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Abstract

Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying 

similar environments. Moreover, parallel evolution sometimes, but not always, uses the same 

genes. Two main hypotheses have been put forth to explain the probability and extent of parallel 

evolution. First, parallel evolution is more likely when shared ecologies result in similar patterns 

of natural selection in different taxa. Second, parallelism is more likely when genomes are similar, 

because of shared standing variation and similar mutational effects in closely related genomes. 

Here we combine ecological, genomic, experimental, and phenotypic data with Bayesian modeling 

and randomization tests to quantify the degree of parallelism and its relationship with ecology 

and genetics. Our results show that the extent to which genomic regions associated with climate 

are parallel among species of Timema stick insects is shaped collectively by shared ecology and 
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genomic background. Specifically, the extent of genomic parallelism decays with divergence in 

climatic conditions (i.e., habitat or ecological similarity) and genomic similarity. Moreover, we 

find that climate-associated loci are likely subject to selection in a field experiment, overlap 

with genetic regions associated with cuticular hydrocarbon traits, and are not strongly shaped by 

introgression between species. Our findings shed light on when evolution is most expected to 

repeat itself.

Introduction

To what extent is evolution predictable and repeatable? Stephen J. Gould posed this question 

through his famous thought experiment on whether repeatedly ‘replaying the tape of life’ 

would yield similar evolutionary outcomes [1]. Gould considered similar outcomes unlikely, 

due to chance events and historical contingency in evolution, and this thought experiment 

helped launch decades of research on the repeatability of evolution [2,3]. Indeed, the answer 

to this question is important because it is central to understanding the processes shaping 

biological diversification [4,5,6]. For example, instances of repeated or parallel evolution in 

response to similar environmental pressures can provide evidence of evolution by natural 

selection. In contrast, idiosyncratic outcomes can support a role for chance or contingency in 

evolution and indicate constraints on the power of selection. The predictability of evolution 

also has practical implications, for example, for forecasting organismal responses to natural 

and human-induced environmental change [7], the planning of breeding programs, and the 

design of medicines and strategies to combat disease spread [8].

It is now known that evolution can repeat itself but does not always do so [9,10]. Parallelism 

has been documented at the genetic level, with striking cases of parallel evolution involving 

single genes of major effect both within- and among species [15,16,17]. For example, 

the Ectodysplasin gene controlling body armor has repeatedly been used by numerous 

populations of stickleback fish during freshwater adaptation [11]. Likewise, the Agouti and 

Mc1R genes control coloration in diverse organisms [12,13,14]. In contrast to these studies 

of major effect genes, parallelism is less understood when evolution involves many genes 

of smaller effect, although studies of genome-wide variation are beginning to fill this gap 

[18–22]. However, evolution is not always parallel. Indeed, the probability and extent of 

parallelism decline as the time of divergence increases between taxa [23,24]. Although 

this decline is well established, its likely causes are potentially complex (i.e., time itself 

is not the causal agent controlling parallelism; rather factors such as climate and genetics 

are likely involved, as outlined below and as we test here) and remain poorly resolved, 

particularly beyond experimental evolution experiments in microbes [25,26]. Our goal here 

is to elucidate the factors shaping the extent of parallel evolution in the wild, focusing on 

quantifying parallelism at the genome-wide level.

In this context, two general hypotheses have been put forth, which are not mutually 

exclusive. First, parallel evolution is more likely when shared ecologies result in similar 

patterns of natural selection in different taxa such as ecotypes or divergent lineages (the 

‘shared ecology’ hypothesis) [27,28,29]. Shared aspects of environmental variation can 

decline with time since divergence, as species (or even populations or ecotypes) come 
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to occupy different geographic areas or as local environments change over time, thus 

reducing parallelism at both phenotypic and genotypic levels [29,30,31]. Second, parallelism 

is expected to be more likely when genomes are similar because pools of standing variation, 

new mutations which arise, and the effects of these mutations will tend to be more similar 

in closely related genomes (the ‘shared genetics’ hypothesis; we use this term to also 

encompass the role of gene regulation and development) [16,32–34]. Epistatic interactions 

might be particularly important here because the effects of new mutations are dependent on 

the mutations that preceded them.

Both ecological (i.e., habitat and climatic) and genetic similarity are expected to decline 

with time and there is support for both hypotheses [24, 35–38]. However, few studies have 

simultaneously examined ecology and genetics, particularly in wild populations, such that 

the relative contribution of the two factors remains unclear. Parsing these contributions is 

important because it is required to test the roles of selection (i.e., shared ecology) and 

constraint (i.e., shared genetics) in evolution [32,39–42]. Here, we combine ecological 

data, genomic analyses, a field experiment, and genetic mapping to ascertain the genomic 

extent and causes of parallel adaptation to climate, thus testing the shared ecology and 

genetics hypotheses. Rather than focusing on time per se, we conduct analyses that jointly 

consider the degree of climatic and genetic divergence between taxa to parse their relative 

contributions to explaining the degree of parallel evolution observed.

Our study system is wingless, univoltine, herbivorous stick insects in the genus Timema, 

many species of which are endemic to California, USA [43]. These insects are best-studied 

for their cryptic colours and colour-patterns, which are controlled by the same genetic 

region (termed Mel-Stripe) in all species studied to date [44–47]. Timema colouration 

thus provides a striking example of highly parallel evolution at the level of a single, 

largely non-recombining gene region that could be considered akin to a major effect locus. 

However, adaptation often involves many genes, including those with alleles of minor 

effect, arrayed throughout the genome [48,49], where the probability of parallel genetic 

evolution is less clear [20]. In this context, we study a novel ecological dimension in 

Timema, namely climate, motivated by the fact that adaptation to varying climatic (abiotic) 

conditions of the environment can be polygenic, and the genus Timema inhabits variable 

habitats in California. For example, the occupied habitats of Timema range from sea-level to 

mountainous regions, and from arid semi-deserts near the Mexican border to wet evergreen 

forests in northern California [50]. Moreover, there is climatic variation both within and 

among species, with several species being distributed along elevational gradients (ranging 

from 10 meters to ~2800 meters) [51]. This creates an opportunity to test the role of climatic 

variables, such as precipitation and temperature, in driving parallel evolution in Timema, 

which are known to be important determinants of selection in many organisms [52,53].

For this study we test the shared ecology and genetics hypothesis in Timema to identify 

climate-associated gene regions within species which show a range of divergence times of 

up to tens of millions of years (here, generations). We assess the contribution of shared 

ecology and genetics to genomic parallelism by comparing the proportions of the genome 

that exhibit repeated genotype-climate association. We then bolster the evidence that 

climate-associated gene regions are likely subject to selection by using a field experiment 
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and genetic mapping of cuticular hydrocarbons. Our collective results yield a comprehensive 

evaluation of genome-wide parallel evolution in the context of an environmental pressure 

of high current interest (i.e., climate), and in a system where comparison can be made to 

parallelism seen at a single, major locus (i.e., Mel-Stripe) (Figure 1).

Results

Climatic variation within- and among-species

We studied eight Timema species across 53 geographic localities (n = 1420 individuals) 

(Figure 2, Supplementary Table 1). We used 22 bioclimatic variables describing 

precipitation and temperature variation which are known drivers of selection in many 

systems [52], including Timema [71]. Due to high correlations among the studied climate 

variables, we performed an ordination using principal component analysis (PCA) of the 

climate variables for all populations included in the study (see Figure 2A for species range 

map). This revealed that most of the variation in climate variables was explained by the first 

three principal components (PC) (Total = 92.2%, PC1 = 51.7%, PC2 = 24.4% and PC3 = 

16.1%), which we hereafter focus on and refer to as PC1, PC2, and PC3 (Supplementary 

Table 2 for PC loadings, Extended Data Figure 1).

We saw that PC1 is a general axis of elevation and precipitation variation, with high 

positive values representing wet localities at high elevation (Extended Data Figure 1A, 

Extended Data Figure 1C, Supplementary Table 2). PC2 is a general axis of temperature 

variation, with high positive values representing localities experiencing high temperatures 

(Extended Data Figure 1A, Extended Data Figure 1B, Supplementary Table 2). Lastly, 

PC3 is an axis of contrasting variation in precipitation and temperature, with high positive 

values representing localities (often) closer to the coast experiencing greater temperature 

and precipitation fluctuations (Extended Data Figure 1B, Extended Data Figure 1C, 

Supplementary Table 2).

One way ANOVA revealed significant among-species variation for all three PCs (PC1: 

Variance component = 12.1%, Df = 7, F value = 104.5, P-value = < 0.0001; PC2: Variance 

component = 3.2%, Df = 7, F value 6.803, P-value = < 0.001; PC3: Variance component = 

3.1%, Df = 7, F value = 28.07, P-value = < 0.0001). We also detected clear within-species 

variation (range of median PC scores values across the eight species were -3.0 and 5.8 for 

PC1, -2.5 to 6.5 for PC2, and -1.6 to 3.5 for PC3; Figure 2C-D). We next used these three 

PCs to identify genomic regions associated with climate within species, a prerequisite for 

testing parallelism among species.

Identifying climate-associated genomic regions

We first identified the genomic regions most strongly associated with climatic variation 

within each of the eight species. To do so, we analyzed single nucleotide polymorphisms 

(SNPs) obtained through previous genotyping-by-sequencing of natural populations [61]. 

Since our data included species that are considerably diverged from each other, the number 

and fine-scale genomic positions of SNPs called for each species were different. This 

could be due to different evolutionary histories of the restriction sites targeted for the 
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sequencing and genome-level divergence of species from the genome of T. cristinae [62]. To 

account for this variation, we focus on 100 kilobase (Kb) SNP windows to allow subsequent 

comparisons among species (n = 9487 windows in each species, across the eight study 

species, minimum SNPs per window = 1, mean SNPs per window = 1.78).

Within each species, we quantified SNP-climate associations for each of the three climate 

PCs using BayPass (version 1.2). The association of each SNP with population-specific 

PC variables was assessed using Bayes Factors (BF), which for a given SNP compares the 

marginal likelihoods of models with zero versus non-zero regression coefficients. For each 

species, we then calculated the median of logarithmic BF values for all the SNPs in the 100 

Kb window to identify SNP windows with medians in the top 10% empirical quantile and 

then used these for all downstream analyses (“climate-associated SNP windows” hereafter). 

We do not assume that all 100 Kb windows with the largest (top 10%) BF contribute to 

climatic adaptation, but rather we expect such windows to be enriched for SNPs contributing 

to climatic adaptation relative to other parts of the genome. In all species, the top 10% 

climate-associated SNP windows were widely distributed across the genome and found on 

all 13 linkage groups (LGs) (Figure 3, Extended Data Figure 2, Extended Data Figure 3).

Parallel evolution of climate-associated genomic regions

We next quantified the extent to which climate-associated SNP windows were parallel (i.e., 

the same) across the eight species of Timema that we studied. Here we are interested in 

identifying and quantifying genomic parallelism based on the 100 Kb SNP windows spread 

across the genome (“genomic parallelism” hereafter) [15,24,63–65].

Critically, we tested if windows exhibited excess overlap across species relative to that 

expected by chance, that is, if the same SNP windows show association with climate PCs 

between 3, 4, 5, 6, 7 or 8 species (Figure 1B). To do so, we conducted randomisation tests 

to quantify excess overlap of windows relative to expectations for multi-species comparisons 

(Figure 1A). As an example, an x-fold enrichment of 2.0 in the genomic parallelism analyses 

would indicate that the evidence for overlap of climate-associated SNP windows for a given 

comparison was two times higher than expected by chance based on the mean of the null. 

For this, we focused on windows with the greatest (top 10%) climate association in nature 

for all three climate PCs. Notably, these approaches randomise the data after results from 

BayPass have been obtained. We discuss in a subsequent section below further results where 

environmental (i.e., climatic) data were permuted before running BayPass.

These analyses revealed evidence for genomic parallelism across species. For PC1, excess 

overlap of SNP windows with the largest median BF among three or more species was 

~2x more than expected by chance (observed = 60, expected = 26.77, x-fold enrichment = 

2.25, P-value < 0.01; Extended Data Figure 4), and for four or more species excess overlap 

was ~4x more than expected by chance (observed = 4, expected = 1.03, x-fold enrichment 

= 3.87, P-value 0.02; Extended Data Figure 4). For PC2, excess overlap of SNP windows 

with largest median BF among three or more species was about ~1.5x more than expected 

by chance (observed = 42, expected = 26.41, x-fold enrichment = 1.59, P-value <0.01; 

Extended Data Figure 5), and for four or more species excess overlap was about ~4x more 

than expected by chance (observed = 5, expected = 1.19, x-fold enrichment = 4.17, P-value 
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= 0.007; Extended Data Figure 5). Lastly, for PC3 there excess overlap of climate-associated 

SNP windows among three or more species that was ~1.6x more than expected by chance 

(observed = 43, expected = 26, x-fold enrichment = 1.63, P-value < 0.01; Figure 4) and 

almost 5x for four or more species (observed = 5, expected = 1.10, x-fold enrichment = 

4.53, P-value = 0.006; Figure 4). Additional tests for historical and contemporary gene flow 

revealed that introgression and gene flow were not largely responsible for this parallelism 

(see Supplementary Results and Methods; Figure 5A, Supplementary Figures 7-9).

Genomic parallelism declines predictably between species

We next tested the extent to which the shared ecology and shared genetics hypotheses 

could account for the degree of genomic parallelism observed with climate across Timema 
species (Figure 2B). Shared ecology would cause a higher degree of parallelism due to 

similar selective pressures from similar climate conditions experienced by taxa (i.e., PCs 

1-3) (Figure 2B, “shared ecology hypothesis”). On the other hand, shared genetics would 

cause a higher degree of parallelism due to a higher extent of gene reuse associated with 

variation retained from a common ancestor (Figure 2B, “shared genetics hypothesis”). Here, 

we quantified genomic parallelism as the degree of excess overlap of climate-associated 

SNP windows relative to null expectations for pairwise comparisons. We estimated climatic 

similarity between pairs of species using climatic data and genetic similarity based on 

a previously published genome-level phylogeny [61]. We then fit Bayesian linear mixed 

models to explicitly compare models where the degree of parallelism is determined by 

climatic similarity, genetic similarity, or both. Notably, this mixed model approach accounts 

for the non-independence of pairwise distances [65 for details]. Specifically, for each 

climatic PC variable, we modeled parallelism as the x-fold excess in shared top climate-

associated SNP windows as a function of climatic distance, which was calculated as the 

average difference in climate PC scores between a given pair of species (hereafter referred 

to as ecology, indicating “climatic divergence”), genetic distance, which was pairwise 

phylogenetic distances for a given pair of Timema species (hereafter referred to as genes 

indicating “genome-wide divergence”), or both. The fit of models with or without ecology 

or genetics was compared using deviance information criterion (DIC) (Figure 5B, Extended 

Data Figure 6B, Extended Data Figure 7B), which is a metric of predictive performance 

[66].

Our analyses revealed evidence for the effects of both ecology and genes on the extent of 

genomic parallelism, with details that varied among the climate PCs (Figure 5C-D for PC3, 

Extended Data Figure 6A-C for PC1, Extended Data Figure 7A-C for PC2). For PC3, the 

best fit was obtained for the full model (ecology and genes), with similar, negative effects 

on parallelism observed for ecology (standardized β = -0.47, 95% CI = -0.80 to -0.14) 

and genes (standardized beta = -0.55, 95% CI = -0.87 to -0.21; Figure 5E; Supplementary 

Table 3). For PC1, the genes-only model was the best model (standardized β = -0.55, 95% 

CI = -0.8 to -0.25; Extended Data Figure 6D, Supplementary Table 3). The second-best 

model was the full model, but this included a positive rather than negative effect of climatic 

distance on parallelism. Lastly, for PC2 the best model was a null model of no effect 

of genes or ecology on parallelism (Extended Data Figure 7D, Supplementary Table 9). 
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The results thus provide variable support for both the shared ecology and shared genetics 

hypotheses, dependent on the climate PC, with the association being strongest for PC3.

Comparison of parallelism results with permuted data sets

We next conducted permutation analyses that randomised the climatic data before 

implementing BayPass. We did so to ask whether the patterns of observed genomic 

parallelism and its decay could have been inflated by unaccounted aspects of the genetic 

data, such as shared SNP density in specific genomic regions, allele frequency distributions, 

or linkage disequilibrium, affecting some genomic regions more than others. To generate 

null expected distributions for climate-associated SNP windows, we therefore initially 

permuted PC climatic values across populations within species, thereby randomizing the 

relation between the environmental variables and any potential unaccounted-for feature(s) 

in gene regions affecting parallelism. We generated 10 such permuted data sets hereafter 

referred to as “permuted data sets”. We then redid the analysis for each of the 10 permuted 

data sets, for each species separately, exactly as described for the observed data set. First, 

we reran BayPass using each of the permuted data sets and for each species. Second, we 

quantified the degree of genomic parallelism by making multispecies comparisons. Third, 

we conducted our Bayesian linear mixed models to test for the effect of ecology and genetics 

on the decay of genomic parallelism.

For all three PCs, the ten permuted data sets showed no evidence for the decay in parallelism 

seen in the actual data set with increased ecological or genetic distance (Supplementary 

Figures 1-3). However, the permuted data sets indicate significant x-fold enrichments of 

multiple-species sharing climate-associated SNP windows (Supplementary Figures 4-6). In 

certain instances, the parallelism extended to involving 4 or more species, as we found 

significant x-fold excesses in 3 of the 10 permuted data sets for PC1, 6 of 10 for PC2, 

and 4 of 10 for PC3 (Supplementary Figures 4-6). These results suggest that aspects 

of the genetic data could generate apparent parallelisms of gene regions responding to 

environmental variables across species. However, for PC3 which displayed the strongest 

association of climate and genetics with parallelism, the x-fold excesses in the 4 or more 

species comparisons in the 10 permuted data sets did not approach the level observed in 

the original data (Supplementary Figure 6). And most importantly, as noted above, for the 

10 permuted data sets, the pattern of excess parallelism was random across species with 

respect to its relationship with climatic and genome-wide divergence. Our core test of the 

shared ecology and shared genetic hypotheses thus appears highly robust. Having tested 

these hypotheses, we next tested for additional evidence, beyond genomic parallelism, that 

the climate-associated SNP windows have been affected by natural selection.

Climate-associated regions experience natural selection

To bolster the evidence that climate-associated SNP windows are enriched for genetic 

variants experiencing natural selection, we tested whether these windows exhibited 

exceptional patterns of allele-frequency change in a published transplant-and-sequence field 

experiment (Figure 1C).
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The transplant experiment used a block design to measure 8-day survival and associated 

genome-wide allele frequency change during this period in 500 T. cristinae transplanted to 

10 experimental bushes comprising two host plants occurring along a gradient of higher 

elevations than the source population for the experiment [67 for further details]. Distances 

between plants within block ranged from 6 – 10m and distances between blocks ranged 

from 12 – 30m. A previous analysis of this experiment documented evidence of selection 

associated with elevation, which is relevant as the sample of species analyzed for the 

current study of parallelism were distributed along elevational gradients ranging from 

10m to ~2800m [67]. Here, as a metric of possible elevation (environment)-dependent 

selection, we calculated the Pearson correlation between transplant elevation and allele 

frequency change caused by mortality during the transplant experiment. We found that the 

100 Kb windows exhibiting patterns of allele frequency change most strongly associated 

with elevation in the transplant experiment coincided modestly but significantly with 

climate-associated SNP windows. Specifically, when focusing on the windows with the 

greatest (top 10%) correlation between change and elevation in the experiment and with 

the greatest (top 10%) climate association in nature, windows associated with all three 

climate PCs corresponded with those where change was most strongly associated with 

elevation ~1.2-1.3 times more than expected under the null hypothesis of independence 

(constrained randomization test controlling for SNP density within windows based on 1000 

randomizations; PC1: observed = 108 shared windows, P = 0.005; PC2: observed = 101 

shared windows, P = 0.015; PC3: observed = 105 shared windows, P = 0.021) (Figure 6). 

Similar patterns were observed when more extreme top percentiles were considered, and 

when using an unconstrained randomization test (Supplementary Table 4). These patterns 

are consistent with the hypothesis that multiple genetic variants in these windows are subject 

to selection in nature.

Additionally, we found that climate-associated SNP windows overlapped more than 

expected with regions associated with phenotypic variation in genetic mapping analyses 

of cuticular hydrocarbons (CHCs), specifically pentacosane in females (Supplementary 

Methods and Results; Figure 1D, Supplementary Tables 5-8), which studies of insects 

have shown can contribute to climate adaptation [54,55]. This combined with the results 

presented above suggests a polygenic basis for climatic adaptation in T. cristinae, with at 

least a modest correspondence between our top climate-associated windows and the actual 

loci involved in climate adaptation.

Discussion and Conclusion

We used GBS data from 1420 individuals across eight species combined with data from field 

transplant and GWAS for cuticular hydrocarbons to show that adaptation to climate occurs 

in parallel across species but as a function of the climatic and genomic divergence between 

species. Our results inform five fundamental issues in biology, namely the repeatability of 

evolution, variation in the degree of parallelism based on the climate variables considered, 

the effect of ecology and genetics on parallelism, technical aspects pertaining to the study of 

parallelism, and the processes promoting parallelism. We treat these issues in turn below.
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First, we show that evolution in response to climate occurs in parallel among eight 

species and that parallelism likely involves multiple SNPs. These findings fill a gap in our 

knowledge of parallel evolution because many studies, including past work in Timema, 

have mostly focused on parallelism driven by single genes or specific regions of the 

genome [11,12, 47]. These results agree with other cases of parallel or convergent climate 

adaptation that are also driven by polygenic interactions [21,68–70]. Overall, our study 

demonstrates that repeatability of evolution can be driven by numerous genetic paths, but 

the magnitude of repeatability can be highly variable, specifically when considering inter-

species comparisons.

Second, our results reveal notable variation in the degree of parallelism across the three PCs, 

which we use as composite climate variables. We attribute the variation in the degree of 

parallelism to Timema species occupying variable environmental niches in their geographic 

distributions, which can cause environmentally heterogeneous selection. Furthermore, each 

PC is composed of different climatic variables. Therefore, the level of genomic association 

and in turn parallelism would vary based on the PC (and climatic variables) being 

considered. For example, precipitation (which is one of the top loading variables on PC1 

and PC2) can affect variability in selection in space [52] and has also been shown to 

drive thermoregulatory evolution in Timema [71]. Other unaccounted factors can influence 

response to climate such as microclimate variation on the spatial scale that Timema species 

occupy, and nonlinear gene–climate associations [72]. All these factors together contribute 

to the variable degree of parallelism observed across the three PCs, emphasizing that the 

genomic basis of adaptation to climate in Timema is predictable to some extent yet complex.

Third, our results reveal that parallelism decays with climatic and genome-wide divergence, 

suggesting that both shared ecology and shared genetics can affect parallel evolution. 

Thus, the parallelism we observe in Timema can be partly attributed to selection pressures 

exerted on insects inhabiting similar niches [28]. In addition, genetic similarity increases 

the chances for shared standing genetic variation in closely related taxa to allow for gene 

reuse in response to similar environmental pressures [73]. Similar gene modules can also 

drive convergent adaptation to climate, where genes or SNPs that collectively serve a 

similar functional role are tightly integrated by strong pleiotropic effects and are relatively 

independent of other such units [21,68]. Our study demonstrates that both these aspects 

can affect parallelism, with a perhaps more consistent effect of genetics, due to patterns of 

ecological variation being more complex among species compared to genetics.

Fourth, our approach involving permuted data sets highlights important issues concerning 

analytical aspects of parallelism tests. We found no evidence of the observed decay in 

parallelism with climatic or genome-wide divergence in permuted data sets conducted prior 

to or following analysis with BayPass. Overall, these findings in combination with the 

experiment and CHC results provide support that the documented parallelism in genomic 

association with climate reflects a contribution from selection. However, we also note 

that our analyses using permuted data sets generated instances where ‘significant’ x-fold 

excesses in the numbers of gene regions displaying parallelism above null expectations. 

Our findings thus concur with previous studies using simulation-based approaches showing 

that false positives can be detected due to unaccounted aspects of the genetic data [74–76]. 
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Therefore, we suggest that these associations should be interpreted with caution, and studies 

identifying genomic association with climatic variables warrant additional cross-validation 

of findings, as performed here.

Fifth, our collective results inform how two core evolutionary processes, namely 

introgression/gene flow, and selection, might affect parallelism. We show that parallel 

evolution and adaptation to climate occurs despite limited or minimal gene flow 

among Timema species. While introgression can facilitate parallel adaptation to similar 

environmental pressures through the sharing of novel genetic material [33,56–60,77], a 

lack of introgression or gene flow demonstrates independent instances of adaptation and 

the role of selection in driving parallel evolution at the genomic level [78]. Ancestral 

genetic variation can also underlie parallelism due to similar selection pressures driving 

phenological similarity not just for newly formed and partially reproductively isolated 

host races, but also for distantly related sibling species [3]. Additionally, while a study 

on divergent conifers has indicated that conserved genomic regions can drive convergent 

adaptation to climate [21] another study on distinct genetic clusters of Arabidopsis lyrata 
(two lineages) shows that parallelism in genomic association to climate is detectable at 

the gene but not the SNP level [68]. Both these systems also have minimal gene flow. In 

comparison, a study on replicate pairs of threespine stickelbacks implies a significant role 

for the environment and gene flow in affecting parallelism [28]. In summary, our study 

shows how local adaptation among species with minimal between-species gene flow can 

occur and consequently be crucial for predicting evolution in response to rapidly changing 

environments and climate. Furthermore, our results bolster evidence for selection beyond 

a correlational genome scan because we found that the genomic regions which underlie 

parallelism also were associated with allele-frequency changes in a manipulative field 

experiment [like 79] and climatically relevant CHC traits. Thus, together these results 

suggest that allele reuse through standing genetic variation, new mutations, and selection can 

all be powerful drivers of parallel local adaptation.

Methods

Below we describe details of our methods and analyses, and we provide a graphic summary 

in Figure 1 of the main text.

Samples and DNA sequences from natural populations

For this study, we analyzed genotyping-by-sequencing (GBS) data from 1420 Timema 
stick insects from 53 localities from eight species: 6 T. bartmani populations (N = 195 

individuals), 3 T. californicum populations (N = 77 individuals), 12 T. chumash populations 

(N = 358 individuals), 6 T. cristinae populations (N = 205 individuals), 5 T. knulli 
populations (N = 89 individuals), 4 T. landenlsensis populations (N = 125 individuals), 

12 T. podura populations (N = 255 individuals) and 5 T. poppensis populations (N = 

116 individuals) (Supplementary Table 1). GBS data for this study has been previously 

published in a study of the speciation continuum in Timema [61]. DNA sequence data, 

the reference genome, experimental data, and CHC data used in this study are associated 

with the previously published studies [61,67]. The associated DNA sequence data have 
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been archived on NCBIs SRA (Accession: PRJNA356405 ID: 356405). The genomic data 

in the transplant experiment and used for genetic mapping of cuticular hydrocarbons is 

independent from these data and is described in detail below.

Sequence alignment and variant calling

To incorporate variants typed for individuals of each species, we built a consensus reference 

sequence for each species [similar to 44,47]. To do this, we first aligned all reads from 

all our samples to the T. cristinae reference genome (draft version 0.3) using the MEM 

algorithm of BWA (Version: 0.7.17-r1188) [61]. We ran BWA MEM with a minimum seed 

length of 15 (-k), internal seeds of longer than 20 bp, and only output alignments with a 

quality score of ≥ 30 (-T). We then used SAMTOOLS (version 1.5) to view, sort and index 

the alignments [80]. We called variants using SAMTOOLS and BCFTOOLS (version 1.6) 

[80,81]. For variant calling, we used the mapping quality adjustment of 50 (-C), skipped 

alignments with mapping quality 0, skipped bases with base quality <13, and ignored 

insertion-deletion polymorphisms. We then set the prior on single nucleotide polymorphisms 

(SNPs) to 0.001 (-P) and called SNPs when the posterior probability that the nucleotide was 

invariant was <0.01 (-p). We then performed two rounds of filtering to retain final sets of 

SNPs. In the first round, we filtered the initial set of SNPs to retain only those with sequence 

data for at least 80% of the individuals, a mean sequence depth of two per individual, at 

least four reads of the alternative allele, a minimum quality score of 30, a minimum (overall) 

minor allele frequency of at least 5%, and no more than 0.01% of the reads in the reverse 

orientation. In the second round of filtering, we removed SNPs with excessive coverage (2 

standard deviations above the mean) or that were tightly clustered (within 5 base pairs (bp) 

of each other). This left us with the following number of SNPs for each species: 10,036 

SNPs for T. bartmani, 14,955 SNPs for T. californicum, 20,478 SNPs for T. chumash, 

3,43,746 SNPs for T. cristinae, 25,835 SNPs for T. knulli, 21,314 SNPs for T. landelsensis, 

21,986 SNPs for T. podura, and 18,237 SNPs for T. poppensis.

We used these filtered variants for each species to construct consensus reference sequences 

for each species using the CONSENSUS algorithm of BCFTOOLS (version 1.6) [81]. We 

then used the consensus reference of each species to redo alignments for GBS sequences 

of individuals for each species separately. Following this, we repeated variant calling and 

two rounds of variant filtering as described above. This left us with the following number 

of SNPs for each species: 3074 SNPs for T. bartmani, 7858 SNPs for T. californicum, 4172 

SNPs for T. chumash, 1,96,252 SNPs for T. cristinae, 11,139 SNPs for T. knulli, 8548 SNPs 

for T. landelsensis, 6000 SNPs for T. podura, and 7157 SNPs for T. poppensis. We used this 

second set of SNPs noted directly above for all downstream analyses.

Climate variables and SNP by climate associations

We used 22 climate variables associated with our 53 study localities (Supplementary 

Table 2), which were extracted from the WorldClim database version 1.4 (https://

www.worldclim.org/data/v1.4/worldclim14.html; climate data for 1960-1990). Since the 

first three PC scores explained the overwhelming majority (92.4%) of variation in the 

climate variables (Supplementary Table 2, Extended Data Figure 1), we used these three PCs 

to study genomic associations with climate in all further analyses.
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We used BayPass version 2.1 [82] to identify genomic regions associated with the three 

sets of PC scores for the climate variables. The BayPass software controls for background 

population structure and is based on the BAYENV method introduced by Gunther and Coop 

[83]. This software controls for background population structure by using a population 

covariance matrix for populations within each species, and then quantifies the association 

of each SNP with an environmental variable (in our case, a PC axis). We ran this program 

separately for each species and for each PC (eight species by three PCs). We treated each PC 

score as the environmental covariate and ran the standard covariate model. For each data set, 

we ran four Markov chain Monte Carlo (MCMC) simulations, each with a 20,000-iteration 

burn-in and 50,000 sampling iterations with a thinning interval of 100. We used the default 

option of importance sampling to calculate the regression coefficient (βi), which describes 

the association of each SNP with climate PC scores. For a given SNP, the BF compares 

the marginal likelihoods of models with zero versus non-zero regression coefficients (i.e., 

values of βi); this is like a likelihood ratio except the marginal likelihood of the model with 

non-zero regression coefficients are integrated over the prior distribution. Finally, since we 

had a different number of focal SNPs for each species, we calculated median of logarithmic 

BF for 100 kilobase (Kb) non-overlapping SNP windows (i.e., the same window boundaries 

were used in every species, facilitating comparisons among them). For a given species, we 

had the following number of SNP windows: 1771 windows with an average of 1.73 SNPs 

per window for T. bartmani, 3852 windows with an average of 2.04 SNPs per window for 

T. californicum, 1806 windows with an average of 2.31 SNPs per window for T. chumash, 

9754 windows with an average of 20.76 SNPs per window for T. cristinae, 4426 windows 

with an average of 2.55 SNPs per window for T. knulli, 3799 windows with an average 

of 2.25 SNPs per window for T. landelsensis, 2443 windows with an average of 2.45 

SNPs per window for T. podura, and 3609 windows with an average of 1.98 SNPs for T. 

poppensis. Our downstream analyses described below focus on these windows. We delimited 

climate-associated SNP windows as those with greatest association with the three climate 

PCs, specifically as the windows in the top 10% quantile. We refer to such windows as 

“climate-associated SNP windows” hereafter.

Quantifying parallel genomic associations with climate

We quantified parallel genomic associations with climate across species (using the results 

described above from BayPass) and used randomization tests to measure the extent to which 

the observed parallelism exceeded that expected by chance. We report this excess as ‘x-fold’ 

enrichments, relative to null expectations, also reporting associated P-values for statistical 

significance.

We quantified overlap in climate-associated SNP windows between multiple species 

(“multispecies comparisons”) i.e., we tested if the same SNP windows show association 

with climate PCs between or among 3, 4, 5, 6, 7 or 8 species. We did this for each of 

the three climate PCs. To do this, we used randomization tests (10,000 randomizations per 

test) to generate null expectations for the proportion of top climate-associated SNP windows 

shared between a given pair of species and tested whether this was significantly more than 

expected by chance (x-fold enrichments and P-values). As an example, an x-fold enrichment 

of 2.0 would indicate that twice as many climate-associated SNP windows showed overlap 
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between a given set of species than was expected by chance (based on the mean of the 

null). With our approach, we assess coarse-grain (100 Kb) genomic parallelism by analyzing 

multiple SNPs spread across the genome, rather than focusing on parallelism at the level of 

specific mutations or genes. Nonetheless, we suspect that parallelism at this scale will often 

involve the same genes, as only a modest number of genes occur in most 100 Kb windows 

(e.g., mean number of genes per window = 1 gene).

We note that our approach is not a direct test of whether the same variants or alleles per 
se are responsible for climate adaptation in different species. Rather, we assess the degree 

to which the same gene regions associated with climatic variation within species are shared 

among species, and the extent to which such parallelism can be accounted for by taxa being 

more similar in the environmental conditions they experience and/or how closely they are 

related to one another in their overall levels of genomic divergence. Our focus on genomic 

regions as the unit for quantifying parallelism also means that it is not necessarily the case 

that the exact same gene(s) are involved in climatic adaptation between species. However, 

the size of the windows we use to define genomic regions for the analysis (100 Kb) is such 

that given the gene density in Timema on average only 1.78 SNPs will be present in each 

region. Thus, it can be inferred that shared genetic responses of gene regions across species 

generally equate to the involvement of the same loci or genetic basis for climate adaptation.

Testing the shared ecology and shared genetics hypotheses

We tested the contribution of shared ecology versus shared genetics to the observed degree 

of parallelism. We expect both shared ecology and genetics to influence the extent of 

parallelism. To do so, we fit Bayesian linear mixed models (BLMMs) to explicitly compare 

models where parallelism is determined by climatic similarity, genetic similarity, or both. 

This Bayesian regression analysis is based on the mixed model framework proposed by 

[84] and extended by [65]. Our method accounts for the correlated error structure inherent 

in pairwise covariates and response variables (e.g., climatic or genetic distances). In this 

analysis, our response variable was the x-fold excess in shared top climate-associated SNP 

windows for a given PC (we did analyses separately for each climate PC). Our independent 

variables were climatic and genetic distances, estimated as follows. Climatic distance was 

calculated as pairwise absolute mean difference of PC scores of each species. We calculated 

genetic (i.e., phylogenetic) distances based on the previously published phylogeny described 

in [61]. Briefly, we used the data from this previous phylogeny (based on genome-wide 

SNP data) constructed using Bayesian phylogenetic inference with BEAST (version 2.1.387) 

for 11 Timema species based on GBS data of curated dataset of 19,556 single-nucleotide 

variants. For our current study, we used pairwise phylogenetic distances for the eight 

Timema species as our metrics of genetic distances for this analysis. All variables were 

standardized (given mean 0 and standard deviation of 1) before analysis.

We then considered four alternative models: (i) a null model without covariates, (ii) a model 

including only phylogenetic distance, (iii) a model with only climatic distance, and (iv) a 

model with both climate and phylogenetic distance. We fit the models in R using the rjags 

(version 4.8) interface with Jags (version 4.3.0). We used minimally informative priors for 

the regression coefficients (i.e., normal with μ = 0 and precision τ = 0.001) and for the 

Chaturvedi et al. Page 13

Nat Ecol Evol. Author manuscript; available in PMC 2023 April 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



population random effects and residual errors, all gamma (1, 0.01). Deviance information 

criterion was used for model comparison. Parameter estimates and DIC estimates were 

obtained via MCMC. For each analysis and model, we ran three chains each comprising 

10,000 sampling iterations, a 2000-iteration burn-in, and a thinning interval of 5.

Comparison of parallelism results to permuted datasets

We next asked whether the patterns of observed genomic parallelism and its decay could 

have been inflated (unexpectedly high numbers) due to unaccounted aspects of the genetic 

data. We did this by permuting environmental variables (i.e., PC scores) before running 

BayPass rather than just permuting BF across species. Our expectation was that a high 

number of false positives with the permuted environmental variables would raise a warning 

against the results obtained from the observed data. We did this by generating and analyzing 

10 permuted data sets identical to our own, but with each PC score randomized across 

populations within each species (10 permutations x 3 PCs x 8 species = 240 combinations). 

We limited our analyses to 10 permuted data sets because of the very large computational 

burden of running these analyses. Hereafter, we refer to this data as “permuted data sets”. 

We then performed analysis for each of the 10 permuted data sets, for each species 

separately, exactly as described for the real data set. First, we ran BayPass using each of 

the permuted data sets and for each species. Second, we quantified the degree of genomic 

parallelism by making pairwise and multi-species comparisons exactly as we did for the 

real data set (i.e., including the permutations to test for excess overlap). Thirdly, we fit 

Bayesian linear mixed models to test for the effect of ecology (i.e., the permuted climatic PC 

variables) and genetics on the decay of genomic parallelism.

Climate-associated SNP windows and field-experiment associated genetic regions

We quantified overlap between climate-associated SNP windows and windows that exhibited 

elevation-dependent allele-frequency change in a previously published release-recapture 

field experiment. We then tested if this overlap was greater than expected by chance. Full 

details of the experiment can be found in the original publications [67,71] but those relevant 

for the current study are as follows. The experiment involved releasing 500 T. cristinae 
(from which a tissue sample was taken) onto 10 experimental bushes (five blocks, each 

with one plant of Adenostoma fasciculatum and one of Ceanothus spinosus). Survivors 

were recaptured eight days later. Whole-genome sequence data, which we analyze here, was 

obtained from 491 of the 500 stick insects [71].

For the current study, we estimated allele frequencies in the released and recaptured 

stick insects at the 6,175,495 bi-allelic SNPs identified by [71]. This was done using an 

expectation-maximization (EM) algorithm as implemented in the program estpEM (version 

0.1) with tolerance of 0.001 and a maximum of 50 EM iterations [85]. We then used these 

estimates to compute allele-frequency change between the start and end of the experiment. 

Then, for each SNP we calculated the Pearson correlation between allele frequency change 

and the elevation at each of the ten transplant sites. Finally, we determined the average 

correlation between change and elevation for the 100 Kb windows across the genome. 

Windows with fewer than four SNPs were ignored. These steps were done using R (version 

3.4).
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We then calculated the number of 100Kb windows that were among the top 10% for both 

elevation-dependent change during the experiment (highest average absolute correlation) and 

for climate-association (highest average BF for each climate PC). We used a constrained 

randomization procedure to generate null expectations for such concordance between change 

and climate-association windows, using a separate randomization for each PC. Specifically, 

we randomized mean change metrics across windows, but only among windows with similar 

SNP densities (10 equally sized bins were used for this). This was done because we 

observed a positive correlation between SNP density and mean change-elevation correlations 

per window (Pearson R = 0.069, 95% CI = 0.047-0.091, P < 0.001), and we wanted to 

control for this. Null distributions and P-values were based on 1000 randomizations and are 

reported for each climate PC.

Chaturvedi et al. Page 15

Nat Ecol Evol. Author manuscript; available in PMC 2023 April 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data

Extended Data Figure 1. 
Ordination of climate variation (22 variables, see Table S2 for code descriptions) via 

principal component analysis (PCA). Points denote the study populations, colour-coded by 

species.
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Extended Data Figure 2. 
Manhattan plots showing the strength of evidence for association (measured here using the 

Bayes factor from the software BayPass) between a SNP window and climate for PC1. 

Results are shown along the 13 linkage groups. In each panel title, the two values in 

parentheses are the number of SNP windows in the top 10% quantile (“windows”), followed 

by the number of linkage groups with at least 1 SNP window in the top 10% quantile 

(“LG”).
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Extended Data Figure 3. 
Manhattan plots showing the strength of evidence for association (measured here using the 

Bayes factor from the software BayPass) between a SNP window and climate for PC2. 

Results are shown along the 13 linkage groups. In each panel title, the two values in 

parentheses are the number of SNP windows in the top 10% quantile (“windows”), followed 

by the number of linkage groups with at least 1 SNP window in the top 10% quantile 

(“LG”).
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Extended Data Figure 4. 
Tests for parallel climate-associated SNP windows between species of Timema stick insects 

(all plots are for the top 10% empirical quantile) for PC1. Plot shows x-fold enrichments 

for the number of overlapping climate-associated SNP windows for PC1 for comparisons 

between multiple species, i.e., beyond pairs of species (e.g., 2 or more species, 3 or 

more species, 4 or more species). Gray dots denote x-fold values expected under 1000 

randomizations for a null distribution. Black diamond denotes median of the x-fold values 

expected under 1000 randomizations for a null distribution. Red dot and N value above 

each group indicates the observed number of overlapping climate-associated SNP windows 

for each comparison. P-value above each group denotes whether the overlap is greater than 

expected by chance from a one-sided randomization test. * Indicates x-fold enrichments 

with P-value = 0.05.
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Extended Data Figure 5. 
Tests for parallel climate-associated SNP windows between species of Timema stick insects 

(all plots are for the top 10% empirical quantile) for PC2. Plot shows x-fold enrichments 

for the number of overlapping climate-associated SNP windows for PC2 for comparisons 

between multiple species, i.e., beyond pairs of species (e.g., 2 or more species, 3 or 

more species, 4 or more species). Gray dots denote x-fold values expected under 1000 

randomizations for a null distribution. Black diamond denotes median of the x-fold values 

expected under 1000 randomizations for a null distribution. Red dot and N value above 

each group indicates the observed number of overlapping climate-associated SNP windows 

for each comparison. P-value above each group denotes whether the overlap is greater than 

expected by chance from a one-sided randomization test. * Indicates x-fold enrichments 

with P-value = 0.05.
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Extended Data Figure 6. 
Test results of the “shared ecology” versus “shared genetics” hypotheses for PC1. (A) 

Scatterplot shows the relationship between X-fold enrichment (measure for parallelism) 

and climatic distance (measured as the distance in PC1 scores) based on a single-factor 

linear model. (B) Scatterplot shows the relationship between X-fold enrichment (measure for 

parallelism) and genetic distance (measured as pairwise phylogenetic distance) based on a 

single-factor linear model. (C) Scatterplot shows the relationship between climatic distance 

(measured as the distance in PC1 scores and is the distance in climate variables) and genetic 

distance (calculated as pairwise phylogenetic distance) based on a single-factor linear model. 

(D) Plot shows parameter estimates with standardized coefficients for the full model for 

PC1. This test was implemented for all eight species and 56 species pairs. Error bars indicate 

95% equal-tail probability intervals (ETPIs). A negative or positive estimate that deviates 

from zero indicates the effect on parallelism.
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Extended Data Figure 7. 
Test results of the “shared ecology” versus “shared genetics” hypotheses for PC2. (A) 

Scatterplot shows the relationship between X-fold enrichment (measure for parallelism) 

and climatic distance (measured as the distance in PC2 scores) based on a single-factor 

linear model. (B) Scatterplot shows the relationship between X-fold enrichment (measure for 

parallelism) and genetic distance (measured as pairwise phylogenetic distance) based on a 

single-factor linear model. (C) Scatterplot shows the relationship between climatic distance 

(measured as the distance in PC2 scores and is the distance in climate variables) and genetic 

distance (calculated as pairwise phylogenetic distance) based on a single-factor linear model. 

(D) Plot shows parameter estimates with standardized coefficients for the full model only for 

PC2. This test was implemented for all eight species and 56 species pairs. Error bars indicate 

95% equal-tail probability intervals (ETPIs). A negative or positive estimate that deviates 

from zero indicates the effect on parallelism.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Conceptual figure to summarize the analyses conducted in this study.
(A) Diagram shows the approach to quantify overlap of top climate-associated SNP 

windows between a given pair of species (Species 1 and species 2). Here red dots denote 

climate-associated SNP windows for each species. We then quantify overlap in these 

windows between a given set of species which can “2 or more”, “3 or more”, and “4 or 

more” (“N”). (B) Parallelism: Diagram shows the approach to quantify excess overlap of 

top climate-associated SNP windows for multiple species. (C) Experimental comparison: 

Diagram shows two steps to identify excess overlap in climate-associated SNP windows 
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and those that changed in an elevation-dependent manner during an experiment. Here, 

first we identify loci/genomic regions associated with the greatest allele-frequency change 

in an elevational dependent manner in an experiment as those which show exceptional 

change as compared to a null expectation (denoted in green line, denoted as “X”). Second, 

we compare if these regions (“X”) show excess overlap with the climate-associated SNP 

windows (“N”). (D) CHC comparison: Diagram shows two steps to identify excess overlap 

in climate-associated SNP windows and genomic regions associated with CHCs. First, we 

identify loci/genomic regions associated with greatest effect on CHC traits (denoted in green 

line, denoted as “C”). Second, we compare if these regions (“C”) show excess overlap with 

the climate-associated SNP windows (“N”).
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Figure 2. Map of species ranges and plots for within-species variation in climate PC scores.
(A) Map of the ranges of the eight species included in the study, where the coloured shapes 

represent the geographic ranges of each species. (B) Two hypotheses which we use to 

test for decay of parallelism: First diagram shows our prediction for the “shared ecology” 

hypothesis where we expect a decay in parallelism with an increase in climate (i.e., habitat 

and ecological) distance. Second diagram shows our prediction for the “shared genetics” 

hypothesis where we expect a decay in parallelism with an increase in genetic distance. We 

use these two hypotheses to study the decay of parallelism. (C-E) Box plots of PC variation 

for the first three principal components (PC1, PC2, PC3) for the eight species included in the 

study (n = 1420 individuals from 53 localities).
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Figure 3. 
Manhattan plots showing the strength of evidence for association (measured here using the 

Bayes factor from the software BayPass [82]) between a SNP window and climate (in this 

case, PC3, see extended data figures 4 and 5 for analogous results for PC1 and PC2). Results 

are shown along the 13 linkage groups. In each panel title, the two values in parentheses are 

the number of SNP windows in the top 10% quantile (“windows”), followed by the number 

of linkage groups with at least 1 SNP window in the top 10% quantile (“LGs”).
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Figure 4. 
Tests for parallel climate-associated SNP windows between species of Timema stick insects 

(all plots are for the top 10% empirical quantile). In this case, PC3, see Supplementary 

Figures 4 and Supplementary Figure 5 for analogous results for PC1 and PC2. Barplot 

shows x-fold enrichments for number of overlapping climate-associated SNP windows for 

PC3 for comparisons between multiple species, i.e., beyond pairs of species (e.g., 2 or more 

species, 3 or more species, 4 or more species). Gray dots denote x-fold values expected 

under 1000 randomizations for a null distribution. Black dot denotes median of the x-fold 

values expected under 1000 randomizations for a null distribution. Red dot and N value 

above each group indicates the observed number of overlapping climate-associated SNP 

windows for each comparison. P-value above each group denotes whether the overlap is 
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greater than expected by chance from a one-sided randomization test. * Indicates x-fold 

enrichments with P-value ≤ 0.05.
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Figure 5. Tests for introgression and “shared ecology” and “shared genetics” hypotheses.
(A) Population graph from TREEMIX for all Timema populations used in this study (N 

= 53), allowing no migration or admixture event (the actual migration edge is not shown 

due to the extremely high proportion of variation explained from the admixture model as 

shown in Supplementary Table 9). Terminal nodes are labelled by abbreviations for locations 

from where samples were collected and coloured according to species. (B) Scatterplot 

shows the relationship between climatic distance (measured as distance in PC3 scores and 

as distance in climate variables) and genetic distance (measured as pairwise phylogenetic 

distance) based on a one-way linear model. (C) Scatterplot shows the relationship between 

x-fold enrichment (measure for parallelism) and ecological ie climatic distance (measured 

as distance in PC3 scores) based on a single-factor linear model. (D) Scatterplot shows 
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the relationship between X-fold enrichment (measure for parallelism) and genetic distance 

(measured as pairwise phylogenetic distance) based on a one-way linear model. (E) Plot 

shows parameter estimates with standardized coefficients for the full model for PC3. Error 

bars indicate 95% equal-tail probability intervals (ETPIs). Estimates diverging from zero 

indicate a positive or negative effect of ecology or genetics on parallelism. This test was 

implemented for all eight species and 56 species pairs. Results analogous to those for (B)- 

(E) but for PC1 and PC2 are shown in extended figures 6 and 7, respectively. A negative or 

positive estimate which deviates from zero is indicative of an effect on parallelism.
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Figure 6. Evidence for excess overlap between 100Kb windows associated with climate in nature 
and those that changed in an elevation-dependent manner during an experiment.
(A) The scatterplot shows the mean correlation between change and elevation during an 

experiment versus the median Bayes factor measuring SNP-climate (PC3) association in 

nature for T. cristinae for 100 Kb windows. Points denoting windows in the top 10% for 

change-elevation correlations are shown in orange, those in the top 10% for SNP-climate 

associations are shown in blue, and those in the top 10% for both are in purple (other 

windows are shown with gray points). We are interested in the top right corner of the plot, 

that is the purple points denoting windows were exceptional (top 10%) in the experiment 
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and nature, and we used a randomization test to ask whether more windows fall in this 

category than expected by chance. Panels (B), (C) and (D) show null expectations for the 

number of windows in the top 10% for the experiment and nature based on climate PCs 1, 

2 and 3, respectively. The null distribution from the constrained randomization test in each 

case is denoted by the gray density plot, whereas the observed value is shown with a vertical 

purple line. The P-value for the null hypothesis of no association between SNP-climate and 

change-elevation correlations is reported in each panel as well.
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