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Abstract

Acute cardiorespiratory breathlessness accounts for 1 in 8 of all emergency hospitalisations. 

Early, non-invasive diagnostic testing is a clinical priority that allows rapid triage and treatment. 

Here, we sought to discover and replicate diagnostic breath volatile organic compound 

(VOC) biomarkers of acute cardiorespiratory disease and understand breath metabolite network 

enrichment in acute disease, with a view to gaining mechanistic insight of breath biochemical 

derangements. We collected and analysed exhaled breath samples from 277 participants presenting 

with acute cardiorespiratory exacerbations and aged matched healthy volunteers. Topological data 

analysis (TDA) phenotypes differentiated acute disease from health and acute cardiorespiratory 

exacerbation subtypes [acute heart failure, acute asthma, acute Chronic Obstructive Pulmonary 

Disease (COPD) and community-acquired pneumonia]. A multi-biomarker score (101 breath 

biomarkers) demonstrated good diagnostic sensitivity and specificity (≥ 80%) in both discovery 

and replication sets and was associated with all-cause mortality at 2 years. In addition, VOC 

biomarker scores differentiated metabolic subgroups of cardiorespiratory exacerbation. Louvain 

clustering of VOCs coupled with metabolite enrichment and similarity assessment revealed highly 

specific enrichment patterns in all acute disease subgroups, for example selective enrichment 

of correlated C5-7 hydrocarbons and C3-5 carbonyls in heart failure and selective depletion 

of correlated aldehydes in acute asthma. This study identified breath VOCs that differentiate 

acute cardiorespiratory exacerbations and associated subtypes and metabolic clusters of disease-

associated VOCs.

1 Introduction

Breathlessness due to cardiorespiratory diseases accounts for more than 1 in 8 of all 

emergency admissions to hospital (1). Despite the same presenting symptom, the aetiology 

of acute breathlessness is highly varied, with diverse disease trajectories and therapeutic 

options. Diagnostic evaluation of acute breathlessness is heavily reliant on investigations 

such as blood-based biomarkers [e.g. C-reactive protein (CRP), B-type natriuretic peptide] 

and radiological procedures. These biomarkers have clinical utility primarily in patients 

with single pathologies, but have poor discriminatory power in patients with multifactorial 

presentations of acute breathlessness and are particularly challenging to interpret in the 

context of pre-admission treatment exposure (e.g. antibiotics for pneumonia and admission 

CRP values) (2).
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Breathomics, the characterisation of volatile organic compounds (VOCs) in exhaled breath, 

enables the evaluation of diagnostic and prognostic biomarkers in acute breathlessness, 

directly from the lung as well as incorporating metabolites from the systemic circulation 

(3). The assessment of exhaled, low-molecular weight biochemicals, chemically classified 

as VOCs, has been presented as a new paradigm for the development of rapid, non-invasive 

diagnostic and prognostic biomarkers. However, the scarcity of robustly powered clinical 

studies, combined with a lack of standardisation in sample collection and analysis as well 

as data and chemometric processing, have delayed further translation of this technology to 

clinical settings.

Notwithstanding these challenges, the potential of breathomics is becoming increasingly 

recognised in research and therapeutic development in respiratory diseases. The 

emergence of powerful high-resolution mass spectrometry and multidimensional separation 

technologies such as comprehensive two-dimensional gas chromatography coupled with 

mass spectrometry (GCxGC-MS), which provides visual readouts of breath-based 

biomarkers (4, 5), has facilitated research advances. Although chemometric analyses play a 

vital role in this field, the enhanced dimensionality of GCxGC-MS data enriches established 

chemometric and imaging-based characterisation methods for visualising, extracting and 

quantifying VOC markers from complex and previously unresolved matrices.

Herein, we present a real-world, prospective study of acutely unwell hospitalised patients 

presenting with breathlessness due to severe exacerbations of cardiorespiratory aetiology 

(asthma, COPD, heart failure or pneumonia) and healthy controls. By isolating and 

visualizing exhaled VOCs with GCxGC-MS, coupled with rigorous clinical phenotyping, 

exhaled breath metabolites were shown to have high diagnostic accuracy for severe 

cardiorespiratory exacerbations (including in the presence of diagnostic uncertainty) and 

to be dysregulated across several pertinent volatile classes in different clinical subtypes 

of cardiorespiratory exacerbation. This research provides pivotal evidence that shows how 

breath biomarker platforms may be used in acute care and demonstrates the potential for 

translation of this technology into a real-world clinical setting.

2 Results

2.1 Participant demographics and clinical characteristics

As part of the East Midlands Breathomics Pathology Node (EMBER), exhaled breath 

from 277 participants recruited from acutely breathless hospitalised patients and matched 

healthy controls was sampled (Figure 1). 1). Sample size calculations are detailed in 

(Methods section ‘sample size estimation’ and Table S1). Breath samples were analysed 

to identify dysregulation of metabolic classes in cardiorespiratory disease and investigate 

whether exhaled VOC profiles could predict acute cardio respiratory exacerbations despite 

diagnostic uncertainty, and thus have a potential role in phenotyping acute cardiorespiratory 

breathlessness (fig. S1). Participants’ mean (SD) age was 60.8 ± (16.8) years, 51% were 

males, 30 patients required supplemental oxygen on admission and the mean admission 

modified early warning score (mEWS-2 score) was 2. The cohort was made up of patients 

presenting with the following exacerbation subtypes: acute severe asthma (n= 65), acute 

severe COPD (n= 58), acute severe heart failure (n=44), community acquired pneumonia 
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(n=55), and healthy volunteers (n=55), recruited between May 2017 and December 2018. 

Participants’ demographic and clinical characteristics are summarised in (Table 1). Breath 

samples were collected using a ReCIVA device, adopting a standardised sampling and gated 

protocol that enriches alveolar volatiles (6), and analysed using thermal desorption (TD) 

coupled to comprehensive two-dimensional gas chromatography (GCxGC) with dual flame 

ionisation detection (FID) and mass spectrometry (MS).

2.2 Unbiased discovery using TDA identifies breath markers of acute disease

Topological data analysis is an unsupervised machine-learning tool used for the analysis of 

large-scale, high-dimensional, complex datasets. It is highly sensitive to patterns that are 

often overlooked by other data reduction tools like Principal Component Analysis (PCA) 

(30).

TDA is a well-established data analytic technique for unbiased data driven discovery 

based phenotyping (30). TDA has proven to be a powerful tool, yielding critical insights 

in the prognostic phenotyping (31), cancer imaging biomarker stratification (32), disease 

classification using pathology biomarkers (33), omics based cancer phenotyping (34). 

Several publications have reported the use of TDA in the metabolomics field, for example, 

unbiased lipid phenotyping of lung epithelial lining fluid (35).

To achieve an unbiased discovery of exhaled VOCs predictive of the acute disease groups, 

patients were block randomised post-hoc into a discovery cohort of 139 participants (acute 

asthma n= 33, acute COPD n= 29, acute heart failure n=22, community acquired pneumonia 

n=28, healthy volunteers n=27), and a replication cohort of 138 participants (acute asthma 

n= 32, acute COPD n= 29, acute heart failure n=22, community acquired pneumonia n=27, 

healthy volunteers n=28). Randomisation allowed internal replication of diagnostic breath 

biomarkers, whilst adjusting for relevant confounders. Details of the randomisation and 

further clinical characteristics of the cohorts can be found in (tables S2-S3). Chemometric 

analysis and quantification of VOCs was performed blinded to clinical diagnosis by two 

analytical chemists (MW and RC), with biostatistical analyses linking subject identifier 

to chemometric biomarkers performed following data lock by an independent statistician 

(MR).

805 unique chromatographic features (peaks) were detected across the breath sample 

set using TD-GCxGC-FID/MS, with 404 features detected on average in each sample. 

Topological data analysis (TDA) applied to these 805 chromatographic features yielded 

topologically distinct networks that distinguished underlying causes of acute breathlessness 

whilst anchoring to corresponding blood-based biomarkers in both the discovery and 

replication cohorts (Figure 2). Specifically, healthy volunteers and patients with acute heart 

failure formed distinct topological groupings in both discovery and replication populations. 

Respiratory admissions due to acute asthma, acute COPD and pneumonia formed a 

topological continuum albeit within distinct regions of a single network in the replication 

cohort; similar findings were observed in the discovery cohort, with the exception of acute 

asthma forming a distinct grouping.
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2.3 Breath biomarker clinical prediction scores

To create a concatenated list of exhaled breath biomarkers suitable for diagnostic 

application, we applied a threshold of 80% feature-presence per patient group, below which 

features were removed to effectively reduce the number of features used in subsequent 

models with more than 20% of zero values for peak areas (fig. S2). We found that the 

zero-valued peak areas were randomly distributed across the disease groups in all but 

seven features. The exclusion of the seven features where there was some evidence that 

zero-valued peak areas were not randomly distributed across the disease groups did not alter 

the results of the regression models.

Further filtering steps using least absolute shrinkage and selection operator (LASSO) and 

elastic net regression methods, followed by removal of 38 peaks that were considered to 

be chemical and material artefacts (e.g. siloxanes), generated a final panel of 101 exhaled 

breath volatiles (tables S4-S8). Therefore, the analysis plan permitted the identification of 

a rich and chemically diverse response in the VOC profile as opposed to only a handful 

of individual VOC markers and afforded the generation of biomarker scores. The data was 

examined for batch effects and was adjusted accordingly. Batch effects detected related 

to major instrument maintenance events, which occurred twice creating three groups. No 

contributions were observed based on the ReCIVA device used, operator, time of day, 

or volume of breath sample collected, most likely nullified by the simultaneous and 

consecutive recruitment across all cohorts throughout the study to reduce potential biases 

(fig. S3-4).

The value of the generated acute disease VOC biomarker score was found to be higher 

in acute cardiorespiratory patients compared to healthy volunteers (Figure 3A). For the 

discovery cohort (n=139), the acute disease VOC biomarker score effectively differentiated 

participants with acute cardiorespiratory exacerbations from age-matched healthy controls 

with an area under the curve (AUC) of 1.00 (1.00-1.00) P < 0.0001, sensitivity 1.00 

(1.00-1.00), specificity (1.00-1.00), positive predictive value (PPV) 1.00 (1.00-1.00), 

negative predictive value (NPV) (1.00-1.00). For the replication cohort (n=138), the 

same VOC biomarker score differentiated participants with acute disease from healthy 

controls with AUC 0.90 (0.83-0.96) P<0.0001, sensitivity 0.88 (0.82-0.94), specificity 0.79 

(0.63-0.94), PPV of 0.95 (0.91-0.99), NPV of 0.51 (0.36-0.65) (Figure 3B).

To evaluate the impact of potential confounders on our model classification, we re-ran our 

statistical models, adjusting for the following factors: (i) smoking status (current, ex-smoker 

or never smoker); (ii) time between hospital admission and the acquisition of the breath 

samples, as this time period is often the period within which acute treatments are delivered; 

(iii) the modified early warning score 2 (mEWS-2), which is a composite acuity score 

combining respiratory rate, oxygen saturations, systolic blood pressure, heart rate, degree of 

consciousness, confusion and body temperature for each patient; and (iv) prior exposure to 

either antibiotics or steroids for cardiorespiratory illness in the fortnight prior to the index 

admission. We observed improved diagnostic accuracy in the replication cohort [AUC 1.00 

(1.00-1.00), P <0.0001] when considering these adjustments, which would be expected with 

the inclusion of acuity markers for the classification of acute illness.
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Following a clinical adjudication process (Methods: section ‘clinical adjudication’), each 

patient was assigned a degree of clinical diagnostic uncertainty using a 100-mm visual 

analogue scale (VAS) at the point of clinical triage (Figure 3C). Diagnostic uncertainty was 

defined as patients with values higher than or equal to the upper quartile of 20 mm on the 

VAS. The acute disease VOC biomarker score was able to identify acute disease with an 

AUC 0.96 (0.92-0.99) P <0.0001, sensitivity 0.90 (0.82-0.97), specificity 0.92 (0.85-0.99), 

PPV 0.93 (0.86-0.99), NPV 0.89 (0.81-0.97) (Figure 3D).

2.4 Exhaled breath biomarker disease-specific scores correlate with blood-based 
biomarkers and admission observations

As previously described, VOC biomarker scores were generated for each of the acute disease 

subgroups and healthy subjects without cardiorespiratory breathlessness. There was a weak 

but positive correlation in the combined discovery and replication cohorts (n=277) between 

the VOC subgroup scores for pneumonia and CRP (n=277, r=0.33, P <0.0001) and acute 

heart failure and Brain Natriuretic Peptide (BNP) (n=277, r=0.33, P <0.0001), in addition 

to a negative correlation between the healthy-state VOC score and CRP and BNP (n=277, 

r= -0.15, P <0.0001, and -0.21, P <0.0001 respectively) (Figure 4A). Correlations were also 

identified between the acute disease VOC score and vital observations carried out during 

triage (Figure 4B).

The acute disease VOC score was also associated with 2-year all-cause mortality, but not 

with the risk of 60-day readmission (fig. S5).

2.5 Diagnostic accuracy of breath biomarker scores in cardiorespiratory disease 
subgroups

A multinomial regression model using elastic net regularization was fitted to the matrix 

of 101 breath biomarkers with the 10-fold cross validation repeated 1,000 times. Linear 

combinations of the most stable features from the multinomial regression model fitted to the 

101 biomarkers formed a set of scores for predicting probability of belonging to the different 

disease groups (acute asthma, acute COPD, pneumonia, heart failure or healthy volunteers).

The overall classification accuracy for the statistical model generated from 101 breath 

biomarkers was assessed by comparing the balanced accuracy of model trained using the 

true class labels versus the balanced accuracy of the same model tested using randomly 

shuffled class labels. This process was repeated 1,000 times. The balanced accuracy is 

reported in (fig. S6A) the acute disease biomarker score in the discovery cohort, (fig. S6B) 

the acute disease biomarker score in the replication cohort and (fig. S6C) the multinomial 

biomarker scores for the five subgroups acute asthma, acute COPD, heart failure, pneumonia 

and healthy volunteers. NB: replication was not evaluated in the subgroups as the study was 

not powered to do this.

For the pooled cohort (n = 277), the overall classification accuracy using all five biomarker 

scores was 0.72, 95% CI (0.67 - 0.77). The balanced accuracy for acute asthma was 0.83, for 

acute COPD 0.78, for heart failure 0.80, for community acquired pneumonia 0.79, and for 

healthy controls was 0.93 (fig S5).
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Further comparative ROC analyses were performed based upon the observed separation 

of asthma from pneumonia/COPD acute groups, and heart failure from other acute 

exacerbation groups in the discovery and replication TDA analyses. The diagnostic AUC 

accuracy of the asthma biomarker score against pooled Pneumonia and COPD cohorts was 

AUC: 0.70 (0.62-0.78) P <0.0001, sensitivity 0.72 (0.64-0.83), specificity 0.64 (0.55-0.73), 

positive predictive value (PPV) 0.54 (0.43-0.64), negative predictive value (NPV) 0.80 

(0.72-0.88). Receiver operating curve (ROC) analysis to assess the diagnostic value of the 

heart failure biomarker score against other acute disease groups was AUC: 0.78 (0.70-0.86) 

P <0.0001, sensitivity 0.77 (0.64-0.89), specificity 0.71 (0.64-0.78), PPV 0.40 (0.29-0.50), 

NPV 0.92 (0.88-0.97) (fig. S7).

The median values of the exhaled breath VOC scores and their distribution across disease 

subgroups are detailed in (fig. S8). Figure S9 is a Venn diagram demonstrating the 

distribution of the final panel of 101 exhaled breath biomarkers across the different disease 

groups.

We also ran our models adjusting for the following factors: (i) smoking status (current, 

ex-smoker or never smoker; (ii) time between hospital admission and the acquisition of 

the breath samples, as this time period is often the period within which acute treatments 

are delivered; (iii) the modified early warning score 2 (mEWS-2), which is a composite 

acuity score combining respiratory rate, oxygen saturations, systolic blood pressure, heart 

rate, level of consciousness and confusion for each patient; and (iv) prior exposure to 

either antibiotics or steroids for cardiorespiratory illness in the fortnight prior to the index 

admission. We observed only marginally improved diagnostic accuracy; acute asthma - 

AUC 0.88 (0.831,0.933), P <0.0001, COPD - AUC 0.86, (0.808,0.918), P <0.0001, heart 

failure - AUC 0.91 (0.849,0.969) P <0.0001, community acquired pneumonia – AUC 0.91 

(0.863,0.953), P <0.0001, and healthy controls AUC 1.0, suggesting limited confounding 

influence of disease acuity on our biomarker scores (Auxiliary supp table 1). Replication 

was not performed in the subgroups, as the EMBER study was not powered for disease 

subgroup diagnostic accuracy.

2.6 Chemical classification of predictive markers in disease groups

Chemical identification of the 101-biomarker panel involved comparison with an authentic 

reference compound in accordance with the Metabolomics Standard Initiative (MSI) Level 

1 criteria for metabolite identification. The most common chemical classes associated with 

acute breathlessness in this study included straight-chain and methyl-branched hydrocarbons 

(30%), ketones (10%), aldehydes (8%) and terpenes (13%), followed by sulphur-containing 

VOCs (7%), alcohols (6%), aromatics (5%), esters (3%), nitrogen-containing VOCs (3%), 

ethers (2%), halogen-compounds(1%), and an assortment of other less prevalent and less 

relevant classes such as acrylates (12%) (Table S9).

2.7 Metabolite set enrichment and chemical similarity analysis

Unlike functional indications, which are reliant on mapping metabolites with known, well-

annotated metabolic pathways, metabolic changes indicative of response can be derived 
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independently. To derive clues of responsive indication, the panel of 101 features was 

assessed for co-varying clusters (i.e. metabolite sets).

Metabolite sets were derived based on Ward hierarchical cluster analysis using the 

ChemRICH method reported previously (7) (Figure 5A & figure S10), and broader 

communities were derived from Louvain cluster analysis (Figure 5B and tables S10-S13) 

to help interpret the correlation graphs. Overall, twenty metabolite sets were identified using 

ChemRICH, eleven of which were enriched during acute cardiorespiratory exacerbations. 

The seven metabolite sets that were upregulated consisted of predominantly acyclic and 

branched hydrocarbons (sets 3, 5, 7 and 9 in figure S10).The results from the analysis 

herein demonstrated enriched, co-expression of hydrocarbons with high chemical similarity 

providing primary evidence of exhaled VOCs indicative of disease response measured in 

vivo. This is clearly seen in Figure 5A, with the metabolite sets (inner tree) labelled by 

broader chemical classifications (outer ring); C5-7, C8-10 and C11-16 form clusters based 

on carbon number also exhibiting the highest change during acute exacerbation. Owing to 

the increased separation power afforded by GCxGC-MS, it was possible to map the VOC 

signatures back to the multidimensional chromatograms for the visualisation of exhaled 

breath metabolites which revealed distinct diagnostic signatures for acute cardio-respiratory 

breathlessness (Figure 5C).

3 Discussion

In this pragmatic, acute-care study, we evaluated the validity of breath biomarker profiling in 

high-acuity patients presenting with acute cardiorespiratory breathlessness. Using GCxGC-

MS, we observed that robust and validated sampling of alveolar breath coupled with 

GCxGC-MS biomarker characterisation demonstrated high diagnostic accuracy for acute 

cardiorespiratory exacerbations.

We have also identified putative biomarker scores from subsets of breath VOC biomarkers 

that classify cardiorespiratory exacerbation subtypes and warrant validation in appropriately 

powered replication studies. Furthermore, we have identified several classes of VOCs that 

are highly correlated and selectively enriched or supressed in acute disease (including 

subgroups) compared to health, providing potential insights into broad dysregulation of the 

metabolome in acute cardiorespiratory exacerbations.

The analytical methods described herein were underpinned by robust biomarker 

development protocols using TD-GCxGC-FID/MS, integral to the standardisation and 

integration of breath analysis in large translational studies (5, 8). Several potential 

confounders including batch variation were addressed in detail. Furthermore, biomarker 

quantification of the 101 VOCs followed the recommendations of the MSI, with 58 

compounds identified against pure and traceable standards (level I), 21 putative identities 

based on mass spectral and retention index library matches (level 2), and 22 classified on 

mass spectral data (9). Markers that appeared to localise to individual cardiorespiratory 

conditions could be readily visualised using TDA.
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The identification of hydrocarbons and carbonyls as the major chemical classes was 

consistent with current mechanistic understanding, postulated as chemical endpoints 

of lipid peroxidation resulting from oxidative stress during inflammation. Aldehydes 

such as nonanal, decanal and hexanal were predictive for asthma; ketones included 2-

pentanone (asthma), cyclohexanone (pneumonia) and 2,3- butanedione (COPD) which 

were all previously reported (4, 10–14). Individual hydrocarbons such as 2,4- and 2,2-

dimethylpentane, 2- methylbutane, 4-methyldecane, 5-methylnonane and isoprene have 

been previously reported as predictive for pneumonia and heart failure (12, 15). Sulphur-

containing VOCs, such as 3-methylthiophene, allyl methyl sulphide and carbonyl sulphide 

(found to be predictive of COPD) are associated with bacterial metabolism, postulated 

to originate from the gut (16) and on occasions as a result of radiation injury (17); 

however, 2,3-butanedione, also predictive of COPD, has been identified as a metabolic 

product of bacterial isolates from patients with cystic fibrosis (CF) (16) and postulated to 

be an important metabolite in monitoring lung infection in CF, COPD and pneumonia. We 

acknowledge that the biological origin of most VOCs within our biomarker signature has 

yet to be fully elucidated. Future studies combining carbon labelling of glucose with in 

vitro headspace analysis of primary cells will be required to more precisely establish the 

molecular origins of VOCs identified in this report.

Not all compounds were considered to be endogenous VOCs, with 27 possibly attributed to 

potential cosmetics. Eleven of the features predictive of the control group were assigned as 

either possible fragrances (e.g. alpha isomethyl ionone) or waxy long-chain chemicals used 

in cosmetics as emollients and surfactants (e.g. stearyl vinyl ether and isopropyl myristate). 

These may have been captured in the breath sample because of the proximity of the sorbent 

tubes to the patients’ faces. It should be noted that a frequent problem with ascribing the 

origin of VOCs is that those compounds often identified in cosmetics are natural products, 

therefore there is uncertainty about the precise origin of these makers. The downregulation 

in acute disease of several of these markers may be indicative of them being biomarkers as 

opposed to exogenous confounders from cosmetics.

Co-expression and enrichment analysis of the Louvain clusters on the correlation graph 

revealed a set of highly correlated metabolites significantly enriched in specific disease 

groups. Comparison of the Louvain clusters with the metabolite sets identified using the 

method previously described (7) demonstrated strong overlap. The metabolites enriched 

in heart failure were a cluster of highly correlated C5-7 hydrocarbons and C3-5 carbonyls 

with high chemical similarity (based on Tanimoto coefficients as determined in (fig. 

S10).The cluster included 2,4- and 2,2-dimethylpentane, 2-methylbutane, 2-methyl-1,3-

butadiene (isoprene), 3-methylpentane, hexane and cyclohexane. These hydrocarbons (2,4- 

and 2,2-dimethylpentane, 2-methylbutane, and isoprene) have been individually reported and 

associated with heart failure and pneumonia (11, 14). However, the analysis herein captured 

the collective response and demonstrated enriched, co-expression of these hydrocarbons.

The analysis also revealed a separate set of highly correlated aldehydes (nonanal, decanal, 

undecanal, and a methyldecanal isomer), found to be potentially depleted in acute 

exacerbations of asthma compared with acute exacerbations of COPD and pneumonia. 

Depletion of VOCs during in vitro experiments has been reported as a consequence of 
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metabolic activity by immune cells (18–20), but the association herein is tentative and 

should be interpreted with caution due to the correlation between inhaled air and exhaled 

air concentrations of these compounds (median Spearman rank = 0.60), also previously 

observed (21).

Our study has some limitations. Although internally replicated, the results presented here for 

acute VOC biomarker scores and cardiorespiratory exacerbation subtype biomarker scores 

are limited by the lack of external replication and internal replication respectively. The 

single centre design of this study may have introduced nonpathogenic biases related to diet, 

environment and lifestyle that might be absent in a multi-center study. The cardiorespiratory 

exacerbation disease subgroups pre-selected in this study were chosen as the commonest 

reported causes of cardiorespiratory breathlessness (22, 23) and there was a relatively high 

degree of clinical certainty in the diagnostic labels. For these findings to be generalisable, 

the identified markers will need to be validated in unselected cardiorespiratory populations 

and patients presenting with mixed acute pathologies.

In conclusion, we have conducted an acute care volatile breath biomarker study using 

robust clinical and analytical technology and have identified biomarkers with high combined 

diagnostic sensitivity and specify in acute cardiorespiratory disease. In addition, we have 

used methods enabling robust biomarker identification and mechanistic association. Future 

clinical studies in acute cardiorespiratory patients at initial presentation and triage using 

near patient sensor platforms capable of detecting the volatiles identified in this report are 

warranted to maximise the clinical impact of our discovery biomarker approach.

4 Materials and Methods

4.1 Study design

The study design, eligibility criteria and methodology have been described in detail 

previously (24). This is a prospective, real-world, observational study (ClinicalTrials.gov 

Identifier NCT03672994), carried out in a tertiary cardiorespiratory centre in Leicester, 

United Kingdom. Participants were recruited year-round from May 2017 through to 

December 2018.

Patients with self-reported acute breathlessness, requiring admission and/or a change 

in baseline treatment, presenting within University Hospitals of Leicester (UHL) were 

approached for study participation. Following triage and senior clinical assessment, if a 

primary clinical diagnosis of (i) acute decompensation of heart failure, (ii) exacerbation of 

asthma/COPD, or (iii) adult community acquired pneumonia was suspected by the triage 

nurse/attending clinician at triage, members of the research team would evaluate patients 

against predefined eligibility criteria for study participation.

A total of 277 participants were included in the final analysis. Sample size attrition from 

the recruited 455 participants is detailed in (Figure 1). This was mainly due to the delayed 

deployment of GCxGC-MS and analytical QC/QA. These decisions were made objectively 

during the discovery phase of the program, prioritising the optimisation of a robust sampling 
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and analysis pathway. Sample size calculations were informed based on estimation for 

adequate sensitivity and or specificity as detailed in (table S1).

The 277 subjects were randomised post-hoc to Discovery and Replication cohorts in 

a 1:1 ratio through block random assignment. Randomisation was stratified based on 

(i) adjudicated clinical diagnosis, (ii) time to breath-testing from the point of hospital 

admission, and (iii) clinical diagnostic uncertainty score. The R package randomizr was used 

to perform block random assignment. After block randomisation there were 139 and 138 

subjects in the discovery and replication sets respectively.

Inclusion and exclusion criteria and study objectives are outlined in detail in ‘study 

design’ and ‘study objectives’ sections of the Supplementary material. Informed consent 

was obtained in all participants within 24 hours of hospitalisation. Age- and/or home 

environment-matched healthy volunteers were recruited. Where environment-matched 

controls were unsuitable, healthy volunteers were recruited from local recruitment databases 

and via advertising. Healthy volunteers were defined as participants with no prior history 

of asthma, COPD, heart failure and had not been admitted to hospital with community 

acquired pneumonia within 6 weeks of the baseline study visit. The diagnostic accuracy 

of the reported exhaled breath VOCs was tested following the Standards for reporting of 

Diagnostic Accuracy Studies guidelines (25) (table S14).Statistical procedures presented 

here were carried out as complete case analysis with no imputations. Transparent Reporting 

of multivariate prediction model for Individual Prognosis or Diagnosis (TRIPOD) was 

followed for multivariate prediction models (28, 29) (table S15).

The trial was conducted in accordance with the ethics and principles of the deceleration of 

Helsinki and Good Clinical Practice Guidelines. All patients provided written consent. The 

National Research Ethics Service Committee East Midlands has approved the study protocol 

(REC number: 16/LO/1747). Integrated Research Approval System (IRAS) 198921.

4.2 Clinical adjudication

A clinical adjudication process was introduced to precisely define and quantify the 

diagnostic labels in the study, addressing any potential misclassification. A panel of two 

senior clinical adjudicators (SS & NG) reviewed all available case notes and imaging and 

determined the primary diagnosis for each case by discussion to reach a concordance. The 

degree of diagnostic uncertainty was marked on a 100-mm visual analogue scale (VAS 

scale), blinded to given diagnosis and blood biomarkers.

The process was implemented with emphasis on mirroring an acute triage pathway, where 

all pathology data required to support the diagnosis e.g. CRP, BNP are not available at 

the initial clinical review. The degree of diagnostic uncertainty obtained from the clinical 

adjudication process was factored into the block randomisation and subjects with higher 

diagnostic uncertainty (≥upper quartile = 20mm) were assessed separately as previously 

described (Figure 3C-D).
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4.3 Breath collection and analysis

4.3.1 Collection of breath samples—Exhaled breath collection was attempted in all 

consented participants using a CE marked breath sampling device ’Respiration Collector 

for In Vitro Analysis’ RECIVA (Owlstone Nanotech Ltd), in combination with a dedicated 

clean air supply unit (26). Breath sampling was well tolerated by all participants (6).

4.3.2 Sample storage and preparation—Samples were dry purged on arrival for two 

minutes using nitrogen (chemically pure grade with inline trap, BOC) at a flow rate of 50 

mL min-1 and then stored in refrigeration at 2 °C until analysis. Before analysis, samples 

were left to reach room temperature before being spiked with a 0.6 μL aliquot of 20 μg mL-1 

standard solution containing deuterated toluene and octane, into a flow of nitrogen at a flow 

rate of 100 mL min-1 for 2 min, purging the excess solvent.

4.3.3 Exhaled Breath analysis—Breath samples were analysed by thermal desorption 

with comprehensive two-dimensional gas chromatography (GCxGC) using flow modulation 

and coupled to dual flame ionisation detection and mass spectrometry (MS). Dual detection, 

with the use of MS and flame ionisation detection (FID), utilises the excess flow from the 

flow-based modulator suited for volatile analyses, providing both quantitative and qualitative 

results.

Analysis by GC×GC was optimised and conducted as described previously (5), using 

an Agilent 7890A gas chromatogram, fitted with a CFT flow modulator and 5799B 

mass spectrometer with a high efficiency EI ion source (Agilent Technologies Ltd). 

The instrument was coupled to a TD-100xr thermal desorption auto-sampler (Markes 

International Ltd). Samples were analysed in trays; typically six per tray along with 

a reference mixture containing n-alkanes and aromatics run every tray and a reference 

indoor air VOC mixture run every four trays. Data was acquired in MassHunter GC-MS 

Acquisition B.07.04.2260 (Agilent) and processed (i.e. baseline correction, alignment, 

feature extraction) with a workflow previously developed and optimised, using GC Image™ 

v2.8 suite (GC Image, LLC.) and Python (8). The sorbent tubes used were Tenax/TA 

with Carbograph 1TD (Hydrophobic, Markes International Ltd) with matching cold trap. 

Chromatographic features arising from analytical artefacts were removed from the peak 

table. (e.g. ubiquitous siloxanes). For purposes of quality control, samples were analysed in 

accordance with a previously published workflow and a detailed sample history, metadata 

and experimental data were recorded at every stage of the collection and analysis using the 

open-access LabPipe toolkit (5, 27).

4.3.4 Chemical speciation of identified breath biomarkers—The chemical nature 

of volatile metabolites exhaled in breath comprises a diverse mixture of non-novel, low-

molecular weight compounds. Thus, for most features, chemical identification involved 

comparison with an authentic reference compound in accordance with the Metabolomics 

Standard Initiative (MSI) Level 1 criteria for metabolite identification outlined in table 

S9. Identification was based on a minimum of two independent and orthogonal identifiers 

including primary and secondary retention time, mass spectral similarity match and 

calculated retention index. When an authentic reference compound was unavailable, 
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chemical identification was compliant with MSI Level 2 for putative annotations. The highly 

structured chromatographic data and group-type separation afforded by GCxGC, alongside 

a well-characterised chromatographic space from analysing an extensive library of authentic 

compounds, gave increased confidence in the tentative assignments made. The orthogonal 

separation of GCxGC also meant chemical identification of unknown metabolites could be 

made, at minimum, in compliance with MSI Level 3 for putative chemical classification.

4.3.5 Sample analysis quality control/quality assurance (QC/QA) procedures
—For purposes of quality control, samples were analysed in accordance with a previously 

published workflow and a detailed sample history, metadata and experimental data were 

recorded at every stage of the collection and analysis using the open-access LabPipe 

toolkit (27). The chromatographic method was optimised for peak shape, sensitivity and 

separation; quality control charts of the internal standards were used to track the stability 

of the TD-GCxGC-FID/MS analysis, and instrument performance was evaluated following 

the assessment of the variation of retention times, peak area and shapes of VOCs in two 

standard reference mixtures every six samples (5). Before being conditioned and sent to 

clinic, the number of heat cycles and weight for each tube was recorded to monitor tube 

age and integrity. For each conditioning cycle, all tubes were given a batch number and 

a batch blank was analysed to monitor contamination from the beginning of the sample 

preparation process. Furthermore, all batches were given an expiry of two weeks to ensure 

routine monitoring.

To minimise the influence of biological and analytical confounders (e.g. circadian rhythm, 

sample stability), potential effects due to the operator, date of analysis, time of day collected, 

storage time before dry purging, sample storage time after dry purging and collection 

volume were assessed and where necessary accounted for in the batch correction. In addition 

to the routine analysis of reference standards, used to monitor retention shift and instrument 

response, the TD-GCxGC analytical system underwent a programmed heat cycle between 

each sample to reduce potential issues arising from sample carry-over, and a TD-trap blank 

and empty sorbent tube were analysed every six samples to monitor the instrument baseline 

signal.

4.3.1 Topological data analysis in the discovery and replication sets—In 

topological data analysis, the x-y coordinate position of a particular patient within a TDA 

cluster cannot be directly compared between discovery and replication TDA graphs, as the 

graphs represent a simple 2-dimensional projection of a higher dimensional structure. Prior 

to performing TDA, each feature was log(x + 1) transformed. TDA parameters were set 

as: number of hypercubes=20, where the number of hypercubes refers to the number of 

overlapping intervals of the projection.

The distance between data points was measured using the Euclidean distance. The first 

two linear discriminant functions (LD1) and (LD2) were used as the projection. Clustering 

on the overlapping intervals on the projection was done using agglomerative (bottom up) 

hierarchical clustering with complete linkage. TDA was performed using Kepler Mapper 

1.4.0 (36) with Python 3.5.
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Herein, we computed the equivalence between topological data shapes generated using 

805 volatile features extracted from the GCxGC-MS peak data, in both the discovery and 

replication cohorts.

4.3.2 Breath biomarker score generation—Feature selection was implemented via 

Lasso and Elastic-Net Regularized Generalized Linear Models (GLMNET) using the glmnet 

package in R. After removing features present in <80% of all samples from the (x + 

1) transformed discovery GCxGC-MS peak data a 735-feature matrix was obtained. A 

multinomial regression model using LASSO regularization was fitted to the 735-feature 

matrix in the discovery set using 10-fold cross validation, with the dependent variable in 

the model being clinical diagnosis (acute asthma, acute COPD, pneumonia, heart failure, or 

healthy volunteers). The 10-fold cross validation was repeated 100 times; features that had a 

non-zero regression coefficient in more than 80 of the cross validation runs were considered 

as being stable candidate features predictive of the outcome (clinical diagnosis), and this 

resulted in 278 stable candidate features. For validation, predictors were calculated using the 

Predict Function of (GLMNET).

A multinomial regression model using elastic net regularization was fitted to the 278 

features with the dependent variable in the model being clinical diagnosis. Following the 

chemometric inspection detailed above and the lasso and elastic regression analysis, a final 

set of 101 exhaled breath volatile compounds was generated.

A multinomial regression model using elastic net regularization was fitted to the matrix of 

101 breath biomarkers with the 10-fold cross validation repeated 100 times. The R package 

glmnetUtils was used to determine the optimal value of αthe elastic net penalty, the best 

value for α was 0 (Ridge regression). Ridge regression with a logit link function (binary 

logistic regression) was fitted to the 101 breath relevant features; the dependent variable was 

‘acute disease’, as a binary outcome. The linear predictor from the combination of the most 

stable features was used to as a score to predict acute disease. Linear combinations of the 

most stable features from the multinomial regression model fitted to the 101 biomarkers 

formed a set of scores for predicting probability of belonging to the different disease groups 

(acute Asthma, acute COPD, pneumonia, heart failure or healthy volunteers). Sensitivity 

analysis for the interactive elastic net regression approach and justification of the optimal α 
values are provided in (figs. S11-S12 and tables S6-S8).

Figure S13 is a graphical probability distribution of the final 101 exhaled breath features 

in the GCxGC-MS peak data. The features largely follow a similar distribution. Some 

features contained a mixture of zero and non-zero values, which have arisen owing to the 

measurement being below the instrument’s lower limit of detection. Constant features (all 

zero values) were removed prior to fitting the main model.

4.3.3 Breath biomarker co-expression and feature enrichment analysis—It 

was of interest to investigate if within the final set of 101 features, sets of ‘co expressed’ 

features existed, i.e. sets containing features that are correlated. Considering sets of 

co-expressed features has value in terms of reducing the dimensions of a problem and 

mitigating the multiple testing problem through the use of enrichment score. Co-expression 
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and feature enrichment analysis are described in the (Supplementary material section 

‘co-expression and feature enrichment analysis’). Metabolite sets were derived based on 

Ward hierarchical cluster analysis using the ChemRICH method reported by (7), and 

broader communities were derived from Louvain cluster analysis to help interpret the 

correlation graphs (Supplementary material section ‘co-expression and feature enrichment 

analysis’). Covariation among metabolites lacks evidential value on its own, therefore, 

set-level significance was established using the Kolmogorov-Smirnov test (K-S test) as 

described using the ChemRICH method (7), Tanimoto coefficients were calculated to asses 

intra-set chemical similarity using Metabox (37), and the frequency of occurrence in the 

published literature and relevant databases considered (KEGG, ChEBI, Human Metabolome 

Database, Human Breathomics Database and microbial VOC database). Chemical similarity 

is of interest because compounds derived from similar pathways may also share common 

structural features or chemical groups. This combined data-driven and chemistry-driven 

approach has been shown to improve enrichment analysis (7, 38), and allowed further 

interpretation of core findings herein (fig. S10).

Statistical procedures

Statistical analysis was performed using R [3.6.1 and 4.0.0, R Core Team (2019)]. This 

research used the SPECTRE High Performance Computing Facility at the University of 

Leicester. Baseline data and figures were presented as mean ± (SD), and median (IQ 

range). Data was analysed using (ANOVA) to assess the differences between groups 

for normally or approximately normally-distributed variables and Kruskal-Wallis for non-

normally distributed variables. Pearson chi-squared and Fisher’s exact were used to assess 

the differences in categorical variables. All P values are two sided and significant at the 0.05 

level, unless reported otherwise.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One sentence summary

Exhaled VOCs can distinguish acute cardiorespiratory exacerbations and associated 

subtypes and map underlying metabolic clusters.
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Fig. 1. Study Consort diagram.
Consort diagram outlining the acute study recruitment and number of analysable GCxGC-

MS breath samples.
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Fig. 2. Topological data analysis (TDA) representing the various acute disease groups annotated 
by blood biomarkers.
Each circle or ‘node’ in the TDA graph represents a subject or group of subjects. Similar 

subjects are grouped together in the same node and the relative similarity of the subjects 

is represented by the proximity of the nodes. The size of each node is determined by 

the number of subjects within it. A: Visual mapping of the acute disease groups in 

the discovery cohort (n=139), based on the discriminatory 805 features and coloured by 

proportion of acute COPD exacerbations in each node. B: The network is colour coded 

by the average values of CRP in each node in the discovery cohort (n=139). Higher 
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CRP values corresponded topologically with the COPD and pneumonia patients. C: The 

network is colour coded by the average values of BNP in each node in the discovery cohort 

(n=139). Higher BNP values corresponded topologically with the heart failure patients. 

D: The network is coloured by proportion of acute COPD exacerbations in each node in 

the replication cohort (n=138). In replication cohort, Pneumonia and COPD exacerbation 

subjects occupied polar ends of the same TDA network. E: The networks are coloured by 

the average values of CRP in each node. High CRP values corresponded topologically with 

the pneumonia subjects. F: The networks are coloured by the average values of BNP in each 

node. High BNP values corresponded topologically with the heart failure subjects.
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Fig. 3. Diagnostic accuracy of an acute VOC biomarker score.
A Scatter plot demonstrating significant difference between breath VOC biomarker score 

values in acute cardiorespiratory patients compared to healthy volunteers. The black 

horizontal line within the scatter plot represents the median value of the biomarker score. 

Mann Whitney test *P < 0.0001. B: Receiver operating characteristic (ROC) curve of 

participants in the discovery [black line - AUC 1.00 (1.00-1.00)] and replication [blue line 

- AUC 0.89 (0.82-0.95)] cohorts P < 0.0001. C: Histogram showing the number of patients 

with higher diagnostic uncertainty (blue bars with values > upper quartile value of 20 mm). 

D: ROC curve assessing the discriminatory power of exhaled breath VOCs in participants 

with higher diagnostic uncertainty. AUC 0.96 (0.92-.99) P < 0.0001
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Fig. 4. Correlation of VOC biomarker score with blood biomarkers and disease acuity.
A: Pearson’s correlation of disease-specific VOC scores and blood-based biomarkers. 

Pearson correlation demonstrating the positive and negative correlations between breath 

VOC scores and blood-based biomarkers. *P < 0.05. B: Pearson’s correlation of disease-

specific VOC scores and admission observations. Pearson correlation between the VOC 

biomarker score and admission vital signs. VAS: Visual Analogue Scale (100 mm), 

participants were asked to rate their breathlessness on a 100 mm VAS on admission.
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Fig. 5. VOC biomarker chemical enrichment in acute cardiorespiratory exacerbations.
A: Circular correlation tree generated based on metabolite set enrichment and chemical 

similarity analysis of 101 breath volatiles associated with acute breathlessness. Branches 

depict metabolite sets derived using the ChemRICH; bar graphs portray -log10(p) and 

log2(fold change) values of 101 features extracted using LASSO regression (table S4) in 

acute breathlessness compared with control group. The arcs represent the Louvain clusters, 

derived from the correlation graph (green for upregulated, red for not significant, blue for 

downregulated according to K-S test result). Chemical names are coloured based on their 

chemical classification and coloured regions used to summarise broader chemical groups. 

B: Correlation graph showing metabolite communities identified using Louvain clustering, 

with the identity and location of the cluster enriched in heart failure projected onto the 

circular dendrogram. C: i) Example GCxGC chromatogram showing complex profile of 

breath metabolites; ii) 3D render of chromatogram showing visualisation of breath markers; 
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and iii) phenotypic differences based on features included in the breath biomarker scores 

(table S9) (yellow, asthma; red, pneumonia; magenta, COPD; cyan, heart failure).
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Table 1
Demographics and clinical characteristics of study participants.

Continuous variables are presented as mean ± standard deviation. Categorical variables are presented as 

numbers (%).

Total 
number

Healthy 
controls

Acute 
asthma

Acute 
COPD Pneumonia Heart failure p value

Total number of 
participants (n=) 277 55 65 58 55 44

Demographics

Age *, years 60.8 ± (16.8) 63.05 ± (11.78) 44.3 ± 
(17.93)

69.82 ± 
(8.16)

60.67 ± 
(16.50) 70.72 ± (11.04) .124

Gender Male (n=) 
(%) 143 (51%) 26 (47%) 25 (38%) 33 (56%) 27 (49%) 32 (72%) .008 ¥

Body Mass Index 

(BMI)*a 29.5 ± (7.3) 28.2 ± (4.5) 31.5 ± (9.0) 27.5 ± (7.7) 29.2 ± (6.9) 31.5 ± (6.5) .767

Smoking Current 
smoker (n=) (%) 53 (19%) 4 (7%) 13 (20%) 21 (36%) 11 (20%) 4 (9%) .001 ¥

Vital signs

Temperature 

(Celsius)*
36.7 ± (0.6) 36.1 ± (0.4) 36.8 ± (0.5) 36.7 ± (0.5) 37.1 ± (0.7) 36.5 ± (0.3) .000

Heart rate (beats/

min)*
87.2 ± (18.5) 68.1 ± (9.54) 99.6 ± (17.2) 92.9 ± (15.6) 90.3 ± (15.4) 81.3 ± (15.6) .005

Respiratory rate 

(breaths/min)*
18.9 ± (4.2) 13.0 ± (1.8) 20.5 ± (3.4) 21 ± (2.5) 20.4 ± (4.6) 19.1 ± (1.8) .000

Oxygen saturations 

(%)*
95.8 ± (3.0) 97.7 ± (1.3) 96.1 ± (2.5) 94.0 ± (2.9) 94.5 ± (0.5) 96.5 ± (1.9) .001

Systolic Blood 

Pressure (mmHg)*
131.5 ± 
(19.2) 134 ± (15.7) 133 ± (17.7) 133 ± (20.5) 126 ± (19.4) 128 ± (22.2) .515

Total mEWS-2 score 
^b 1 (0-3) 0 (0-1) 2 (1-3.5) 3 (1-5) 2 (1-3) 1 (0-2) .000

Breath sampling

Time from 
admission to breath 
sampling (hours)^

16 (3.0−23.0) 1 (1-1) 16 (9.2−22.7) 18 
(12.5-23.0) 18 (11.0-23.0) 23 (19.0-26.0) .000

Symptoms 
assessment

Breathlessness VAS 
score (mm)*c 58.1 ± (31.6) 6.2 ± (9.3) 76.6 ± (14.2) 71.6 ± (19.2) 67.8 ± (22.1) 67.9 ± (20.0) .000**

Cough VAS score 
(mm) *c 43.3 ± (33.2) 8.7 ± (14.3) 64.5 ± (26.7) 57.8 ± (27.0) 53.6 ± (30.6) 24.3 ± (25.2) .000**

Wheeze VAS score 
(mm) *c 41.8 ± (34.9) 3.4 ± (6.4) 66.2 ± (24.5) 60.3 ± (29.0) 45.1 ± (34.8) 28.1 ± (28.6) .000**

eMRCd score (n=) 
(%)

1 17 (6%) 1 (1.5%) 8 (13%) 7 (12%) 1 (2%) .000¥

2 6 (2%) 0 (0%) 0 (0%) 5 (9%) 1 (2%) .000¥
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Total 
number

Healthy 
controls

Acute 
asthma

Acute 
COPD Pneumonia Heart failure p value

3 15 (5%) 6 (10%) 0 (0%) 7 (12%) 2 (4.5%) .000¥

4 50 (18%) 16 (25%) 11 (19%) 6 (11%) 17 (38.5%) .000¥

5a 112 (40%) 38 (51%) 32 (55%) 22 (41%) 20 (46%) .000¥

5b 21 (7%) 3 (4.5%) 7 (13%) 8 (15%) 3 (7%) .000¥

Exposure to 
antibiotics and 
steroids within 2 
weeks of hospital 
admission

Antibiotics (n=) (%) 61 n=0 (0%) n=24 
(36.9%)

n=23 
(39.6%) n=10 (18.2%) n=4 (9.0%) .002¥

Steroids (n=) (%) 57 n=0 (0%) n=28 
(43.0%)

n=24 
(41.3%) n=3 (5.4%) n=2 (4.5%) .000¥

Morbidity and 
mortality measures

Length of hospital 
stay (days) ^

3 (2-6) 2.0 (1.0-3.0) 4.0 (2.0-6.0) 4.0 (2.0-5.0) 7.0 (4.0-11) .000**

30-60 days hospital 
readmission (n=) 29 7 9 6 7 .461¥

1-year all-cause 
mortality 12 0 1 5 1 5 .078¥

Laboratory 
parameters

C-reactive protein 
(CRP) (mg/L)^

11 (5.0-34.2) 5 (5-5) 10.0 
(5.0-23.0)

12.0 
(5.0-20.7)

108.0 
(53.5-245.3) 11.0 (5.0-22.0) .000**

Blood Eosinophil 
count 109/L^

0.13 
(0.06-0.24)

0.17 
(0.09-0.24)

0.18 
(0.06-0.42)

0.13 
(0.06-0.24)

0.08 
(0.04-0.14) 0.13 (0.08-0.23) .000**

Troponin T (ng/l)^
3.3 

(1.0-11.4) 2.05 (1.0-2.7) 1.55 
(1.0-3.4)

3.75 
(2.6-10.9)

4.3 
(2.18-11.3) 20.2 (13.4-59.6) .000**

Brain natriuretic 
peptide (BNP) 
(ng/l)^

40.5 
(20.6-98.9)

28.40 
(17.60-39.88)

20.4 
(12.1-40.0)

56.3 
(24.3-95.0)

56.3 
(27.4-132.1)

611.8 
(172.1-1259.1) .000**

Questionnaires

Asthma Quality of 
Life Questionnaire 
(AQLQ) total*

65 117.3 ± 
(37.3)

COPD Assessment 
test (CAT) *

58 26.7 ± (7.3)

COPD Decaf score * 58 1.7 ± (0.8)

CURB65 score^ 55 2 (1-3)

NYHA score^ 44 2 (1-3)

a
The body mass index (BMI) is the weight in kilograms divided by the square of the height in meters.

b
Modified Early warning score - 2 (MEWS-2) is a guide widely used by medical services to determine the degree of illness of a patient based 

on their vital signs including respiratory rate, oxygen saturations, temperature, blood pressure, and heart rate. Vital signs collected at the point of 
admission for acute disease groups.
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c
Participants were asked to determine their degree of breathlessness, cough and wheeze on a 100mm visual analogue scale (VAS) on admission. 

Higher scores indicate worse symptoms.

d
Extended Medical research Council (eMRC) scale is a validated measure of perceived respiratory disability, scored from 1 to 5b. Higher scores 

indicate worse disability.

*
Data is expressed as mean (SD) or n (%) ± (SD)

^
Data expressed as median (IQ range)

**
Kruskal-Wallis test comparing non-parametric data, ¥ Pearson Chi Squared and Fisher’s Exact test.

ANOVA was used to assess the differences between groups for normally distributed continuous variables and Kruskal-Wallis for non-parametric 
continuous variables. Pearson chi-squared and Fisher’s exact were used to assess the differences in categorical variables. The results were 
considered statistically significant at p-values <0.05.
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