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Abstract

Background and Objectives—To investigate the reproducibility and validity of latent class 

analysis (LCA) and hierarchical cluster analysis (HCA), multiple correspondence analysis 

followed by k-means (MCA-kmeans) and k-means (kmeans) for multimorbidity clustering.

Methods—We first investigated clustering algorithms in simulated datasets with 26 diseases of 

varying prevalence in predetermined clusters, comparing the derived clusters to known clusters 

using the adjusted Rand Index (aRI). We then them investigated in the medical records of male 

patients, aged 65 to 84 years from 50 UK general practices, with 49 long-term health conditions. 

We compared within cluster morbidity profiles using the Pearson correlation coefficient and 

assessed cluster stability was in 400 bootstrap samples.

Results—In the simulated datasets, the closest agreement (largest aRI) to known clusters was 

with LCA and then MCA-kmeans algorithms. In the medical records dataset, all four algorithms 

identified one cluster of 20–25% of the dataset with about 82% of the same patients across all 

four algorithms. LCA and MCA-kmeans both found a second cluster of 7% of the dataset. Other 

clusters were found by only one algorithm. LCA and MCA-kmeans clustering gave the most 

similar partitioning (aRI 0.54).

Conclusion—LCA achieved higher aRI than other clustering algorithms.

Keywords

Multimorbidity; Clustering methods; Electronic medical records; Latent class analysis; 
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Introduction

Multimorbidity is the coexistence of two or more longterm health conditions [1]. Co-

occurrence of diseases where all patients have a particular index condition (such as diabetes) 

is generally referred to as comorbidity [2]. Multimorbidity is becoming more important 

with an aging population and is linked to socioeconomic deprivation [3—5]. Multimorbidity 

can be understood in terms of its consequences and causes [6]. The consequences include 

increased complexity of clinical management, a high treatment burden, altered prognosis, 

and increased health care resource use, particularly when associated with functional 

impairment [7—10]. Particular combinations of diseases are more strongly associated 

with healthcare resource use and prognosis than the number of co-occurring diseases 

[11,12]. Resource use varies with different multimorbidity clusters and is modified by 

sociodemographic and household factors [13]. Current health services, clinical specialities, 

guidelines, quality improvement strategies, and quality of care metrics often reflect a single 

disease paradigm [14—17].

Multimorbidity is not a single entity, there are many different groups of co-occurring 

diseases. Some co-occur by chance, others because of common origins. To understand the 

causes of multimorbidity or to develop services for multimorbidity needs an understanding 
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of which diseases tend to cluster. Due to the variety of ways in which potential combinations 

of diseases can be modeled, previously reported multimorbidity clusters have varied 

with different analytic methods [18—20]. In a typical problem requiring use of cluster 

algorithms, one would not know the true clusters. To understand how different clustering 

methods might perform in real health data we therefore need to investigate their performance 

in a simulation study, where the true clusters are known.

A systematic review of multimorbidity clustering studies identified four clustering 

algorithms used: exploratory factor analysis, cluster analysis of diseases, cluster analysis 

of people, and latent class analysis [21]. Two disease clusters (mental health conditions and 

cardiometabolic conditions) were identified consistently across all four algorithms and three 

further disease clusters by most clustering algorithms. However, few studies used more than 

one method, making it more difficult to directly compare the reproducibility of methods than 

if they had been applied to the same dataset.

In this paper we identify a number of methods used to group patients into clusters based on 

the combinations of multiple long-term health conditions in large datasets. We have applied 

these methods to investigate their reproducibility and validity, first in a large simulated 

dataset and then in a dataset of people with multiple long-term health conditions derived 

from electronic primary care records.

2 Methods

2.1 Identification of clustering methods

Methods commonly used to identify clusters of patients with similar multimorbid conditions 

were identified from two recent systematic reviews on clustering methods [20,21]. We 

selected the most frequently used methods for clustering patients (rather than diseases), 

those most applicable to binary data and which would scale for use on large datasets.

Four clustering algorithms were selected: latent class analysis (LCA) and hierarchical cluster 

analysis (HCA), as these methods were most frequently used in current multimorbidity 

research when clustering patients rather than diseases, and multiple correspondence analysis 

followed by k-means (MCA-kmeans) and k-means (kmeans), as these methods were 

applicable to binary data and scaled for use with large datasets.

Latent class analysis is a model-based clustering approach that derives clusters using a 

probabilistic model that describes the distribution of the data as opposed to determining 

clusters based on a chosen distance measure. In latent class analysis, posterior probabilities 

of cluster membership are assigned to each individual based on the estimated model 

parameters and their observed scores. This allows for each individual to be allocated to 

the appropriate latent class based on their probability of membership and from this, the risk 

of mortality by cluster can be estimated [22].

Hierarchical cluster analysis begins by calculating the distance between each pair of 

individuals using an appropriate distance measure. HCA can be applied agglomeratively 

(the algorithm starts with each individual as a single element cluster; at each iteration the 
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two most similar clusters are merged, based on a linkage method, until all individuals 

are in one large cluster) or divisively (the algorithm starts with one cluster containing all 

individuals; the most heterogeneous cluster is split to form two clusters, until all individuals 

are single element clusters). We applied only agglomerative HCA. HCA can be visualized 

using a dendrogram which shows how clusters are merged or split and may indicate where 

the dendrogram can be cut to give an appropriate number of clusters. We used asymmetric 

binary distance, defined as the proportion of long-term health conditions where only one 

of the pair had the condition divided by the number of long-term health conditions where 

at least one of the pair had condition (1 - (A⋂B)/(A⋃B)). The linkage method was Ward’s 

minimum variance; at each iteration this merges the pair of clusters with the smallest 

between cluster variance. HCA allocates individuals to a single cluster and does not require 

prespecification of the number of clusters.

K-means is an iterative clustering method which partitions a dataset into k nonoverlapping 

clusters, allocating individuals to only one cluster. The algorithm begins by randomly 

selecting k observations (without replacement) as initial cluster centroids. The squared 

Euclidean distance between each remaining observation and each cluster centroid is 

calculated, the observation allocated to the closest cluster, and the cluster centroid is 

recalculated. This process is repeated until there is no further movement between clusters. 

K-means clustering is generally used for clustering continuous variables as it uses Euclidean 

distance to determine the distance between data points and cluster centers, however, it can be 

used with binary data [23].

Multiple correspondence analysis followed by k-means (MCA-kmeans) is a two-step 

approach which applies multiple correspondence analysis (MCA) to categorical data to 

reduce dimensions, followed by a k-means algorithm to define clusters [24].

2.2 Performance in a simulated dataset with known clusters

Clustering algorithms were first investigated in a simulated dataset with predetermined 

clusters using the adjusted Rand Index to compare the allocation of patients to clusters made 

by each algorithm to the known clustering of patients in the simulated dataset. The adjusted 

Rand Index is a widely used measure of cluster similarity which takes into account grouping 

by chance and produces a value from 0 to 1 (complete agreement) [25]. Most clustering 

algorithms require the user to specify the number of clusters in the data. For the simulated 

dataset, the number of clusters was known.

2.3 Generation of the simulated dataset

As we don’t have access to a true source of clustering, our simulated dataset is a simplified 

representation of disease clusters, with synthetic parameters matching our expectations of 

disease clusters in primary care records and the range of clustering parameters in studies 

reviewed by Ng [20]. Where possible, synthetic cluster data had parameters matched to 

a range seen corresponding to our model disease set (see below), or to approximate the 

distribution of clusters we expect based on clinical expertise. The mean prevalence within 

each cluster of diseases was varied over a range covering 1.5—90%, compared to an 

overall prevalence of any disease of 8.9% for our cardiometabolic data set. The number of 
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diseases per simulated cluster was set around 5 (95% interval 2—10), corresponding to a 

medically expected range of expected diseases per cluster [3—11]. For intracluster disease 

correlations, we assumed for simplicity that they were identical and allowed them to vary 

as part of the sensitivity analysis. Within our dataset of primary care records, we observed 

(Pearson) correlations ranging between diseases from —0.2 to 0.8 [26]. Where parameters 

were harder to estimate such as “noise” (observations of a disease in a patient who is not a 

member of the cluster containing that disease) or the number of patients not in any cluster, 

these were varied as part of the sensitivity analysis.

For generating groups of correlated, simulated disease clusters, we used a multinomial probit 

model, in which the binary disease status is determined by a latent, multivariate-normal 

distributed variate. We generated a simulated 26-disease (denoted A-Z), multiple disease 

cluster dataset in three steps. The number of clusters of diseases was denoted K and the 

number of patients was N, resulting in an N × 26 matrix of disease observations. Each of 

the N patients was assigned as a member of one of the K disease clusters. The probability 

of a particular patient being assigned to a particular cluster was either distributed with an 

exponential, random weight over clusters 1, 2, K (with parameter lambda = 1), or uniformly 

(balanced).

1. Within each of the K disease clusters, the number of the 26 diseases within that 

cluster was determined by the maximum of (a) a Poisson distributed random 

variable with mean value 5, (b) the numerical value 2. This parameter choice 

was set to reflect our belief that in the range 2–10 conditions would be observed 

within a disease cluster. We either allowed overlap of a disease between clusters 

(e.g., disease A could occur in disease cluster 1 and 2) or not. In the case 

where no overlap was allowed, the assignment of diseases to disease clusters 

was performed sequentially, until none were left. Where overlap of clusters was 

allowed, assignments took place independently (i.i.d.)

2. For each patient in each of the K disease clusters we generated simulated 

observations of the 26 diseases using the multinomial probit model with a 26 

× 26 correlation matrix. For a cluster k, we generated intradisease correlations 

for each of the D_k diseases by setting the off-diagonals of the correlation matrix 

between each of the D_k corresponding diseases to a prespecified (positive) 

correlation coefficient ρ. For example, the disease cluster number 1 may contain 

diseases {A, B, C} with an interdisease correlation between each disease of ρ = 

0.2.

3. Uncorrelated, background noisy observations were added to each of the 26 

columns of the resulting N x 26 matrix. The probability of each noise 

observation was allowed to vary to allow us to test resistance of cluster discovery 

to uncertain observation.

For each set of parameters we created 1,000 simulated datasets. Each clustering algorithm 

was applied to the simulated dataset a) including all observations and b) including only 

observations with two or more long-term health conditions present, this analysis intending 

to demonstrate the requirement for multimorbidity (presence of two or more conditions). 

The adjusted Rand Index was calculated, comparing the simulated “known” clusters with 
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the clustering allocation found by the algorithm. Median, lower, and upper quartiles of 

the adjusted Rand Index were taken from the distribution of values from the individual 

simulations.

Parameters of the simulated dataset were varied to investigate the effect of correlation 

between diseases in the cluster, the prevalence of noise (within each cluster, the prevalence 

of diseases not allocated to the cluster), and the prevalence of diseases in each cluster; in 

each of these scenarios the dataset contained three clusters. When examining the effect of 

varying prevalence we tested disease prevalences between 1.5% and 90% in order to give 

an extreme example with defined clusters. In addition, we examined the effect of varying 

the number of clusters the algorithm was asked to find, using a simulated dataset with four 

clusters so that the effect of specifying fewer clusters could be examined. In simulated 

datasets, diseases were allowed to occur in more than one cluster and within cluster disease 

prevalence and noise prevalence was constant.

2.4 Investigation in primary care records

IQVIA Medical Research Data UK (IMRD UK) contains longitudinal primary care records 

for around 6% of the population from practices around the UK. The database has been 

shown to be representative of the UK population in terms of demography, prevalence of 

long-term conditions, and mortality [27]. Collection of data in IMRD was approved by the 

NHS South East Multi-Centre Research Ethics Committee (MREC) in 2003. We obtained 

approval to conduct this analysis from the Scientific Review Committee (reference number: 

21SRC055).

A random sample of 50 practices from IMRD UK was selected and male patients, aged 

65 to 84 and registered for at least 12 months on 1st January 2017 were included in the 

primary care sample. We chose this group as an exemplar as clustering may be gender and 

age-specific, and we wished to have a relatively homogenous group of patients in terms of 

multimorbidity. Long-term health conditions were defined as the presence (coded as a binary 

variable) of any of 49 conditions (listed in Table 1) recorded on or before 1st January 2017 

and only conditions with at least 1% prevalence were considered, resulting in a similar list 

of conditions to that used in other analyses [3]. Patients with at least two long-term health 

conditions were included in the analysis.

We used plots of Bayesian Information Criterion (BIC), sample size adjusted BIC and 

entropy, applied to latent class analysis, to determine the optimal number of clusters for 

two to eight clusters. With the exception of HCA, each clustering algorithm used in the 

analysis was applied directly to the primary care dataset. As HCA is computationally 

intensive, it does not scale well to large datasets, therefore we used a hybrid method of 

applying k-means clustering to the data (specifying 50 clusters) then applied HCA to the 

resulting cluster centroids [28]. For LCA, patients were assigned to the cluster with the 

highest posterior probability; other algorithms assign patients to a cluster without giving 

the probability of membership for each cluster. All of the clustering algorithms assigned 

patients to nonoverlapping clusters, that is a patient could only be assigned to one cluster. 

As we clustered patients rather than conditions, it was possible for a condition to belong in 
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more than one cluster. Clusters were named using the top three conditions with the greatest 

difference in within-cluster prevalence compared with prevalence in the full dataset.

To investigate whether clustering algorithms identified similar clusters we compared within 

cluster morbidity profiles (the proportion of patients with each disease in each cluster) from 

each pair of methods using Pearson correlation coefficient (PCC), high values indicating 

clusters with similar disease profiles [29]. Each cluster identified by an algorithm was 

matched to a cluster identified by a different algorithm, with the highest PCC. To ensure 

that a cluster could be matched to only one other cluster from an alternative algorithm, we 

found the pair of clusters with the highest PCC, these two clusters were excluded from 

further matching, then found the next highest PCC from the remaining clusters, and so on. 

Correlation coefficients greater than 0.5 were considered to indicate a similar cluster.

To assess the stability of clusters according to variations in the dataset (correlation between 

diseases, background noise and prevalence of disease), we selected 400 bootstrap samples 

from the original data and applied the clustering algorithms to each. Within a single 

clustering algorithm, each cluster in the bootstrap sample was matched with a cluster in 

the original data using the matching process described above. Mean and standard deviation 

of PCC (for PCC > 0.5) was calculated for the most similar cluster over all the bootstrap 

samples.

Bubble plots of exclusivity and observed/expected ratio (O/E ratio) were created to 

investigate the profile of all diseases within each cluster. Exclusivity was defined as the 

number of patients with the disease in the cluster divided by the total number of participants 

with the disease; larger bubbles indicate that a greater proportion of patients with a disease 

are present in a cluster. O/E ratio was calculated as the prevalence of a given disease within 

a cluster divided by its prevalence in the overall population; larger bubbles indicate that the 

prevalence of disease in the cluster is greater than the total population.

The adjusted Rand Index (aRI) was used to assess the similarity of partitioning between 

pairs of algorithms. We also examined whether the same patients were allocated to clusters 

with similar disease profiles. All analysis was undertaken in R [30].

3 Results

3.1 Simulated dataset

Figure 1 shows adjusted Rand Index (aRI) as the correlation between diseases in the cluster 

was varied between 0.3 and 0.9. For HCA and kmeans aRI increased by approximately 0.2 

as correlation changed from 0.3 to 0.9, for the other algorithms the increase was smaller. 

The aRI decreased as the prevalence of diseases not in a cluster (noise) increased. As the 

prevalence of noise increased to reach the prevalence of diseases in the cluster, aRI was 

close to zero (Fig. 2). There was a positive association between aRI and the prevalence of 

disease (Fig. 3) with aRI approaching 1 as the prevalence reached 75%. The aRI remained 

constant as the number of clusters increased (Fig. 4). With the exception of MCA-kmeans, 

all of the algorithms gave the highest aRI for four clusters (the true number of clusters in the 

simulated dataset). MCA-kmeans found the highest aRI for three clusters.
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In order to consider whether cluster techniques should be applied to a restricted sample to 

include only those who are multimorbid or to all patients, clustering algorithms were also 

applied to entire simulated datasets, including non-multimorbid patients (those with none or 

only one condition) (Appendix 1). Adjusted Rand Index values were close to zero for most 

scenarios, the exception being simulations with high prevalence of disease; when disease 

prevalence was high the proportion of non-multimorbid patients was low resulting in similar 

aRI’s in the multimorbid sample and the population.

Across the scenarios tested by the simulated dataset, LCA and MCA-kmeans algorithms 

gave the closest agreement (largest aRI) between known cluster allocation and those 

identified by the algorithm, although there was overlap in the distribution of aRI by 

algorithm.

3.2 IMRD UK data

There were 23,251 males aged 65 to 84 years with two or more long-term health conditions 

in the analysis dataset. Table 1 shows the prevalence of conditions in these patients. The 

median number of long-term health conditions was 4 (IQR 3—6) and over half (57%) 

of the study population had hypertension. The optimal number of clusters identified was 

four. A cluster with lead conditions of erectile dysfunction (ED), diabetes, and hypertension 

or ischemic heart disease (IHD) was found across all algorithms; this cluster accounted 

for 20%—25% of the study population. A cluster of patients with heart conditions 

(including heart failure, IHD, atrial fibrillation, other heart disease, and valvular disease) 

was identified by LCA and MCA-kmeans algorithms, comprising approximately 7% of the 

study population (Table 2). Other clusters found by only one of the clustering algorithms 

included a group of patients with high prevalence of peripheral vascular disease and aortic 

aneurysm (found using latent class analysis) and a cluster with respiratory conditions 

(asthma, COPD and bronchiectasis) found by Kmeans-HCA algorithm (Appendix 2). The 

bubble plots (Appendix 2) shows that each algorithm found at least one cluster with high 

levels of exclusivity for most diseases, indicating that no particular group of conditions 

characterized the cluster, it was a “catch-all” group. Latent class analysis and MCA-kmeans 

clustering gave the most similar partitioning of patients, with adjusted Rand Index of 0.54, 

all of the other algorithm pairings had aRI between 0.2 and 0.3.

As the diabetes-ED-hypertension cluster was found by all algorithms we investigated 

whether this cluster found by different methods contained the same patients. This cluster 

contained approximately 5,000 patients, depending on the algorithm used, 4,120 (85% of 

the 4,869 patients in this cluster identified by LCA) patients were found to be in this 

cluster across the four methods. Similarly, the heart disease cluster found by LCA and 

MCA-kmeans algorithms had 1,247 patients in common (58% of the 2,161 patients in this 

cluster identified by LCA).

For the clusters found by LCA there was a corresponding cluster with a similar morbidity 

profile found by the MCA-kmeans algorithm (Table 3). However, for all other algorithm 

pairings one of the four clusters was not matched to a cluster with a similar morbidity 

profile: for kmeans the cancer-depression-COPD cluster was not matched; for kmeans-HCA 

algorithm the asthma-COPD-rhinitis cluster was unmatched; and for the heart failure-IHD-
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atrial fibrillation cluster found by MCA-kmeans none of the clusters generated by kmeans-

HCA and kmeans had similar morbidity profiles (Table 3).

When comparing within each method, in all bootstrap samples the clusters found by LCA, 

MCA-kmeans and kmeans algorithms could be matched with a similar cluster in the original 

sample. For kmeans-HCA, the cancer-depression-eczema cluster and the asthma-COPD-

rhinitis were most sensitive to variations in the data, with 96% and 47% respectively of the 

bootstrap samples having a cluster with a similar morbidity profile (Table 4).

4 Discussion

Our analysis investigated the stability and reproducibility of clusters identified using four 

different clustering algorithms in a range of simulated datasets with a known number of 

clusters. We then investigated the replicability of clusters using the four methods in a dataset 

derived from primary care records where the number of true clusters was unknown.

In a simulated dataset the aRI was influenced modestly by the degree of within-cluster 

correlation. However increasing the amount of noise or reducing the disease prevalence 

both markedly reduced the aRI. Under most scenarios LCA achieved higher aRI than other 

clustering algorithms (MCA-kmeans, kmeans, and kmeans-HCA). Findings on simulated 

datasets suggest that there may be a threshold of disease prevalence, below which, the 

clustering methods do not perform very well, and similarly a threshold for the amount of 

noise in the data. However, it is difficult to give an estimate of where these thresholds might 

lie due to the difficulties in creating simulated data which reflects actual data.

When seeking four clusters in a dataset derived from primary care records, all the clustering 

algorithms (LCA, MCA-kmeans, kmeans and kmeans-HCA) identified one similar large 

cluster (diabetes-ED-hypertension) including mainly the same patients. This cluster included 

three of the conditions with the highest prevalence in the whole dataset (diabetes, ED and 

hypertension), which may have been grouped due to their prevalence, as the simulations 

found when disease prevalence was higher all algorithms were better at finding clusters, 

or the cluster may have occurred as a result of clinical recording. LCA and MCA-kmeans 

algorithms both identified one smaller cluster (heart disease cluster) including mostly the 

same patients. Other clusters were identified by only one of the methods and each method 

identified a non-specific “catch all” cluster. LCA and MCA-kmeans were the methods 

most consistent with each other. Within-method repeatability, assessed by taking bootstrap 

samples of the data, was high for LCA, MCA-kmeans and kmeans but repeated analyses 

using kmeans-HCA sometimes identified clusters with different disease profiles.

In datasets where the true characteristics of the population are known, LCA may perform 

better over other methods. The observation that kmeans-HCA identifies less repeatable 

clusters than other methods suggests it may not be ideal for clustering analysis of long-term 

health conditions. Because inclusion of patients without multimorbidity increases the noise 

and markedly reduces reproducibility, it is likely to be more useful to exclude patients 

without comorbidities from analysis datasets.
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4.1 Comparison with other studies

One study observed some agreement in clusters identified using HCA and exploratory 

factor analysis in a large dataset of primary care records, but did not investigate k-means, 

LCA or MCA [18]. In terms of the clusters found in the primary care data, other studies 

have found clusters of cardiometabolic disease and mental health conditions [21]; only the 

cardiometabolic cluster was found in our data, and not by all algorithms. Roso-Llorach et 

al. [18] found a cluster which included diabetes and hypertensive disease in male patients, 

which may be similar to our diabetes-ED-hypertension cluster.

4.2 Strengths and limitations

We investigated a range of clustering algorithms used in multimorbidity studies although 

not all clustering algorithms were investigated. Our approach makes use of both simulated 

data and simplified electronic health records data. A key limitation is the extent to which 

the analysis datasets are generalizable to real world data. The consistency of findings across 

both the simulated data and the primary care dataset increases confidence in the findings.

A limitation of applying the findings from our simulated datasets is that these may not 

reflect the complexities of observed data. For example, there were a larger number of 

diseases in the primary care dataset than in simulations, also correlation between diseases 

was assumed to be constant for all diseases in the simulated clusters, while in the primary 

care data correlation between diseases was generally very low; only two pairs of conditions 

had correlation greater than 0.5 (aortic aneurysm and PVD; and diabetes and ED).

There are wider limitations to clustering algorithms using routine data sources. Our analyses 

use binary disease categories whereas in reality, most diseases are categories imposed on 

a continuous distribution of clinical features. This means there is potential for chance 

misclassification. Systematic misclassification may occur if propensity to assign a diagnosis 

to clinical features is associated with the presence of other diagnoses. It may also occur if 

recording of clinical features is affected by ascertainment bias, e.g., routine management of 

some long-term health conditions includes undertaking diagnostic tests or actively asking 

about specific symptoms (e.g., asking about erectile dysfunction at annual diabetes reviews). 

Because clusters may be artifacts of the process of data gathering and recording, detailed 

knowledge of these processes also greatly assist interpretation of clustering.
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What is new?

Key findings

• We directly compared the stability of four clustering algorithms for 

multimorbidity clustering in a simulated dataset and in a dataset of electronic 

primary care records

What this adds to what was known?

• Latent Class Analysis (LCA) and Multiple Correspondence analysis followed 

by kmeans (MCA-kMeans) algorithms gave the closest agreement to known 

clusters and the most similar partitioning

What is the implication and what should change now?

• Individuals with a single long-term health condition should be excluded when 

undertaking clustering analysis

• LCA and MCA-kMeans are preferred methods for clustering analysis when 

investigating multimorbidity in large datasets
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Fig. 1. 
Simulated dataset of patients with two or more conditions in 3 clusters, within cluster 

disease prevalence approximately 15%, noise approximately 0.5%, overlap of diseases 

between clusters: examining the effect of varying correlation of diseases within a cluster. 

Error bars show interquartile range (IQR).
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Fig. 2. 
Simulated dataset of patients with two or more conditions in 3 clusters, within cluster 

disease prevalence approximately 15%, correlation = 0.5, overlap of diseases between 

clusters: examining the effect of varying the amount of noise.
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Fig. 3. 
Simulated dataset of patients with two or more conditions in 3 clusters, noise approximately 

4%, correlation = 0.5, overlap of diseases between clusters: examining the effect of varying 

within cluster prevalence of disease.
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Fig. 4. 
Simulated dataset of patients with two or more conditions in 4 clusters, within cluster 

disease prevalence approximately 24%, noise approximately 0.5%, correlation = 0.5, overlap 

of diseases between clusters: examining the effect of varying the number of clusters 

algorithm is asked to find.
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Table 1
List of conditions and prevalence in males aged 65-84 yr

Condition Short name Prevalence (%)

Hypertension Hyp 56.7

Erectile dysfunction ED 36.0

Osteoarthritis OA 27.8

Diabetes Diab 24.6

Ischemic heart disease IHD 24.5

Deafness Deaf 22.2

All cancer Can 21.7

Benign prostatic hypertrophy BPH 19.4

Eczema Ecz 18.4

Chronic kidney disease CKD 15.4

Depression Dep 14.8

Asthma Asth 14.4

Gout Gout 14.3

Atrial fibrillation AF 13.4

Cataract Cat 12.7

Stroke/TIA Stroke 11.6

COPD COPD 11.0

Diverticulitis Div 10.6

Rhinitis/conjunctivitis Rhin 10.1

Anxiety Anx 9.7

Peripheral vascular disease PVD 8.1

Peptic ulcer Pep 7.1

Heart failure HF 6.9

Psoriasis Psor 6.5

Sinusitis Sinus 5.6

Hypothyroid Hypothy 5.5

Glaucoma Glau 4.7

Irritable bowel syndrome IBS 4.7

Heart valve disease Valve 4.3

Migraine Mig 4.2

Alcohol/substance misuse Addict 4.0

Autoimmune disease of connective tissue Tissue 4.0

Venous thromboembolism VTE 3.4

Obstructive sleep apnoea OSA 3.0

Osteoporosis Osteo 2.7

Aortic aneurysm Aneu 2.6

Autoimmune disease of bowel Bowel 2.6

Alzheimers/dementia Dem 2.5

Other autoimmune disease Auto.oth 2.4
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Condition Short name Prevalence (%)

Epilepsy Epi 2.2

Pulmonary embolism PE 2.1

Age-related macular degeneration AMD 1.8

Blindness Blind 1.8

Chronic liver disease Liver 1.6

Serious mental illness SMI 1.3

Bronchiectasis Bronc 1.3

Parkinson’s disease Park 1.2

Other heart disease Oth.heart 1.2

Hyperthyroid Hyperthy 1.1
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Table 2
Clusters found in population of males aged 65-84 yr

Top 3 conditions (prevalence in cluster, %) Number of patients (% of total)

Latent class analysis

  Diabetes (100%) Erectile dysfunction (89%) Hypertension (69%) 4,869 (21)

  Eczema (19%) Cancer (22%) IBS (5%) 15,257 (66)

  Heart failure (55%) Atrial fibrillation (61%) IHD (68%) 2,161 (9)

  PVD (100%) Aortic aneurysm (62%) IHD (49%) 964 (4)

MCA-kmeans

  Rhinitis/conjunctivitis (11%) Eczema (19%) IBS (5%) 11,563 (50)

  Diabetes (83%) Erectile dysfunction (91%) Hypertension (73%) 5,503 (24)

  IHD (41%) Atrial fibrillation (28% COPD (25%) 4,463 (19)

  Heart failure (54%) IHD (71%) Atrial fibrillation (55%) 1,722 (7)

Kmeans

  Hypertension (100%) CKD (18%) Gout (16%) 7,002 (30)

  Diabetes (100%) Erectile dysfunction (99%) Hypertension (69%) 5,005 (22)

  Osteoarthritis (100%) BPH (25%) Deafness (25%) 5,099 (22)

  Cancer (24%) Depression (16%) COPD (12%) 6,145 (26)

Kmeans-HCA

  Hypertension (83%) Gout (23%) IHD (32%) 7,346 (32)

  Cancer (33%) Depression (18%) Eczema (26%) 8,222 (35)

  Erectile dysfunction (96%) Diabetes (83%) IHD (61%) 6,142 (26)

  Asthma (100%) COPD (46%) Rhinitis/conjunctivitis (29%) 1,541 (7)
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Table 3
Pearson correlation coefficient to compare within-cluster morbidity profile across 
algorithms

Clustering 
algorithm 
and
clusters 
identified

MCA-kmeans Kmeans Kmeans-HCA

Rhin-
Ecz-
IBS

Diab-
ED-
Hyp

IHD-
AF-

COPD

HF-
IHD-
AF

Hyp-
CKD-
Gout

Diab-
ED-
Hyp

OA-
BPH-
Deaf

Ca-
Dep-

COPD

Hyp-
Gout-
IHD

Ca-
Dep-
Ecz

ED-
Diab-
IHD

Asth-
COPD-

Rhin

Latent class analysis

  Diab-ED-
Hyp 0.51 0.99 0.38 0.66 0.51 1.00 0.39 0.24 0.51 0.41 0.99 0.23

  Ecz-Ca-IBS 0.99 0.57 0.87 0.60 0.85 0.52 0.80 0.47 0.89 0.90 0.55 0.53

  HF-AF-IHD 0.58 0.59 0.82 0.95 0.65 0.61 0.56 0.46 0.77 0.56 0.62 0.37

  PVD-Aneu-
IHD 0.40 0.37 0.59 0.63 0.47 0.38 0.38 0.27 0.57 0.37 0.38 0.21

MCA-kmeans

  Rhin-Ecz-
IBS 0.83 0.50 0.79 0.44 0.86 0.91 0.53 0.51

  Diab-ED-
Hyp 0.57 0.99 0.42 0.25 0.57 0.44 0.99 0.24

  IHD-AF-
COPD 0.75 0.41 0.74 0.57 0.86 0.81 0.44 0.56

  HF-IHD-AF 0.63 0.71 0.52 0.41 0.75 0.49 0.72 0.33

Kmeans

  Hyp-CKD-
Gout 0.91 0.66 0.51 0.42

  Diab-ED-
Hyp 0.52 0.41 1.00 0.24

  OA-BPH-
Deaf 0.71 0.76 0.42 0.38

  Ca-Dep-
COPD 0.25 0.57 0.33 0.43

The most similar cluster, with the highest Pearson correlation coefficeint (PCC) is shown in bold. Clusters with a PCC < 0.5 are considered not 
similar.
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Table 4

Mean Pearson correlation coefficient comparing within-cluster morbidity profile between bootstrapped and 

original data (where PCC >0.5). Based on 400 bootstrap samples

Clustering algorithm and clusters identified Mean PCC (SD) Number of samples with PCC >0.5

Latent class analysis

  Diab-ED-Hyp 0.9995 (0.0004) 400

  Ecz-Ca-IBS 0.9973 (0.0033) 400

  HF-AF-IHD 0.9880 (0.0437) 400

  PVD-Aneu-IHD 0.6613 (0.1532) 400

MCA-kmeans

  Rhin-Ecz-IBS 0.9976 (0.0083) 400

  Diab-ED-Hyp 0.9992 (0.0016) 400

  IHD-AF-COPD 0.9757 (0.0903) 399

  HF-IHD-AF 0.9938 (0.0216) 400

Kmeans

  Hyp-CKD-Gout 0.9996 (0.0028) 400

  Diab-ED-Hyp 0.9998 (0.0001) 400

  OA-BPH-Deaf 0.9986 (0.0231) 400

  Ca-Dep-COPD 0.9982 (0.0142) 400

Kmeans-HCA

  Hyp-Gout-IHD 0.8961 (0.0605) 400

  Ca-Dep-Ecz 0.8134 (0.0989) 385

  ED-Diab-IHD 0.9922 (0.0045) 400

  Asth-COPD-Rhin 0.8126 (0.1499) 186
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