs scale roughly with the viscosity,9,29 their decay to zero 

is better realised in more fluid systems. The addition of water to EMIM+CF3SO3
− further 

reduces the viscosity. With varying mole fraction xH2O the systems change from neutral 

molecular liquids to molecular ionic liquids. This gradual change may be regarded as a 

severe test of the fit procedure to cover a diversity of motional parameters and phenomena. 

Last but not least, ionic liquids are highly recognized solvents in separation or purification of 

biomolecules.30–33
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II Theory

The theory section is divided into two parts: The first part deals with the theoretical 

background of the generalised dielectric constant. It mentions the prerequisites of the 

computational dielectric spectroscopy and describes decomposition of the generalised 

dielectric constant into rotational and translational components. The rotational contributions 

are attributed to the dielectric permittivity ϵ(ω) whereas the translational contributions are 

assigned to the dielectric conductivity ϑ0(ω).

The second part concerns the computation of the generalized dielectric constant Σ(ω) and 

its components by means of fit functions. Since Molecular dynamics simulations are able 

to compute each contribution to the dielectric spectrum separately, proper choices of the 

fit function for each component can be made. Furthermore, the fit functions represent the 

time-dependent correlation functions and describe their relaxation in time. When transferred 

to the frequency-dependent dielectric spectrum, the peak structure of diverse correlation 

functions may look similar on a logarithmic frequency scale but their origin and thereby 

their time behaviour may be completely different. Therefore, the second part of the theory 

section tries to give insights which fit function may be appropriate for a certain frequency 

regime.

A The generalised dielectric constant

The frequency-dependent GDC Σ(ω) is the susceptibility relating the dielectric polarization 

to the strength of the Maxwell field E. It can be measured experimentally by various 

techniques.15,34–36 From a theoretical point of view, it may be expressed in terms of the 

Fourier-Laplace transform of the equilibrium total dipole moment of the sample Mtot

Σ(ω) = Σ∗(ω) − ϵ∞ = 4π
3V kBT ℒ − d

dt Mtot(0) ⋅ Mtot(t) eq . (1)

As the left hand side of this equation refers to the constitutive relation involving the Maxwell 

field E, the right hand side stems from the application of Linear Response Theory giving 

the susceptibility with respect to the applied external field Eext. Consequently, the dielectric 

field factor E/Eext had to enter Eq. (1) which depends on the respective boundary conditions 

and results from the “Finite system electrostatics” used in simulation studies.18,21,37,38 For 

so-called “conducting boundary conditions”, e.g. Particle-Mesh-Ewald with carefully chosen 

parameters, the local field factor equals unity.18,39,40

The collective dipole moment Mtot(t)

Mtot(t) = ∑
i

∑
α

qi, α ⋅ ri, α(t) (2)

is the total dipole moment of the sample including all atoms α of the molecules i.9,41 Since 

the sum over all partial charges qi,α is zero, Mtot(t) is uniquely defined. For the interpretation 

Mtot(t) may be decomposed into a translational part MJ(t)
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MJ(t) = ∑
i

∑
α

qi, α ⋅ rcm, i(t) = ∑
i

qi ⋅ rcm, i(t) (3)

and a rotational part MD(t)

MD t = Mtot t − MJ t = ∑
i

∑
α

qi, α ri, α t − rcm, i t . (4)

Here, rcm,i(t) and qi are the center of mass of molecule i and its charge, respectively. 

From these definitions one immediately see that MJ(t) merges all atoms α with their partial 

charges qi,α to a molecule i with charge qi = qi,α represented by its center of mass rcm,i(t). 
Hence, only charged species contribute to the collective translational motion MJ(t). MD(t) 
contains all non-translational motions of charged and neutral molecules, e.g. all kinds of 

rotations and molecular vibrations. Since the rotations about the center of mass dominate, 

MD(t) is called “collective rotational dipole moment” in the following text. Both quantities 

are uniquely defined and their sum exactly yields Mtot(t).

This decomposition of Mtot(t) results in a splitting of the time correlation function Φtot = 

〈Mtot(0)·Mtot(t)〉:42

Φtot(t) = ΦD(t) + ΦJ(t) (5)

ΦD(t) = MD(0) ⋅ MD(t) + MD(0) ⋅ MJ(t) (6)

ΦJ(t) = MJ(0) ⋅ MJ(t) + MD(0) ⋅ MJ(t) (7)

and is visualized in Fig. 1. Both, the rotational part ΦD(t) [shown with orange background] 

and the translational part ΦJ(t) [black background] contain the cross-correlation 〈MD(0) · 

Mj(t)〉 representing the coupling of rotation and translation at the mesoscopic level which 

cannot be described independently by auto-correlation functions alone.9,41,43

As the Fourier-Laplace transform

ℒ[f(t)] = ∫
0

∞

f(t)eiωtdt . (8)

is a linear operation the decomposition of Φtot results in

ℒ − d
dtΦD(t) = MD

2 + iω ℒDD(ω) − ℒDJ(ω) (9)
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ℒ − d
dtΦJ(t) = ℒ − d

dt MJ(0) ⋅ MJ(t) − ℒDJ(ω) (10)

The details of the derivation of Eq. (9) can be found in Appendix A. The abbreviations 

ℒDD(ω), ℒDJ(ω) and ℒJJ(ω) are defined by

ℒDD(ω) = ℒ MD(0) ⋅ MD(t) (11)

ℒDJ(ω) = ℒ MD(0) ⋅ J(t) (12)

ℒJJ(ω) = ℒ J(0) ⋅ J(t) . (13)

The cross-contribution ℒDJ(ω) and the translational contribution ℒJJ(ω) are already given 

in terms of the current J(t) representing the derivative of the collective translational moment 

Mj(t) defined in Eq. (3):

J(t) = dMJ(t)
dt = ∑

i
qi ⋅ vcm, i(t) (14)

with vcm,i(t) being the velocity of the ith center of mass. The use of the current is more 

appropriate for simulation studies since J(t) [as opposed to Mj(t)] does not suffer from 

“jumps” of individual molecules due to the periodic boundary conditions. In other words, 

molecules leaving the simulation box on one side enter the box at the opposite side during 

simulation. Thereby, their coordinates rcm,i(t) changed dramatically [causing huge, more or 

less instantaneous changes of Mj(t)] but their velocities vcm,i(t) are not affected. Since these 

“jumps” have severe consequences on the statistics of the 〈MJ(0) · MJ(t)〉, one should use 

〈J(0) · J(t)〉 instead. Therefore, the Fourier-Laplace transform of 〈Mj(0) · Mj(t)〉 may be 

completely reformulated in terms of the current:

ℒ − d
dt MJ(0) ⋅ MJ(t) = i

ωℒJJ(ω) (15)

A short derivation of the last equation is given in Appendix A.

Assembling Equation (1), (9) and (15) we get the final expression for the GDC

Σ(ω) = 4π
3V kB T MD

2 + iωℒDD(ω) − 2ℒDJ(ω) + i
ωℒJJ(ω) (16)

= 4π
3V kB T MD

2 + iωℒDD(ω) − ℒDJ(ω) + i
ω ℒJJ(ω) + iωℒDJ(ω) (17)
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The different contributions to the GDC in Eq. (16) may be arranged into two groups: One 

with the pre-factor i/ω and one without. This equation may be compared to the experimental 

relation:

Σ(ω) = ϵ(ω) − ϵ∞ + 4πiσ(ω)
ω (18)

In principle, the equation used in experiments contains an electronic contribution 

represented by ϵ∞ which is visible in the high-frequency limit [above 10 THz]. However, 

in classical molecular dynamics simulations, these electronic contributions are neglected 

making ϵ∞ unity.44

Accordingly, the different contributions to the GDC in Eq. (16) can be assigned to ϵ(ω) as 

well as to the conductivity σ(ω) in Eq. (25)

ϵ(ω) − 1 = 4π
3V kB T MD

2 + iωℒDD(ω) − ℒDJ(ω) (19)

σ(ω) = 1
3V kB T ℒJJ(ω) + iωℒDJ(ω) (20)

ω ⋅ ℒDD(ω) and consequently ϵ(ω) affects the low-frequency regime of the GDC as 

schematically depicted in Fig. 1. The frequency regime of ℒDJ(ω) overlaps with that 

of ω ⋅ ℒDD(ω) to a certain degree but lasts for longer frequencies. ℒJJ(ω) resides at 

frequencies in the THz regime.

The last two equations can be seen as the motivation for the “arbitrary” decomposition 

of Mtot: Despite the marginal cross term ℒDJ(ω), the dielectric permittivity ϵ(ω) is 

built up by the rotational collective dipole moment MD(t). The time derivative of the 

translational collective dipole moment Mj(t) almost exclusively determines the conductivity 

σ(ω). However, the influence of the conductivity σ(ω) on the GDC is indirect since the ratio 

σ(ω)/ω enters the spectrum of the GDC. Therefore, we introduce the dielectric conductivity

ϑ(ω) = 4πiσ(ω)
ω (21)

= 4π
3V kB T

i
ωℒJJ(ω) − ℒDJ(ω) (22)

Unfortunately, ϑ(ω) diverges for ω → 0 in the same manner as 4πiσ(ω)/ω in the 

experimental equation (18). This is in accordance with the experimental situation that a 

static field applied to a system of charged particles leads to an infinite GDC. Hence, both 

the experimenter and we subtract 4πiσ(0)/ω from the dielectric spectrum to get rid of the 

divergence. This is denoted by the index 0 in the following equations:
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Σ0(ω) = Σ(ω) − 4πiσ(0)
ω (23)

= ϵ(ω) − 1 + 4πi σ(ω) − σ(0)
ω (24)

= ϵ(ω) − 1 + ϑ0(ω) (25)

with

ϑ0(ω) = 4πi σ(ω) − σ(0)
ω (26)

= 4π
3V kB T

i ℒJJ(ω) − 3V kB Tσ(0)
ω − ℒDJ(ω) (27)

This correction removes the overall translational drift of the ions but not all translational 

motion. At the theoretical level, it only affects the real part of ℒJJ(ω) . The imaginary part of 

ℒJJ(ω) . remains unchanged. Consequently, the correction applies to the imaginary part of 

ϑ(ω) whereas the real part is not affected.

The difference between the dielectric conductivity ϑ0(ω) and the conductivity σ(ω) is more 

than dividing σ(ω) by the frequency ω: First, it shifts the contribution from σ(ω), e.g. peaks 

in the dielectric loss spectrum, to smaller frequencies. Second, and even more important, is 

the non-vanishing static limit41

ϑ0(0) = lim
ω 0

ϑ0(ω) = 4π
3V kB T MJ

2 + MD(0) ⋅ MJ(0) (28)

in contrast to

lim
ω 0

σ(ω)
ω = ∞ . (29)

In principle, ϑ0(ω) characterizes the frequency-dependent collective translational motions of 

ions. For example, this may include intermolecular vibrations of ions, ion cage librations 

or the translation of ion aggregates. ϑ0(ω) does not involve contributions from collective 

motions of neutral species, e.g. water, which also may be present but they do not contribute 

to the collective translational dipole moment Mj(t) according to Eq. (3).

From Eq. (19) the static limit of the dielectric permittivity can be easily read
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ϵ(0) − 1 = lim
ω 0

ϵ(ω) − 1 = 4π
3V kB T MD

2 + MD(0) ⋅ MJ(0) (30)

and represents the rotational contribution to the static GDC. Uniting the equations (28) and 

(30) the static GDC ϵstat is given by

ϵstat − 1 = lim
ω 0

Σ0(ω) (31)

= ϵ(0) − 1 + ϑ0(0) (32)

= 4π
3V kB T MD

2 + 2MD(0) ⋅ MJ(0) + MJ
2

(33)

= 4π
3V kB T Mtot

2
(34)

The derivation of this expression shows that the dielectric conductivity ϑ0(ω) although 

residing in the high frequency regime finally makes a significant contribution ϑ0(0) to 

the static GDC ϵstat. This demonstrates that in charged, dipolar systems the dielectric 

conductivity ϑ0(ω) is an equal partner of the permittivity ϵ(ω).45

At this point a caveat is necessary: Eq. (34) is a theoretical relation connecting the static 

dielectric constant ϵstat with the mean squared fluctuations of the total collective dipole 

moment Mtot(t). One should not forget, however, that Mtot(t) suffers from toroidal jumps of 

its translational component Mj(t). Hence, a computation of ϵstat directly from Mtot
2  is not 

feasible. Rather, one has to trace back the way to the total current as derived from Eq. (9) to 

(27) and displayed in Fig. 1.

Our program GENDICON provides the real and imaginary part of the dielectric spectra of 

the conductivity σ(ω), the dielectric conductivity ϑ0(ω), the dielectric permittivity ϵ(ω) 

and the GDC Σ0(ω), separately. All dielectric quantities [ϵ(ω), ϑ0(ω) and Σ0(ω)] are 

traditionally in units of 4 πϵ0 with ϵ0 = 8.854187 · 10-12AsV−1m−1 being the vacuum 

permittivity [or electric constant]. The dielectric spectra may be calculated in GENDICON 

by the numerical Fourier-Laplace transform or more elegantly by the use of fit functions 

which are described in the next section.

B Fit functions

Bearing in mind that for a collective property every point along the trajectory provides 

a single value only, because averaging over particles, residue, etc is not possible, these 

extreme demand on simulation length can be easily understood. This explains why TCFs of 

collective dipole moments are still noisy for simulation length of hundred nanoseconds. In 

order to smooth this statistical roughness, TCFs are often fitted to analytical expressions. A 
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first overview of the fit functions used in this work is given in Table I. The next paragraphs 

deal with each fit function separately.

The application of the set of fit functions for the rotational and translational correlation 

functions is not limited, however, to 〈MD(0) · MD(t)〉 and 〈J(0)·J(t)〉, but can be applied to 

the correlation functions of their subcomponents, too.

1 Fitting 〈MD(0) · MD(t)〉 multi-exponentially—Quite generally, TCFs Φ(t) obey46

dΦ(t)
dt = − ∫

0

t

K t′ ⋅ Φ t − t′ dt′ (35)

For a simple Markovian process the kernel K t′  is a δ-function, i.e. K t′ = λ ⋅ δ t′ . As 

a result, the corresponding TCF Φ(t) becomes mono-exponential. In order to cope with 

complex dynamics a distribution of relaxation times ρ(t′) is assumed for the TCF

Φ(t) = ∫
0

∞

ρ t′ e−t/t′dt′ . (36)

The easiest distribution function ρ(t′) is a sum of δ-functions. As a result, Φ(t) is a super-

position of exponential functions. For example, one may fit the autocorrelation function of 

the collective rotational dipole moment with such a superposition:

MD(0) ⋅ MD(t) ≃ ∑
k

Ak ⋅ e−t/τk
(37)

The number of exponential terms depends on the TCF under investigation and the precision 

desired. This may require up to four terms in this work. As the amplitudes Ak determine the 

height of the peaks in the imaginary part of the dielectric spectrum, the careful determination 

of the amplitudes and their correct sum is crucial. Due to the linearity of the Fourier-Laplace 

transform the multi exponential fit results in a superposition of Debye processes.

ℒ ∑
k

Ak ⋅ e−t/τk = ∑
k

Akτk
1 − iωτk

≃ ℒDD(ω) (38)

Since the imaginary part of the Fourier-Laplace transform displays maxima at ωk = 1/τk 

the distribution of relaxation times ρ t′ = ∑
k

Ak ⋅ δ t′ − τk  can be recognized. As similar 

relaxation times result in a single broad peak in the spectrum, they are not a real problem. 

However, an increasing number of exponentials impedes a reasonable interpretation.
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In order to keep the number of fit parameters at the minimum one could alternatively 

use so-called “Kohlrausch-Williams-Watt” [KWW] functions47 which model the spread of 

exponentials by a single parameter β

MD(0) ⋅ MD(t) ≃ A ⋅ e−(t/τ)β . (39)

In principle, the Fourier-Laplace transform can be computed by two series as illustrated in 

Appendix B. For the sake of simplicity and stability GENDICON uses the Havriliak-Negami 

function to compute

ℒ − d
dtA ⋅ e−(t/τ)β ≃ A

1 − iωτℎn αℎn γℎn .
(40)

The parameters αhn, γhn and τhn can be expressed in terms of τ and β of the KWW function 

according to:

αℎn

γℎn

τℎn
= a(τ)e−β /b(τ) + c(τ) (41)

a(τ), b(τ) and c(τ) for αhn, γhn and τhn can be found in Table II. These parameters are 

gained from fits of the numerical Fourier-Laplace transforms of a series of KWW-functions. 

Therefore, β was varied from β = 0.500 up to 1.000 with a step size of Δβ = 0.005 and 

τ was varied from τ = 100 ps up to τ = 900 ps with a step size of Δτ = 100 ps. This 

range of KWW parameters corresponds to the expected functions in dielectric spectra. The 

KWW function of each combination of these β and τ-values was calculated until f(t) = 

e−(t/τ) was less than 10−4 in order to avoid chirp effects of the numerical Fourier-Laplace 

transformation. Furthermore, the function was calculated each Δt = 10−4 ps. This data series 

was used to evaluate the spectrum from 10 MHz to 100 THz according to Eq. (40) and fitted 

to the Havriliak-Negami function. It turned out that the dependence of αhn, γhn and τhn on 

β was exponentially at each τ as visible in Fig. 2 and fitted according to Eq. (41). In Fig. 2 

the fitted αhn and γhn from Ref. 48 are additionally displayed as filled circles and squares, 

respectively. These parameters were gained by fitting the distribution of the KWW [see Eq. 

(65)] and the Havriliak-Negami function. Although their method is more indirect, the results 

are very close to our method of direct fitting the dielectric spectrum. Varying τ resulted in a 

slight shift of the parameters a(τ), b(τ) and c(τ) and was fitted linearly.

2 Fitting 〈J(0) · J(t)〉 with damped oscillators—As opposed to the monotonic 

behaviour of the collective rotational dipole functions the TCFs involving the current relax 

within few picoseconds and are oscillatory in nature. Since a single damped oscillation 

already corresponds to a more complicated kernel46
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K t′ = λ ⋅ e−t′/ζ, (42)

a superposition45 of them is given by a multi-exponential phase-shifted cosine functions

J(0) ⋅ J(t) ≃ ∑
k

Akcos ωk ⋅ t + δk e−t/τk
(43)

which represents damped oscillators. The relaxation times τk are found to be much shorter 

than those of 〈MD(0) · MD(t)〉.

The corresponding Fourier-Laplace transform of this superposition of the damped oscillators 

reads

ℒ ∑
k

Akcos ωk ⋅ t + δk e−t/τk = ∑
k

Akτk
cos δk ⋅ 1 − iωτk − ωkτksin δk

τk
2ωk

2 + 1 − iωτk
2

≃ ℒJJ(ω)
(44)

and is also tabulated in Table I.

The real part of that Fourier-Laplace transform reads

Re ℒJJ(ω) ≃ ∑
k

Akτk
2

cos δk − τk ωk − ω sin δk
1 + τk

2 ωk − ω 2

+ cos δk − τk ωk + ω sin δk
1 + τk

2 ωk + ω 2

(45)

and gives a zero frequency-limit

lim
ω 0

Re ℒJJ(ω) = 3V kBTσ(0) ≃ ∑
k

Akτk
cos δk − τkωksin δk

1 + τk
2ωk

2 (46)

As suggested by Eq. (27) one has to correct the real part of the Fourier-Laplace transform 

by 3VkBTσ(0) for the computation of the dielectric conductivity. This way, lim
ω 0

Im ϑ0(ω)

becomes zero for the used fit function.

The imaginary part of ℒJJ(ω)) can be approximated by
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Im ℒJJ(ω) ≃ ∑
k

Akτk
2

−sin δk − τk ωk − ω cos δk
1 + τk

2 ωk − ω 2

+ sin δk + τk ωk + ω cos δk
1 + τk

2 ωk + ω 2

(47)

The contribution to the static value of the GDC stems from the zero frequency limit of the 

imaginary part of ℒJJ(ω) and can be computed

lim
ω 0

Re ϑ0(ω) = 4π
3V kBT lim

ω 0

Im ℒJJ(ω)
ω

≃ 4π
3V kBT ∑

k

Akτk
2

τk
2ωk

2 + 1 2 cos δk τk
2ωk

2 − 1 + 2τkωksin δk .
(48)

Please note that the correction of Eq. (27) only applies for the real part of ℒJJ(ω) . What 

about non-charged species? Since they possess no net charge, their corresponding 〈J(0) · 

J(t)〉 will be zero all the time. Consequently, all their amplitudes Ak of the 〈J(0) · J(t)〉 -fit 
function are zero and the corresponding contribution to the static translational value ϑ0(0) 

reduces to zero as one can see from the equation above. The influence of charged species are 

mainly characterized by the time constants τk.

3 Fitting 〈MD(0) · J(t)—In contrast to the TCFs 〈MD(0) · MD(t)〉 and 〈J(0) · J(t)〉 the 

influence of the cross-correlation between the collective rotational dipole moment and the 

current, namely 〈MD(0) · J(t)〉, is generally of marginal importance for the dielectric spectra. 

Nevertheless, 〈MD(0) · J(t)〉 can often be fitted according to

MD(0) ⋅ J(t) ≃ ∑
k

Ak ⋅ tγk − 1 ⋅ e−t/τk
(49)

with a short time constant τk.49,50 The co-factor tk
γk − 1

 ensures that the cross-correlation 

starts at 0 for γk-values greater than one. Therefore, fitted γk less than one are unrealistic 

since they result in an infinite value of the TCF at t = 0.

The corresponding Fourier-Laplace transform of Eq. (49) is a superposition of so-called 

Cole-Davidson functions: 49–52

ℒ ∑
k

Aktγk − 1e−t/τk = ∑
k

Ak ⋅ Γ γk
τk

1 − iωτk

γk
(50)

= ∑
k

Ak

1 − iωτk
γk

≃ ℒDJ (51)
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The general expression (49) includes the special case of pure exponentials inthe time domain 

or equivalently Debye processes in the frequency domain. Specifying γk = 1, however, 

enforces more than one exponential term in order to secure that the amplitudes of these 

exponential functions Ak sum up to zero.

III Methods

In this study six aqueous mixtures of the MIL MIL EMIM+CF3SO3
− with a water mole 

fraction xH2O between 0.653 and 0.974 were simulated over 40 ns with the molecular 

dynamics program package CHARMM53 under constant volume and temperature [T = 300 

K] with a time step of Δt =1 fs. The cubic simulation boxes [V =(67.0 Å)3] are generated 

by a procedure described in Ref. 54 with the EMIM+CF3SO3
−/water compositions tabulated 

in Table III. Nonbonded and image lists were updated heuristically using a 12 Å neighbour 

list distance. Lennard-Jones energies and forces were smoothly switched off between 9 and 

10 Å. The electrostatic interactions were calculated by the Particle-Mesh Ewald method,55,56 

using a rEW =10 Å cutoff for the real-space part interactions. In order to achieve the 

so-called “conducting boundary conditions” the damping constant κ has to be evaluated by 

the following integral Q:18,21,57

Q = κ
π

3 ∫
0

rEW

4πr2e−κ2r2dr (52)

with κ being the lowest real number so that Q equals unity with a very high numerical 

precision. In our case, this procedure leads to a κ-value of 0.410 Å−1 which is higher than 

the values proposed by molecular dynamics program packages.

The cationic force field parameters are taken from Ref. 58,59 which involve Lennard-Jones 

parameter from the AMBER force field.60 The partial charges are changed to the values 

reported in Ref. 61. gained by a distributed multipole analysis62 at the MP2/6-31G** level. 

The change of the EMIM+ partial charges generally results in a viscosity closer to the 

experimental value, e.g. in Ref. 29. The anionic force field parameters stems from Ref. 63 

without any further modification. For water, the TIP3P model of Jorgensen is employed.64 

All bond lengths are kept fixed by the SHAKE algorithm,65 whereas bond angles and 

torsions are left flexible.

IV Results

In a first step the trajectory data representing the time series of coordinates and velocities 

have to be converted to the collective rotational dipole moment MD(t) and the collective 

current J(t). Because of the difference in the genuine dynamic range these two time series 

are treated differently: MD(t) is evaluated each 50 fs for the elapsed simulation time period 

of more than 40 ns from the stored trajectory files. The time graining of J(t) is much finer, 

indeed, J(t) is computed for each time step of 1 fs but only for a time period of 10 ns 

synchronously with the integration of motion performed by the molecular dynamics program 
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CHARMM53. This procedure of data reduction, i.e. the storage of J(t) time series instead of 

the plethora of atomic velocities at each time step, enables the very long evaluation period of 

the above mentioned 10 ns.

In a second step the respective auto- [〈MD(0) · MD(t)〉 and 〈J(0) · J(t)〉] as well as the cross- 

[〈MD(0) · J(t)〉] correlation functions are computed. In case of the latter a duplicate time 

series of MD(t) analogously to J(t) with afiner resolution of 1 fs is used. All these TCFs 

are fitted according to the formulae described in the Theory section. The corresponding fit 

parameters for the six EMIM+CF3SO3
−/water mixtures are given in Tables IV, V and VI. 

In this way, the dependence on the mole fraction xH2O is visible from the trend of the fit 

parameters.

In a third step the fit functions are Fourier-Laplace transformed in order to yield the 

spectrum of the dielectric permittivityϵ(ω) and the dielectric conductivity ϑ0(ω). The 

superposition of both spectra gives the frequency-dependent GDC Σ0(ω). The final test 

of a proper fitting procedure is the juxtaposition of Σ0(ω) [as visible in Fig. 3] built up 

from the contributions of the fit functions and that obtained by numerical Fourier-Laplace 

transformation which can be considerably facilitated by means of a chirp function described 

in Appendix C.

The static limit of Σ0(ω) is the experimentally accessible static dielectric constant ϵstat. We 

emphasize that both low frequency limits ϵ(0) and ϑ0(0) contribute to ϵstat as can be read 

directly from Table III. While their sum is experimentally accessible the static dielectric 

permittivity and the static dielectric conductivity can not be measured by experiments 

independently. In fact, they serve as an explanatory device to figure out the amount of 

rotation and translation. In case of our mixtures the rotational part plays the dominant role. 

This is in accordance with the large amount of water, a highly polar dielectric medium. The 

ratio of rotational [open squares] and translational [grey diamonds] contribution is displayed 

in Fig. 4 for different mole fractions xH2O. As water is a highly polar dielectric medium 

whereas MILs – despite of their net charge – are low conducting materials, the dependence 

of ϵ(0) on xH2O is strong as compared to that of ϑ0(0). Upon superposition this strong 

dependence is almost maintained for ϵstat.

It would be tempting to compute ϵstat by averaging over independent snapshots along the 

trajectory. However, this procedure might work for ϵ(0) but will fail to evaluate ϑ0(0) and 

consequently ϵstat: One might think that the static dielectric conductivity could be obtained 

by averaging MJ
2  over snapshots according to Eq. (28). However, this approach overlooks 

the finiteness of simulated samples which implies toroidal jumps of the coordinates of 

the charged species due to periodic boundary conditions. As velocities do not suffer from 

toroidal jumps, the computation of the static limit of the dielectric conductivity via the 

current J(t) is the only way to cope with this problem. The rotational component ϵ(0) is not 

plagued with that problem because the corresponding collective dipole moment MD(t) is not 

made up by absolute coordinates but by coordinate differences which cancel toroidal jumps.

As a result the computation of a static quantity requires a time series. This is no additional 

effort, however, as our focus is on the full frequency-dependent dielectric spectrum Σ0(ω) 
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which inevitably requires sufficiently long time series. While experiments are restricted 

to the frequency-dependent GDC Σ0(ω) as a whole, our simulation enable the separate 

computation of the rotational ϑ(ω) and the translational part ϑ0(ω).

A ϵ(ω)and 〈MD(0) · MD(t)〉

The main contribution of dielectric constant ϵ(ω) stems from the auto-correlation of the 

collective rotational dipole moment 〈MD(0) · MD(t)〉. A Fourier-Laplace transform of the 

raw data of 〈MD(0) · MD(t)〉 is not desirable since the integration ofstatistical errors ofthe 

TCF at very long times leads to blurred spectra. This can be circumvented up to a certain 

degree by restricting the TCF to a specific time or using chirp functions. The simplest 

method which we used our articles is the Fourier-Laplace transform of the corresponding fit 

functions. As mentioned in the fitting section before, 〈MD(0) · MD(t)〉 can be fitted multi 

exponential. Commonly, one starts with the longest relaxation time constant and subtract 

this exponential function from the pure correlation data. The remaining residuals are fitted 

exponential again. This procedure is repeated until the sum of amplitudes Ak reaches the 

first value of the numerical correlation data. As visible in Table IV this procedure results 

in up to four exponential terms. Larger number of exponential term causes no problems 

in the computation of the spectrum since unimportant exponentials are often more or less 

invisible in the dielectric loss spectrum Im[ϵ(ω)] but they sometimes impedes a reasonable 

interpretation of the data. Nevertheless, the sum of all Ak should represent the initial value of 

〈MD(0) · MD(t)〉 in order to give the right static dielectric constant ϵ(ω = 0).

With the given fit parameters in Table IV the dielectric loss spectrum Im[ϵ(ω)] can be 

computed easily and is shown in Fig. 5a for the six EMIM+CF3SO3
−/water mixtures under 

investigation. With the exception of the last two mixtures with a water mole fraction 

of xH2O of0.785[grey dotted line] and 0.653 [black dotted line], the dielectric spectrum 

Im[ϵ(ω)] can be fitted with a Havriliak-Negami function with the parameters in Table 

VII. With decreasing water content, the maximum of the corresponding peak decreases. 

Consequently, the corresponding amplitude of the Havriliak-Negami fit decreases, too. This 

is quite expected since water has a very high dipolar density. Furthermore, the location 

of the peak is shifted to lower frequency and leads to increasing values of the fitted τhn. 

Interestingly, this τhn seems to depend linearly on the water mole fraction xH2O. This is 

surprising since the exponential time constants [which were used to construct the spectrum] 

are normally scaled by the viscosity29 which does not scale linearly with the water mole 

fraction xH2O. The Havriliak-Negami αhn-parameter is more or less constant whereas γhn 

decreases with decreasing xH2O.

In order to elucidate the characteristics of ϵ(ω) at a given mole fraction xH2O we 

have computed separately the contribution from the cations, anions and water. This 

speciesspecific composition is shown for the highest mole fraction xH2O = 0.974 in Fig. 

6a and the lowest xH2O = 0.653 in Fig. 6b. The behaviour of intermediate systems changes 

gradually from Fig. 6a to Fig. 6b for the main peak [as visible by the Havriliak-Negami 

parameters of the overall peak in Table VII]. The shoulder at lower water mole fractions 

above 1 THz emerges from the shift of the main peak to lower frequencies due to the 

increasing viscosity. In contrast, the “shoulder” is covered by the main peak at xH2O = 0.974.
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As already pointed out for the static dielectric permittivity the water component makes 

the dominant contribution at xH2O = 0.974 visible by the black dotted line in Fig. 6a. 

Cationic and anionic contributions are marginal. This situation changes dramatically for 

xH2O = 0.653: Intra- and intermolecular water-water and anion–anion interactions are 

now of comparable size and even the cation–cation contribution is discernible but of 

lower importance. Furthermore, it is slightly shifted to lower frequencies. The significant 

contribution of more than one species to ϵ(ω)complicates the spectrum and thus rules out the 

possibility of a description by a single Havriliak-Negami function at frequencies between 3 

GHz and 30 GHz.

It should be noted that the total ϵ(ω)[black line] is more than the sum of the three 

contributions mentioned above since there are interactions between the cations, anions and 

water as well as translational-rotational coupling discussed later. This becomes obvious 

in Fig. 6b at the left and right wings. The low-frequency wing up to 2 GHz the sum of 

the cation-cation, anion-anion and water-water contribution is certainly below the overall 

spectrum [black line]. In other words, the interspecies cross-terms make a significant 

positive contribution. This is reversed at the high-frequency wing above 100 GHz.

B ϑ0(ω)and 〈J(0) · J(t)〉

A reliable fit of the current auto-correlation function 〈J(0) · J(t)〉 is much more delicate than 

that of 〈MD(0) · MD(t)〉. In principle, two terms of Eq. (43) are sufficient to reproduce the 

overall shape of 〈J(0) · J(t)〉 at first sight. When calculating the static conductivity from 

these two terms, however, the resulting value is too high. As shown in Ref. 45 one needs 

at least a third exponential term [ω3 and δ3 equal zero] to get a consistent value of σ(0). 

This fact demonstrates that fit functions have to be used very carefully: The third component 

does not affect the shape of 〈J(0) · J(t)〉 in a visible manner due to its low amplitude but 

contributes to ϑ0(ω) significantly. This comes from the very high time constant τ3 compared 

to τ1 and τ2.

Once, the fit parameters have been determined carefully, the spectrum of the dielectric 

conductivity ϑ0(ω) displayed in Fig. 5b is readily obtained. There are two striking features: 

On the one hand the peak heights of ϑ0(ω) are smaller by almost one order of magnitude 

as compared to ϵ(ω). This is hidden in Fig. 5 by the fact that the scaling of subfigure Fig. 

5b was spread in order to discern the spectra for the various mole fractions xH2O. On the 

other hand there is no gradual change from the highest to the lowest water mole fraction. 

This comes from the simultaneous change of the viscosity and the number of charge carrier 

as a function of xH2O. At low xH2O there are many ions, e.g. 800 ion pairs for xH2O =0.653. 

However, they are moving in a high viscous system of 22.5 mPa s [refer to Table III]. In 

contrast, at xH2O =0.972 fewer ions, i.e. 200 ion pairs, are moving in a more fluid system 

with a simulated viscosity of 0.5 mPa s. This complex interplay is even more complicated 

when considering the contribution of the cross-correlation 〈MD(0) · J(t)〈 to the dielectric 

conductivity spectrum.
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C Σ0(ω) and 〈MD(0) · J(t)

The strong influence of viscosity shows up again in the size of this cross term 〈MD(0) · 

J(t)〉. In pure ionic liquids the collective dipole moment MD(t) and the current J(t) relax 

on a different time scale. The addition of water to this ionic liquid significantly enhances 

the rotation as can be seen from the τ2 time constant of 〈MD(0) · MD(t)〉 in Table IV. 

As a consequence, the frequency domain of rotation shifts upwards and the overlap with 

translation becomes stronger. This does not only enhance the cross term 〈MD(0) · J(t)〉 by 

a factor of roughly four compared to pure ionic liquids41 but even more important changes 

the principle character of the GDC Σ0(ω)in Fig. 5c. As the dielectric permittivity and the 

dielectric conductivity are now closer in frequency space their superposition leads to a single 

peak structure which can be fitted by a single Havriliak-Negami function. Decreasing xH2O 

a considerable broadening of the peak is observed hampering the Havriliak-Negami fit. At 

the lowest mole fraction xH2O =0.653 the extent of broadening is almost that of a pure ionic 

liquid.

This rise in importance of the rotational-translational coupling represented by 〈MD(0) · 

J(t)〉 justifies a closer inspection. The raw TCFs are given in Fig. 7a for xH2O =0.974 and 

xH2O =0.653 as black and grey solid line, respectively. First, the overall TCF is negative as 

opposed to pure ionic liquids.41 Second, the sharp initial peak at 0.25 ps is followed by a 

shoulder lasting over several picoseconds. This shoulder is not present in 〈MD(0) · J(t)〉 of 

pure ionic liquids. Third, the initial negative peak is almost equally shared between the ions 

and water. This can be seen in Fig. 7a: The two dashed lines represent the contribution of 

MD
±(0) ⋅ J(t) . In other words, the correlation between the collective dipole moments of the 

cations and anions with the current. The solid line, however, correlates the total rotational 

dipole moment MD(t) = MD
+(t) + MD

−(t) + MD
0  with the current. Its peak heights is roughly 

double that of MD
±(0) ⋅ J(t) . In other words, the collective reorientation of neutral water 

molecules correlate with the ionic current in the same way as the reorientation of the 

ions themselves. One must admit that the number of water molecules clearly overrules the 

number of ions. Nevertheless, the coupling between water rotation and ion translation is an 

interesting fact.

As mentioned in the Theory section the cross-correlation 〈MD(0) · J(t)〉 can be fitted 

according to f(t) = ∑
k

Aktγk − 1e−t/τk resulting in a sum of Cole-Davidson peaks in the 

dielectric spectrum. In the case of cross terms, however, the fit is rather complicated due 

to bad statistics: Although the final TCF extends over a few picoseconds one has to use 

a time series of 10 ns to obtain reasonable raw data. The statistics can be improved when 

calculating 〈MD(0) · J(t)〉 and 〈J(0) · MD(t)〉 independently. From a theoretical point of 

view these two functions should be equal but of opposite sign. Therefore, an additional 

averaging over these two series is possible. Under these preconditions a tentative fit with two 

components according to Eq. (49) can be made. For the special case of xH2O =0.653 this fit 

is shown in sub figure 7b. The first [k = 1, black dotted line] fit component is confined to 

the first peak of the total grey curve. It is characterized by a very small relaxation constant 

τ1 =0.095 ps and a large γ1-value of 3.30. Consequently, it appears as maximum around 4 
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THz in the spectrum shown in Fig. 7c. The maximum at 0.3 THz stems from the second fit 

component [k = 2, dashed line] of sub figure 7b. This second component describes the decay 

of 〈MD(0) · J(t)〉 over several picoseconds with a time constant of τ2 =3.0 ps and γ2-value 

of 1.17. This long-term tail of 〈MD(0) · J(t)〉 seems to be an intrinsic feature of hydrated 

ionic liquids because it was not observed in pure ionic liquids.41 As a result, the contribution 

of 〈MD(0) · J(t)〉 to the static dielectric constant ϵstat is higher than in pure ionic liquids. It is 

important to note that the difference of τ1 and τ2 has a strong influence on the spectrum but 

the difference of respective γ-values is of minor importance.

Quite general, the rotational-translational cross term 〈MD(0) · J(t)〉 is characterized by large 

fluctuations. Therefore, its demand on statistical accuracy is very high. Even for time series 

extending over 10 ns as used here may be even not sufficient. In the light of these facts the 

above considerations are of tentative nature. Fortunately, the absolute contribution of these 

cross terms to the static GDC ϵstat is about 5% on average for the hydrated ionic liquids, and 

even less than this for pure ionic liquids.

V Conclusion

The use of fit functions in computational dielectric spectroscopy is investigated both, from 

a theoretical and a practical point of view. Although not derived from first principles the 

presented fit functions may be classified and made plausible in terms of memory kernels. 

For the simplest possible memory kernel, a δ-function, the corresponding correlation 

function decays exponentially. This exponential behaviour is common to all fit functions 

used here. In fact, they differ by appropriate co-functions desscribing their specific features:

Collective rotational correlation functions can be represented multi-exponentially. 

Consequently, their co-function is merely the amplitude and their Fourier-Laplace spectrum 

is a superposition of Debye processes residing in the frequency regime from several MHz 

up to roughly 1 THz. Debye peaks in the dielectric loss spectrum in the MHz regime 

correspond to very slow rotational relaxations on a nanosecond time scale. The upper 

limit of 1 THz stems from fast relaxations with time constants of approximately 1 ps. 

The accuracy of multi-exponential fits can be easily improved: The higher the number of 

exponential terms, the better the fit. While this poses no problems for the Fourier-Laplace 

transform, it hampers interpretation because of the large number of parameters. Therefore, 

Kohlrausch-Williams-Watt functions may be better as they model the diversity of exponents 

by a stretching parameter β. Their use facilitates interpretation but introduces the problem 

of badly converging series representations in Fourier-Laplace space. Therefore, we presented 

formulae for the conversion of Kohlrausch-Williams-Watt parameters τ and β to the set of 

three Havriliak-Negami parameters αHN, γHN and τHN.

The damped, oscillatory character of the collective current correlation functions is modelled 

by cosine functions with time shifts as co-functions. The actual fit procedure with this 

type of functions is rather delicate. While usually two terms are sufficient to reproduce 

the overall shape of the current correlation function, corresponding integrated values are 

highly sensitive to fit parameters. Therefore, one has to add a third, pure exponential term 

in order to secure a reliable reproduction of physical properties. From a principle point 
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of view damped oscillator functions corresponds to an exponential memory kernel. Their 

Fourier-Laplace transform are voluminous but straightforward. These functions are only 

used in the high frequency regime of the dielectric loss spectrum beyond roughly 1 THz. 

Hence, their exponential damping constant is in the subpicosecond time regime typically for 

current-current correlation functions. Furthermore, these analytical formulae give the correct 

low-frequency behaviour.

The time behaviour of collective rotational-translational coupling is quite different from the 

two pure modes of motion. Collective rotational as well as translational correlation functions 

decay from an initial value to zero, rotation strictly monotonically and translation oscillatory. 

However, their cross term raises from zero to an extrema and decays afterwards. Therefore, 

we have used a completely different co-function tγ−1 mimicking a distributionlike behaviour. 

Upon Fourier-Laplace transform this type of functions gives the well-known Cole-Davidson 

spectra. From these arguments it becomes quite obvious that Cole-Davidson fits of the low 

and high-frequency end of the dielectric loss spectrum are inappropriate since the relaxation 

of the collective rotation and translation is not distribution-like as depicted in Fig. 7a.

The fitting procedure of all individual components should always be checked by a numerical 

Fourier-Laplace transform of the corresponding time correlation functions.

The equipment of fit functions was applied to EMIM+CF3SO3
−/water mixtures with water 

mole fractions xH2O from 0.974 to 0.653. As a first result, the static generalised dielectric 

constant ϵstat is dominated by rotational contributions and hence by the water component. 

This explains the monotonic decrease of ϵstat as well as ⏑(0) with decreasing xH2O. On the 

contrast, the translational contribution ϑ0(0) does not behave monotonically. This comes 

from the competence of the number of charge carriers with the viscosity.

On the frequency scale Im[ϵ(ω)] shows more or less a single peak structure which — for 

not too small xH2O — can be fairly described by Havriliak-Negami model. Thereby, the γHN 

and τHN are again monotonically decreasing func tions of the water mole fraction. In case 

of τHN, the dependence is almost linear. A decomposition into species finds the cationic 

contribution at lower frequencies, whereas that of water and anions resides at almost the 

same frequency.

As already found for the static value the complete Im[ϑ0(ω)] spectrum does not gradually 

change with mole fraction. In principle, it maintains its double-peak structure but the relative 

height of the two maxima changes. Furthermore, the first maxima fall in the same frequency 

range as Im[ϵ(ω)]. The coupling between collective rotation and translation is higher than in 

pure ionic liquids but still below 5% of the static generalised dielectric constant ϵstat.

As a final summary the complete spectrum of the generalised dielectric constant is the 

sum of the collective rotational and translational spectrum ranging from 1 GHz to 10 THz. 

These spectra of the hydrated EMIM+CF3SO3
− change from a more or less single peak 

[resembling a spectrum of a neutral molecular liquid] at high water mole fractions to a 

sustained plateau-like spectrum known from pure molecular ionic liquids.
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Fig. 1. 
The autocorrelation function of the total collective dipole moment 〈Mtot (0) · Mtot(t)〉 
is decomposed into a rotational part ΦD(t) [displayed with orange background] and a 

translational part ΦJ(t) [displayed with black background]. Because of toroidal jumps 

the correlation functions containing the collective translational dipole moment Mj(t) are 

transferred to functions involving the current J(t). Each correlation function affects the 

dielectric loss spectrum at different frequencies. The pure rotational 〈MD(0) · MD(t)〉 resides 

in the low frequency regime. The translational contributions from 〈J(0) · J(t)〉 are located 

at much higher frequencies. However, this separation in frequency space is not complete. 

There exists a common overlag region. The rotational-translational coupling 〈MD(0) · J(t)〉 
has more or less the same frequency range as the translational contributions.
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Fig. 2. 
Fitted Havriliak-Negami parameter αHN and γHN as function of the KWW parameter β at τ 
= 500 ps. The open symbols represent the fit in this work. The filled symbols are taken from 

Ref. 48.
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Fig. 3. 

Im[ϵ(ω)] of the EMIM+CF3SO3
−/water mixture with a water mole fraction xH2O =0.653. The 

gray line represents the spectrum of the pure data. The application of a chirp function with 

t0 = 1000 ps and τ =100 ps changes the spectrum to the orange solid line. The black dashed 

line represents the fit with three exponential functions with the parameter given in Table IV.
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Fig. 4. 

Static dielectric properties of the EMIM+CF3SO3
−/water mixtures. The overall static dielectric 

constant ϵstat consists of its rotational ϵ(0) and its translational contribution ϑ0(0).
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Fig. 5. 

Imaginary part of the dilectric spectra of the EMIM+CF3SO3
−/water mixtures: a) dielectric 

constant ϵ(ω). b) dielectric conductivity ϑ0(ω). Please note that the y-axis is enlarged in 

order to distinguish the spectra of different mole fraction xH2O. c) Overall generalized 

dielectric constant Σ0(ω).
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Fig. 6. 

Decomposition of the imaginary part of the ϵ(ω) spectrum of the EMIM+CF3SO3
−/water 

mixtures into molecular contributions at two different mole fractions: a) xH2O =0.974 and b) 

xH2O =0.653. The contribution of the cross-correlation 〈MD(0) · J(t)〉 is part of the overall 

black line but not shown as single contribution.

Schröder and Steinhauser Page 28

J Chem Phys. Author manuscript; available in PMC 2022 November 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 7. 

a) Cross-correlation 〈MD(0) · J(t)〉 of EMIM+CF3SO3
−/water mixture with xH2O = 0.974 

[black line] and xH2O = 0.643 [orange line]. The solid lines represent the correlation of the 

total collective rotational dipole moment MD (t) with the current J(t) whereas the dashed 

lines stand for the correlation of the ionic collective rotational dipole moment MD
+(t) + MD

−(t)

with the current J(t). b) Fit of 〈MD(0) · J(t)〉 of EMIM+CF3SO3
−/water 2 at xH2O = 0.643 

according to f(t) = ∑
2

k
Aktγk − 1e−t/τk with the parameters given in Table VI. The orange line 

are the same data as a), the black dotted line and dashed line represent k = 1 and k = 2 

contribution of f(t), respectively. The sum of both contributions is displayed as dash-dotted 

line. c) Contribution of the above mentioned cross-correlation 〈MD (0) · J(t〉 to the dielectric 

spectrum of ϵ(ω). Please note that this contribution is part of ϑ0(ω) additionally.
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Table I

The computed correlation functions were fitted with the corresponding fit function f(t) In the top part of the 

table the corresponding ℒDD(ω), ℒDJ(ω) and ℒJJ(ω) are used to calculate ℒ − d
dtΦD(t)  and ℒ − d

dtΦJ(t)  by 

means of Eq. (9) and (15). At the bottom of the table ℒ − d
dtΦD(t)  is calculated directly.

correlation function fit function f(t) ℒ[f(t)]
〈MD(0) · MD(t)〉 ∑

k
Ak ⋅ e−t/τk ∑

k

Ak ⋅ τk
1 − iωτk

(Debye) → ℒDD(ω)

〈MD(0) · J(t)〉 ∑
k

Aktγk − 1 ⋅ e−t/τk
∑
k

Ak
1 − iωτk

γk

(Cole - Davidson) → ℒDJ(ω)

〈JD(0) · J(t)〉 ∑
k

Akcos ωk ⋅ t + δk e−t/τk ∑
k

Ak ⋅ τk cos δk ⋅ 1 − iωτk − ωkτksin δk
τk

2ωk
2 + 1 − iωτk

2
→ ℒJJ(ω)

correlation function fit function f(t) ℒ − d
dtf(t)

〈MD(0) · MD(t)〉 A ·e-(t/τ)β A

1 − iωτℎn αℎn γℎn
(Havriliak-Negami)
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Table II

Interpolation of the Havriliak-Negami parameters: αhn, γhn and τhn can be approximated by a(τ)e−β/b(τ)+c(τ) 

from the KWW-function f(t) = e−(t/τ)β with the KWW parameter τ and β.

a(τ) b(τ) c(τ)

α hn -23·10−5τ-1.24 -2.1·10−5τ+0.29 -0.44·10−5τ+1.04

γ hn -11·10−5τ+0.34 15.·10−5τ-0.86 17.·10−5τ-0.091

τ hn 9.7·τ+284. 5.·10−5τ+0.28 0.528·τ+9.9
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Table III

Composition and dielectric properties of the EMIM+−CF3SO3
−/water mixtures under investigation. Please note 

that EMIM+−CF3SO3
−/water mix ϵstart - 1 = ϵ(0) - 1 + ϑ0(0)

mole fraction xH2O ion pairs water viscosity
[mPas]

ϵ(0) ϑ0(0) ϵstart

0.974 200 7428 0.5 63.9 1.9 65.8

0.932 400 5489 1.4 44.0 6.4 50.4

0.899 500 4467 2.2 33.5 6.8 40.3

0.852 600 3444 4.5 24.9 2.7 27.6

0.785 700 2561 7.5 20.4 3.5 23.9

0.653 800 1504 22.5 12.5 2.8 15.3
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Table IV

Fit parameters of the auto-correlation function of the collective rotational dipole moment 〈MD(0) · MD(t)〉 

according to f(t) = ∑
k

Akcos ωkt + δk e−t/τk .

x H 2 O A1 [D2] τ1 [ps] A2 [D2] τ2 [ps] A3 [D2] τ3 [ps] A4 [D2] τ4 [ps]

0.974 0.17 794 12.3·104 12.84 6.14·104 5.41 994 0.09

0.932 5.00 60.0 9.45·104 22.51 2.80·104 6.09 2022 0.20

0.899 8.25·104 25.77 0.959·104 3.50 1374 0.14

0.852 1680 398 5.47·104 41.77 0.989·104 7.16 2400 0.30

0.785 1410 2500 4.05·104 90.27 1.12·104 12.26 2206 0.25

0.653 15300 223 1.32 104 41.51 0.289 104 1.85
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Table V

Fit parameters of the current-current auto-correlation function 〈J(0) · J(t)〉 according to 

f(t) = ∑
k

Aktγk − 1e−t/τk . ω3 and δ3 are zero.

x H 2 O A1 [D2 ps−2] ω1 [ps−1] δ 1 τ1 [ps] A2 [D2 ps−2] ω2 [ps−1] δ 2 τ2 [ps] A3 [D2 ps−2] τ3 [ps]

0.974 1.89·104 17.016 -1.293 0.059 67.1·104 0.160 1.524 0.235 -14.7 13.2

0.932 5.12·104 16.415 -1.099 0.071 97.8·104 0.233 1.519 0.216 -78.9 6.0

0.899 8.71·104 14.912 -1.144 0.065 105·104 0.299 1.519 0.194 -149 10.0

0.852 9.22·104 16.833 -1.124 0.072 143·104 0.324 1.520 0.183 -191 3.6

0.785 11.9·104 17.240 -0.954 0.082 233·104 0.217 1.545 0.169 -134 6.2

0.653 13.9 104 18.359 -1.009 0.084 271 104 0.285 1.543 0.142 -262 3.8
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Table VI

Fit parameters of the cross-correlation function 〈MD(0) · J(t)〉 according to f(t) = ∑
k

Aktγk − 1e−t/τk . The index 

1 corresponds to the first peak of the cross-correlation function whereas the second index characterizes the tail 

of the TCF at longer times. ϵMDJ is the contribution of this cross-correlation function to the static dielectric 

constant. The number in brackets corresponds to the share of 2ϵMDJ in ϵstart

x H 2 O A1 [D2 ps−γ1] τ1 [ps] γ 1 A2 [D2 ps−γ2] τ2 [ps] γ 2 ϵMDJ

0.974 -3.58·104 0.192 3.25 -550 2.0 1.77 0.72 (2.2%)

0.932 -9.11·104 0.159 3.13 -495 3.8 1.44 1.22 (4.8%)

0.899 -20.4·104 0.133 3.28 -452 3.2 1.33 0.87 (4.3%)

0.852 -32.3·104 0.121 3.37 -380 3.3 1.30 0.79 (5.7%)

0.785 -46.4·104 0.107 3.35 -330 3.1 1.25 0.66 (5.5%)

0.653 -56.1·104 0.095 3.30 -300 3.0 1.17 0.55 (7.2%)
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Table VII

Fit of Im[ϵ(ω)] to the Havriliak-Negami function Eq. (40). Because of the peak-shoulder structure of Im[ϵ(ω)] 

for xH2O=0.785 and 0.653, a fit with a single Havriliak-Negami function was not possible.

x H 2 O A α HN γ HN τHN [ps]

0.974 63.3 0.955 0.979 9.86

0.932 43.4 0.967 0.820 21.3

0.899 32.3 1.02 0.716 32.3

0.852 23.7 0.993 0.671 54.2

0.785

0.653
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