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Abstract

Malaria is a major health threat caused by Plasmodium parasites that infect the red blood 

cells. Two predominant types of Plasmodium parasites are Plasmodium vivax (P. vivax) and 

Plasmodium falciparum (P. falciparum). Diagnosis of malaria typically involves visual microscopy 

examination of blood smears for malaria parasites. This is a tedious, error-prone visual inspection 

task requiring microscopy expertise which is often lacking in resource-poor settings. To address 

these problems, attempts have been made in recent years to automate malaria diagnosis using 

machine learning approaches. Several challenges need to be met for a machine learning approach 

to be successful in malaria diagnosis. Microscopy images acquired at different sites often vary 

in color, contrast, and consistency caused by different smear preparation and staining methods. 

Moreover, touching and overlapping cells complicate the red blood cell detection process, which 

can lead to inaccurate blood cell counts and thus incorrect parasitemia calculations. In this work, 

we propose a red blood cell detection and extraction framework to enable processing and analysis 

of single cells for follow-up processes like counting infected cells or identifying parasite species 

in thin blood smears. This framework consists of two modules: a cell detection module and a cell 

extraction module. The cell detection module trains a modified Channel-wise Feature Pyramid 

Network for Medicine (CFPNet-M) deep learning network that takes the green channel of the 

image and the color-deconvolution processed image as inputs, and learns a truncated distance 

transform image of cell annotations. CFPNet-M is chosen due to its low resource requirements, 

while the distance transform allows achieving more accurate cell counts for dense cells. Once 

the cells are detected by the network, the cell extraction module is used to extract single cells 

from the original image and count the number of cells. Our preliminary results based on 193 

patients (including 148 P. Falciparum infected patients, and 45 uninfected patients) show that our 

framework achieves cell count accuracy of 92.2%.
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I Introduction

Malaria remains a global health threat with considerable mortality rates. Diagnosis and 

monitoring of malaria have ongoing challenges particularly in resource-poor settings where 

experts analyzing the microscopy images are often lacking, and computational resources 

needed for automated analysis are limited. Light-weight automated systems that can assist 

health providers in diagnosis and monitoring of malaria disease is a critical need to ensure 

rapid and accurate diagnosis and treatment. Lately, thanks to the advances in computational 

resources and availability of large amounts of annotated data, supervised machine learning 

methods have started to be used for automated malaria diagnosis from thin blood smear 

microscopy images [1], [2]. However, there are still several problems that are needed to be 

addressed to develop a successful machine learning model that can segment and count the 

red blood cells in a thin blood smear microscopy image for malaria diagnosis. One of these 

problems is large appearance variations between the blood smear images. The smear images 

differ in color, contrast, and consistency due to different smear preparation and staining 

procedures. This variety brings generalization challenges making trained machine learning 

models harder to use on blood smears that are prepared at different locations. Another 

challenge is large numbers of touching or overlapping cells in thin blood smear images 

that lead to detection and segmentation problems. This is an important issue for malaria 

diagnosis and monitoring that require accurate counting of cells to calculate parasitemia (a 

measure of parasite load).

In this paper, we present a pipeline called Channel-wise Feature Pyramid Network for 

Medicine (CFPNet-M) [3] - Detection, Extraction and Counting (CFPNet-M-DEC), to 

detect, extract and count red blood cells in thin blood smear microscopy images for 

automated malaria diagnosis and patient monitoring. To address the first problem caused 

by the appearance variations in collected blood smear images, we propose to use color 

deconvolution [4], [5], and the green channel of the image as inputs to the network. To 

address the second issue of distinguishing touching cells more accurately, the model is 

trained as a regression model rather than a binary segmentation model. The regression model 

learns a processed distance transform of the binary ground truth mask. As the segmentation 

network, CFPNet is used by modifying the first and the last layers to convert it to a 

regression network that takes a two channel input. CFPNet-M [3] is a light-weight network 

that is specifically developed for biomedical image segmentation. Due to its characteristics 

like the low memory requirement, it is suitable for resource-poor settings. The overall 

pipeline of the proposed red blood cell detection, extraction and monitoring system is given 

in Fig. 1. The original thin blood smear images are given as the input to the pipeline. 

These original images are processed to get the color deconvolution image and the green 

channel to be given to the cell detection module. The model in the detection module infers 

a truncated distance transform for each image, and the inferenced images are given to the 
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cell extraction module. Finally, the cell extraction module uses a series of classical image 

processing techniques to extract each cell as a separate image and the cell count for further 

analysis.

II Related Work

Automating malaria diagnosis and monitoring using thin blood smears is an active research 

area [2], [6], [7]. Thanks to the advances in deep learning and availability of annotated 

training data, recent works started to rely on supervised deep learning techniques. Some 

works directly use the whole microscopy image for tasks like segmentation and detection 

[8]–[13], some use extracted cell images for tasks like classification [11], [13]–[15]. 

Moreover, some works evaluate cell patches collected from multiple patients, and some 

others evaluate the results on patient level. There are different studies focusing on the 

detection of the red blood cells for further use [16], and the detection of the infected cells 

directly [1], [12], [17], [18]. Some studies classify red blood cells as infected vs. uninfected, 

as a two class problem [19], [20], and other studies approach the problem as a three or more 

class classification task and include classes to differentiate different species of parasites. 

Finally, there are studies that created a full pipeline for the detection and classification tasks 

[13], [21], [22]. On the other hand, the automated systems are often needed in environments 

with limited computational resources or lack of experts. In such environments, the most 

advanced tool on site might be a smart phone, which is successfully used in some recent 

works [23]–[26].

Like many other biomedical image analysis problems, there are problem specific issues 

coming from the nature of the data. Specifically, in malaria diagnosis, available data are 

collected from many different places, with varying image quality. Common challenges of 

image detection and classification in biomedical images include the variety of appearance 

of the same class cells, touching and partially overlapping cells [27]. Specifically, when 

accurate cell counts are important, as they are for malaria diagnosis and monitoring, 

touching and partially overlapping cells create even more critical issues. To address this 

problem, some authors used distance transform as ground truth for regression, instead of a 

binary mask in convolutional neural networks, to highlight the center of the cells or particles. 

This can lead to a better distinction of touching cells [28]–[30].

This study proposes a processing pipeline to detect, count, and extract red blood cells from 

thin blood smear images to be used for identification of infected versus uninfected cells 

and for classification of infecting parasite species. The proposed pipeline uses a distance 

transform-based cell segmentation approach to increase cell count accuracy, particularly 

in the presence of touching and overlapping cells. The proposed pipeline also involves a 

color deconvolution step [4], [5] to increase the generalization capability of the trained deep 

learning model to better adapt to processing of images collected from different sites.

III Methods

We propose a framework, CFPNet-M-DEC, for detecting and extracting red blood cells in 

thin blood smears, as shown in Fig.1. It consists of two modules: cell detection module and 
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cell extraction module. The cell detection module takes an original microscopy image as 

input and uses a modified CFPNet-M model to detect cells. Once the cells are detected by 

the network, the cell extraction module is used to extract and count single cells.

A Detection Module

The proposed detection module, illustrated in Fig. 2, includes three main steps: (i) image 

pre-processing, (ii) color deconvolution; and (iii) deep learning-based detection.

1) Pre-processing—This step aims to detect and crop the circular image region seen 

through the microscope from the rest of the image. The original images (of size 5312 × 

2988) include a dark background surrounding the blood smear image seen through the 

microscope. We used Otsu thresholding [31] to generate binary masks that differentiate 

blood smear regions from the surrounding background. Bounding boxes computed from 

these masks are then used to crop regions of interest from the original images. This step 

reduces image size to approximately 3000 × 3000. Cropped images and the corresponding 

ground truth segmentation masks are then resized to 800 × 800.

Color Deconvolution: Color deconvolution is an algorithm designed to extract the dyes of 

different stains from RGB images [4], [5]. Color deconvolution can be used to extract single 

or multiple stains from an image. The extraction of different dyes gives us a stain free, 

common color ground for a variety of images collected from different sources. Since the 

microscopy images are acquired from different labs and hospitals, the output image varies a 

lot in color and consistency. In the detection module, to exclude the unwanted effects of this 

variety, a color deconvolution image of the original microscopy image is used as one of the 

input channels. In our experiments, an extraction for Giemsa dye is done, but this method 

can be generalized to different dyes, therefore is applicable to other images prepared with 

different types of dyes.

2) Training—To detect and extract individual cells for further analysis, we modified 

a recent light-weight segmentation network Channel-wise Feature Pyramid Network for 

Medicine (CFPNet-M) [3]. We modified the first and last layers of the network to allow 

processing of two channel (dye-free image and green channel of the original image) input; 

and to perform regression rather than classification. The network is trained to map its input 

to a processed distance transform of the binary segmentation mask as shown in Fig. 2. The 

CFPNet-M network [3] is an improved version of the classical U-Net [32] segmentation 

network. The number of trainable parameters of CFPNet-M is drastically less compared 

to the U-Net network, which reduces the resources needed for both training and inference 

phases. This property is important for malaria diagnosis in resource-poor settings. Adam 

optimizer and mean squared error loss function are used for training the network. The model 

is trained using the dye free image and the green channel of the original image as inputs, and 

truncated distance transform of the binary ground-truth cell segmentation mask as output. 

The training image is generated as follows: (i) a binary cell segmentation mask is created 

using manual polygon annotations generated for the cells in the input image; (ii) distance 

transform operation is applied to the binary segmentation mask; (iii) contrast enhancement 

is applied to the distance transform output to better highlight the cell centers; (iv) enhanced 
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distance transform is truncated to a minimum distance to decrease the number of possible 

values for the regression process. The resulting truncated enhanced distance transform map 

is used to train the modified CFPNet-M network.

B Cell Extraction Module

Once the truncated distance map of the cells is generated by the modified CFPNet-M 

network, post-processing steps are performed to extract individual cells for further analysis 

(i.e. infected vs. not infected classification). Given the network output, single cell image 

patches are extracted using the following steps: (i) A binarized version of the network 

output is used to remove background noise from the enhanced distance map; (ii) Gaussian 

smoothing is applied to the enhanced distance map to reduce false detections; (iii) extended-

maxima transform [33] is applied to the smoothed distance map to detect inner cell regions; 

(iv) morphological erosion operation is applied to the extended-maxima map to reduce 

merging of neighboring cells; (v) individual cells are identified using connected component 

labeling; (vi) the labeled image is resized back to the original resolution (3000 × 3000 

pixels); (vii) Fixed sized (200 × 200 pixels) image patches are extracted around the centroids 

of the connected components from the original resolution images.

IV Experimental Results and Discussion

The proposed system was trained, tested, and evaluated using data from 193 patients 

(including 148 P. Falciparum infected patients, and 45 uninfected patients). Out of 955 

microscopy images in total, 100 images were selected for the validation set, 100 images 

were selected for the test set, and the remaining 755 images were used for training. Training 

was done using the default parameters of CFPNet-M, and for 25 epochs. Sample input 

images, corresponding inference results, and cell center markers obtained from these outputs 

are shown in Fig. 3. Separate cells are extracted using the markers as described in Section 

III-B. The results were evaluated in terms of segmentation and detection performances and 

compared to a marker controlled watershed segmentation algorithm [24].

A Segmentation Performance

Experimental results were first evaluated in terms of cell segmentation. Model inference 

results were thresholded and dilated to produce binary segmentation masks and compared to 

the manual cell segmentation in terms of dice similarity coefficient [34]. The dice similarity 

coefficient between two binary images A and B is given in Eq. (1), where |A| represents the 

cardinality of image A.

Dice(A, B) = 2 (A ∩ B)
A + B (1)

These results were compared to the performance of a watershed segmentation algorithm 

[24]. The marker controlled watershed algorithm was applied on the gradient magnitude 

image, based on the cell markers that were found using multi-scale Laplacian of Gaussian. 

The dice coefficient was calculated for each test image, then the mean dice coefficient was 

taken by averaging the dice coefficients of all images. The mean dice coefficient on all 100 
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images in the test set is given in Table I. In this table, we see that the proposed detection 

model outputs have a mean dice value of 0.5762, whereas the mean dice coefficient of the 

watershed-based method is 0.7204.

The results of these experiments show that the watershed-based method is superior to the 

proposed detection model with respect to the mean dice score with a 0.15 difference. This 

result is expected since the watershed-based method directly aims to have a segmentation 

mask, whereas the proposed model aims to have a detection mask that will later be used 

to extract and count each cell separately. Moreover, since the proposed model outputs a 

truncated distance transform, it highlights the centers of the cells while giving a smaller 

mask for each cell to make it easier to separate them in cases of touching and overlapping 

cells.

B Cell Counting Performance

Experimental results from the full processing pipeline including the cell extraction module 

were evaluated in terms of single cell detection and counting. Extracted cells and the 

obtained cell counts were compared to the cell counts obtained from the binary ground-

truth segmentation masks and the aforementioned watershed transform-based segmentation 

masks. Cell count errors in the ground-truth segmentation masks are caused by touching 

or overlapping cells. Cell count errors in this case can be used as a measure of image 

complexity. These counts were compared to the ground-truth cell counts obtained from the 

manual polygon annotations.

Mean cell count errors and standard deviations (STD) for all 100 images of 20 patients in 

the test set are shown in Table II. The mean errors show that the proposed pipeline has a 

15.08 mean error value with 11.52 standard deviation. The binary ground truth segmentation 

masks have a 41.09 mean error with 19.16 standard deviation. Finally, the counts extracted 

from the watershed segmentation results have a 32.31 mean error with 40.66 standard 

deviation value. The mean error values in this table are calculated by taking the difference 

between the computed cell counts and the actual cell counts in each image, and then by 

averaging over 100 test images.

The cell count percentages for both image level and patient level are given in the Table III. 

The cell count percentage for a single image was directly calculated by taking the number 

of the extracted cells from the image divided by the actual cell count in that specific image. 

Then the ratio value was multiplied by 100 to have percentage scale. Finally, the mean of 

these percentages were taken for all 100 images to find the mean cell count percentage on 

image level, and for 5 images for each patient on patient level. The mean percentage value 

of the correctly detected and counted cells of the proposed pipeline on all test images is 

92.28%, whereas the percentage value is 79.54% for the count of the cells that are extracted 

from ground truth masks used in training, and 84.07% for the cell counts extracted from the 

watershed-based method.

For patient level analysis of 20 patients, the percentage of correct counts of our method 

varies between 99.18% and 77.95%, with a mean of 92.20%. For watershed, the variance 

goes much higher with percentage values between 101.48% (over-segmentation) and 
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30.32%, with a mean of 83.61%. For the binary ground-truth segmentation masks, the 

percentage values varies between 88.70% and 56.41%, with a mean of 79.38%.

The experimental results show that our pipeline has the smallest mean error value with the 

lowest standard deviation with respect to the missed cells in the cell count. Moreover, the 

results show that our pipeline has the highest accuracy in cell count values with higher mean 

percentage with least variance. Our method goes up to 99.18% accuracy for cell counts on 

patient level. The proposed method is more focused on detecting and extracting single cells, 

rather than having accurate segmentation masks.

V Conclusion

The proposed pipeline shows promising results for extraction and counting of red blood 

cells from thin blood smear images. The proposed deep learning network considers stain 

and color differences between images collected from different resources, and generates 

a truncated distance map instead of a binary segmentation mask. This distance mapping 

enables detection, extraction, and counting of single cells within clusters. The extracted cells 

can then be used to classify the individual cells as uninfected or infected, or to train a 3-class 

classifier for uninfected cells and cells infected with P. falciparum and P.Vivax. With a 

classification step added to the pipeline, the whole pipeline can be used to diagnose malaria, 

and monitor malaria patients during their treatments.

Our future work will involve generalization of the proposed pipeline to images collected 

from different resources including P. vivax; augmentation of the training dataset with 

artificial data to further improve performance on touching and overlapping cells; and precise 

tuning of the parameters or creation of adaptive parameters to extract the cells.
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Fig. 1. 
Flowchart of the proposed CFPNet-M-DEC framework.
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Fig. 2. 
Different stages of the Cell Detection Module. The original image is pre-processed, then 

color deconvolution is done to get the dye-free image. The green channel is taken together 

with the dye-free image as the inputs to the modified CFPNet-M, which learns a truncated, 

enhanced distance transform.
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Fig. 3. 
Example results from the CFPNet-M-DEC pipeline. Two example images are given in two 

rows with zoomed in parts showing touching cell examples. First column is the original 

image, second column is the model output shown in jet colormap, third column shows the 

cell center markers found in the model output.
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Table I

Mean Dice Similarity Coefficient between the ground truth mask used in training, and the binarized detection 

mask result of Cell Detection Module of CFPNET-M-DEC, and the results of the watershed-based method.

Method Mean Dice Coefficient

CFPNet-M-DEC 0.5762

Watershed 0.7204
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Table II

GT Mask: Mean error and STD between the cell count of the cells extracted from the ground truth mask 

and actual cell count. Watershed: The mean error and STD between the cell count of the cells extracted from 

the results of the watershed-based method and the actual cell count. CFPNet-M-DEC: The mean error with 

the corresponding STD between the cell count of the cells extracted from the CFPNet-M-DEC result and the 

actual cell count.

Method Mean Error Error STD

Binary Ground-truth Mask 41.09 19.16

Watershed 32.31 40.66

CFPNet-M-DEC 15.08 11.52
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Table III

GT Mask: Mean percentage of the cell count of the cells extracted from the ground truth mask over the actual 

cell count. Watershed: Mean percentage of the cell count of the cells extracted from the watershed-based 

method result over the actual cell count. CFPNet-M-DEC: Mean percentage of the cell count of the cells 

extracted from the CFPNet-M-Dec result over the actual cell count.

Mean Count Percentage %

Method Image Level Patient Level

Binary Ground-truth Mask 79.54 79.38

Watershed 84.07 83.61

CFPNet-M-DEC 92.28 92.20
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