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Strategies to personalize psychopharmacological treatment promise to improve efficacy and tolerability. We measured serotonin
transporter occupancy immediately after infusion of the widely prescribed P-glycoprotein substrate citalopram and assessed to
what extent variants of the ABCB1 gene affect drug target engagement in the brain in vivo. A total of 79 participants (39 female)
including 31 patients with major depression and 48 healthy volunteers underwent two PET/MRI scans with the tracer [11C]DASB and
placebo-controlled infusion of citalopram (8mg) in a cross-over design. We tested the effect of six ABCB1 single nucleotide
polymorphisms and found lower SERT occupancy in ABCB1 rs2235015 minor allele carriers (n= 26, MAF= 0.18) compared to major
allele homozygotes (t73= 2.73, pFWE < 0.05) as well as in men compared to women (t73= 3.33, pFWE < 0.05). These effects were
robust to correction for citalopram plasma concentration, age and diagnosis. From occupancy we derived the ratio of occupied to
unoccupied SERT, because in theory this measure is equal to the product of drug affinity and concentration at target sites. A model
combining genotype with basic clinical variables, predicted that, at the same dosage, occupied to unoccupied SERT ratio was
−14.48 ± 5.38% lower in rs2235015 minor allele carriers, +19.10 ± 6.95% higher in women, −4.83 ± 2.70% lower per 10 kg
bodyweight, and −2.68 ± 3.07% lower per 10 years of age. Our results support the exploration of clinical algorithms with
adjustment of initial citalopram dosing and highlight the potential of imaging-genetics for precision pharmacotherapy in
psychiatry.
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INTRODUCTION
Non-response to pharmacotherapy is a major challenge in the
treatment of major depressive disorder (MDD). While roughly 30%
percent of patients achieve remission, about 60% do not respond
sufficiently to first-line treatment with selective serotonin reuptake
inhibitors (SSRIs) [1, 2]. Moreover, a considerable number of
patients experience adverse effects. Thus, most patients require
modifications of their initial treatment [3]. Large-scale collabora-
tive research projects pursue the characterization of predictors for
treatment resistance that may guide initial treatment strategies
[2]. Therapeutic drug monitoring can inform dose adaptations to
achieve drug concentrations in blood associated with the highest
possible probability of response and the lowest possible risk of
adverse events. This approach may be supplemented by
pharmacogenetic testing, such as determination of cytochrome
P450 (CYP) genotype and consideration of basic pharmacokinetic
variables [4]. While the cost-effectiveness of this approach has
been demonstrated previously [5], predictive markers of individual
response are highly anticipated to accelerate remission.
Binding of SSRIs to their molecular target, the serotonin

transporter (SERT), correlates with their concentration in the brain

and antidepressant efficacy may be associated therewith [6–8].
Next to plasma concentration, active efflux transport at the blood-
brain barrier (BBB) might influence availability of antidepressants
at target sites [9, 10]. While drug metabolism and basic
pharmacokinetic variables directly affect plasma concentration,
BBB permeability has been demonstrated to modify the associa-
tion between plasma levels and cerebral concentration [11].
P-glycoprotein (P-gp), encoded by the ATP-binding cassette
transporter B1 (ABCB1) gene, represents one of the principal
efflux mechanisms at the BBB protecting the brain against
potentially toxic xenobiotics [12, 13]. Among other pharmaceu-
ticals, several psychotropic substances including SSRIs were
shown to be substrates of the P-gp [10, 14]. (Es)citalopram is the
most widely used SSRI [15, 16] and one of the strongest P-gp
substrates within this drug class. Preclinical studies demonstrated
1.9–3.7 times higher citalopram brain concentrations in P-gp
knockout mice after acute and chronic administration [17–21].
Therefore, genotyping of ABCB1 holds promise as a predictive
pharmacogenetic marker of antidepressant response based on the
hypothesis that genetic variants might affect P-gp expression or
function, and thus antidepressant concentration in the brain
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[9, 22]. Uhr et al. were the first to demonstrate an association
between ABCB1 genotype and clinical efficacy of antidepressants
in MDD [18]. However, results of consecutive studies are equivocal
and interpretation is hampered by methodological heterogeneity
[23–35]. Inconsistencies may be explained by substrate specific
effects of variants, disorder heterogeneity and non-uniform
outcome definition. Besides clinical efficacy, a large body of
evidence suggests that ABCB1 genotype is associated with
tolerability of antidepressants based on the assumption of
genotype dependent alterations in cerebral drug accumulation
(for review, see Brückl et al. [9]). Moreover, implications of ABCB1
genotype in the treatment of other neuropsychiatric disorders,
such as schizophrenia [36–38] and epilepsy [39] highlight its role
whenever P-gp substrates are administered.
Nevertheless, progress in the determination of the utility of

ABCB1 genotyping by means of clinical trials is hampered by the
need for large sample sizes and standardized treatment protocols.
Adding to this, in light of the inherent heterogeneity of psychiatric
disorders and the diversity of outcomes to define efficacy, the
prospects of detecting and confirming relevant variants for each
disorder and intervention appear distant. However, under the
assumption that ABCB1 variants affect cerebral drug availability,
measurement of target engagement in the brain could be
exploited as an intermediate phenotype to identify pharmacoge-
netic variants with trans-diagnostic relevance. Positron emission
tomography (PET) enables the in vivo quantification of SERT
occupancy, i.e., the proportion of transporter sites blocked by
medication and, thus, may provide an indirect measure of cerebral
drug availability. In this imaging-pharmacogenetics study, we
aimed to assess the impact of ABCB1 genotype on SERT occupancy
by citalopram as a proxy of intracerebral drug availability in a large
sample of healthy controls and patients diagnosed with MDD
using gold standard SERT quantification procedures. Acute
pharmacological challenge with intravenous citalopram was used
to allow for the most direct assessment of the impact of efflux
transport at the BBB on cerebral drug availability, because
significant drug metabolism, first-pass effects, adaptations, and
ceiling effects after prolonged therapy could be ruled out. This
enabled the identification of variables with the potential to aid
antidepressant dose adjustment and in this way contribute to
precision pharmacotherapy in psychiatry.

METHODS
Participants and study design
Thirty-one patients with MDD (age ± SD: 29.0 ± 9.0) and 48 healthy
volunteers (age ± SD: 28.0 ± 8.7, see Table 1) were included in these
analyses. Participants underwent two PET/MR scans with the radioligand
[11C]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine ([11C]
DASB) during which double-blind intravenous pharmacological challenge
with the SSRI citalopram (8 mg) or placebo was performed in a randomized
cross-over study design (see Figure S1). Scanning procedures were
performed using established protocols as detailed in the supplement
[40]. In short, [11C]DASB was applied as bolus plus constant infusion
according to a protocol designed to rapidly attain equilibrium in high-
binding regions [41]. Good agreement with conventional bolus application
protocols was demonstrated using this approach [42]. Drug or placebo
infusion was performed over 8min starting 70min after initiation of
radioligand application. Occurrence and severity of frequently observed
side-effects to SSRIs were assessed during scans. Arterial blood samples
were drawn throughout the measurement and assessment of the
concentration of [11C]DASB, radioactive metabolites and citalopram in
plasma was performed [41, 43]. Time activity curves and metabolite
corrected plasma activity are displayed in Fig. 1.
After completion of scanning procedures, antidepressant treatment with

the SSRI escitalopram 10mg (Cipralex, Lundbeck) was initiated in patients.
Details on recruitment, inclusion criteria, clinical management and follow-
up are outlined in the supplement.

Genotyping and selection of single nucleotide polymorphisms
(SNPs)
Eight ABCB1 SNPs were considered for genotyping based on previously
reported association with antidepressant treatment response to P-gp
substrates or on association studies with ABCB1 expression
[18, 24, 27, 28, 30, 44–50]. Genotyping procedures are described in detail
in the supplement [51, 52]. Genotype frequencies were found to be
distributed according to the Hardy–Weinberg equilibrium (see Table 2).
The following six tag SNPs (mean r2= 0.97) were selected and used for
further statistical analyses: rs1128503, rs2235015, rs10245483, rs28373093,
rs2032583, rs1045642 (see Fig. S2). Participants were grouped into minor
allele carriers and major allele homozygotes for all statistical analyses.

Effect of ABCB1 variants on SERT occupancy and clinical
response
The thalamus was chosen for quantification of occupancy because our
tracer application protocol is optimized for rapid equilibration in this
region with high SERT expression [41]. Binding potentials (BPP) were

Table 1. Demographics, clinical characteristics, pharmacokinetic and imaging parameters of study participants are shown.

Diagnosis ABCB1rs2235015

Controls MDD p A+ AC C p

Group size 48 31 26 53

Age (y) 28.0 ± 8.7 29.0 ± 9.0 0.61a 29.0 ± 9.7 28.1 ± 8.3 0.69a

Sex (f/m) 24/24 15/16 1b 11/15 28/25 0.52b

Bodyweight (kg) 70.3 ± 12.0 68.8 ± 13.2 0.63a 70.1 ± 11.9 69.5 ± 12.8 0.83a

Citalopram AUC ((mg/ml) x sec) 94.4 ± 19.6 85.2 ± 21.0 0.06a 89.4 ± 20.1 91.5 ± 20.9 0.66a

HRSD – 22.7 ± 5.1 – –

BDI – 28.9 ± 8.2 – –

CGI – 4.7 ± 0.7 – –

Placebo SERT BPP (thalamus) 23.3 ± 4.2 24.2 ± 4.1 0.39a 23.5 ± 4.7 23.8 ± 3.9 0.78a

SERT occupancy (%) 67.3 ± 7.1 66.8 ± 4.9 0.75a 64.5 ± 6.4 68.4 ± 5.9 0.01a

O/U SERT 2.1 ± 0.7 2.1 ± 0.5 0.41a 1.9 ± 0.5 2.3 ± 0.6 <0.01a

Participants were grouped according to diagnosis (Controls/MDD) and ABCB1rs2235015 genotype (A+ AC/C). Groups did not differ in terms of age, sex,
bodyweight, AUC and imaging parameters. Minor allele carriers and major allele homozygotes did not differ in age, sex, bodyweight, AUC and baseline SERT
binding potential. Significantly lower SERT occupancy was revealed in minor allele carriers when compared to major allele homozygotes.
MDD major depressive disorder, A+ AC minor allele carriers, C major allele homozygotes, HRSD Hamilton Rating Scale for Depression, BDI Beck Depression
Inventory, CGI Clinical Global Impression, SERT serotonin transporter, BPP binding potential.
aIndependent two-sample t-test.
bChi-square test.
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obtained by subtracting the distribution volume of the reference region
(cerebellar gray matter) from the thalamic distribution volume. SERT
occupancy (ΔBPP) was calculated as the relative decrease in binding
potentials between drug and placebo scans (see Fig. 1). R (v4.0.2, https://
www.R-project.org/) was used for statistical analyses. To assess if ABCB1
genotype affects SERT occupancy, multiple linear regression models were
built for each tag SNP with participant’s age, sex, citalopram under the
curve (AUC) in plasma and diagnosis as covariates. Age, sex and AUC were
included based on pharmacokinetic assumptions, prior evidence of higher
plasma levels in females and elderly patients and the association between
SERT occupancy and SSRI plasma levels [11, 53–55]. Correction for family
wise error (FWE) was performed using the Bonferroni method for six SNPs
at alpha= 0.05. Furthermore, we performed mediation analyses using the
PROCESS procedure to assess if effects of variables on SERT occupancy
were mediated by citalopram plasma AUC. In an exploratory analysis, the
effect of significant ABCB1 variants and sex on treatment response (relative
decrease in HDRS scores after six weeks of escitalopram treatment) was
probed using independent t-tests. Pearson’s correlation coefficients were

used to assess the association between SERT occupancy and treatment
response. Moreover, we assessed the effect of genotype, sex and SERT
occupancy on side-effect scores obtained during scans.

Modeling SERT binding based on clinical variables and ABCB1
genotype
While SERT occupancy (ΔBPP) facilitates comparison of our results with
published findings, it asymptotically approaches 100% with increasing
concentration, which hampers linear regression modeling and applicability
of resulting models beyond the range covered by the data. Therefore, we
calculated the ratio of occupied to unoccupied (O/U) SERT, which is directly
derived from ΔBPP for further analyses (Fig. S3), hereafter referred to as
occupied SERT ratio or O/U SERT:

O=U SERT ¼ ΔBPP
1� ΔBPP

¼ ΔBPPðplaceboÞ
ΔBPPðdrugÞ

� 1: (1)

This alternative measure of drug target engagement can be used to
approximate the product of drug affinity (1/Ki) and free drug concentration
at target sites ([I]) assuming ideal conditions as approached in vitro using
equilibrium binding models and disregarding occupancy by endogenous
ligands:

O=U SERT � ½SERT:I�
½SERT� ¼ I½ �

Ki
: (2)

[SERT] and [SERT.I] signify the concentrations of free SERT and SERT-
inhibitor complexes, respectively. The proportionality of O/U SERT to [I]/Ki
enables modeling of linear effects of variables affecting SERT binding via
changes in cerebral drug availability or affinity. A multiple linear regression
model including weight, sex and age as predictors and occupied SERT ratio
as the dependent variable was built. These basic parameters affecting
pharmacokinetics are readily available and can be taken into account in
clinical practice at the initiation of treatment. This model was compared to
a model containing significant ABCB1 variants using analysis of variance
and the Akaike information criterion (AIC). For comparison, models
calculated using SERT occupancy are included in the supplement.

RESULTS
Effect of ABCB1 variants on SERT occupancy and clinical
response
Demographics, clinical characteristics, pharmacokinetic and ima-
ging parameters are listed in Table 1. Average SERT BPP for
placebo and citalopram condition are displayed in Fig. 1a.
Regression analyses revealed a significant effect of rs2235015 on
SERT occupancy (t73= 2.73, pFWE < 0.05) with lower occupancy in
minor allele carriers compared to major allele homozygotes
(Fig. 2a). This effect was robust to correction for citalopram plasma
AUC (Fig. 2b), sex, age and diagnosis. Moreover, we detected a
significant effect of sex with higher SERT occupancy in female
compared to male participants (t73= 3.33, pFWE < 0.05). Notably,
SERT BPP was higher in female compared to male participants in
our sample (mean ± SD: 25.56 ± 4.19 vs 21.80 ± 3.29). While the
effect of rs2235015 was largely unaffected (t72= 2.84, pFWE < 0.05),
the effect of sex on SERT occupancy was markedly decreased
when additionally including placebo BPP as a covariate (t72= 2.03,
p < 0.05, uncorrected). Results for non-significant SNPs are
provided in the supplement (Table S1). Mediation analysis
indicated a direct effect (b=−0.16, SE= 0.07) but no indirect
effect of age mediated by citalopram AUC in plasma on SERT
occupancy (indirect: −0.05, SE= 0.04). However, we found direct
and indirect effects mediated by citalopram AUC in plasma of sex
on SERT occupancy (direct: b= 5.47, SE= 1.33; indirect: b= 1.45,
SE= 0.70). No significant effect of weight on SERT occupancy was
detected after sex-wise mean centering.
In 25 patients with follow-up data, we observed a response rate

of 68% (≥50% reduction in HDRS score) after six weeks of
treatment with escitalopram. Antidepressant treatment response
to escitalopram did not differ significantly between ABCB1rs2235015

minor allele carriers and major allele homozygotes. No association

Fig. 1 Quantification of serotonin transporter (SERT) binding
potential (BPP). a Average SERT BPP from 79 participants included in
this study are displayed in transversal planes overlaid on a MR
template for placebo (left) and citalopram (right) scans. High
baseline binding was observed in regions rich in SERT such as
thalamus and striatum. Time activity curves (b) for the thalamus and
metabolite corrected plasma activity (c) ±SE for PET/MR scans with
citalopram and placebo challenge are plotted for groups defined by
ABCB1rs2235015 genotype.
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between sex and antidepressant response was revealed. Further-
more, we did not detect a significant correlation between SERT
occupancy and antidepressant treatment response. Lastly, there
was no statistically significant effect of ABCB1rs2235015 genotype,
sex or SERT occupancy on side-effects measured during scans,
which were not different between placebo and citalopram 8mg
(see supplement for further details).

Modeling SERT binding based on clinical variables and ABCB1
genotype
In order to provide a model for estimating the effect of different
clinical variables and ABCB1 genotype on SERT binding, we
transformed SERT occupancy into the ratio of occupied to
unoccupied SERT (O/U SERT) which is proportional to the product
of drug affinity and concentration at target sites. Effects are
reported as percentages of the sample’s mean O/U SERT to
improve interpretability. Adding rs2235015 to a model for
prediction of O/U SERT using a combination of the basic clinical
variables sex, age and weight improved the fit to the data
(adjusted R2= 0.35 vs. 0.30) with a lower AIC (722.98 vs 728.01).
This model predicted that, at the same dosage, occupied SERT
ratio was −14.48 ± 5.38% (SE) lower in rs2235015 minor allele

carriers, +19.10 ± 6.95% higher in women, −4.83 ± 2.70% lower
per 10 kg bodyweight, and −2.68 ± 3.07% lower per 10 years of
age. Based on this model, predictions of occupied SERT ratio and
SERT occupancy across different combinations of rs2235015
genotype, sex, weight and age are illustrated in Fig. 3. As an
example, when comparing a 20-year-old female patient geno-
typed as rs2235015 major allele homozygote with a bodyweight
of 50 kg with a 40-year-old rs2235015 male minor allele carrier
with a bodyweight of 100 kg, O/U SERT in the female patient can
be expected to be twice as high as in the male patient.

DISCUSSION
Research on the impact of ABCB1 gene variants on in vivo brain
concentration of psychopharmaceuticals is methodologically
challenging and evidence is currently limited. Molecular neuroi-
maging studies investigating target occupancy may be used to
indirectly assess the impact of patient characteristics on drug
availability in the brain if drug affinity is not correlated with the
variables of interest. Recently, Simoons et al. demonstrated
significantly higher paroxetine SERT occupancy at the same
plasma drug concentration after six weeks of therapy in ABCB1

Fig. 2 The effect of genotype, sex and citalopram plasma concentrtion on serotonin transporter occupancy. a Approximately one hour
after infusion of 8mg citalopram, lower serotonin transporter occupancy was observed in ABCB1rs2235015 minor allele carriers (A+ AC)
compared to major allele homozygotes (C) and female compared to male participants. b SERT occupancy is plotted against the area under the
curve (AUC) of citalopram in plasma. Regression lines are plotted for participants grouped according to ABCB1rs2235015 genotype. Grey ribbons
indicate 95% confidence intervals.

Table 2. Position of SNPs, minor allele frequency (MAF) and p value of Hardy–Weinberg statistics.

Polymorphism Position Minor allele (Major Allele) MAF Hardy–Weinberg p value

rs1045642 87509329 G(a) 0.48 0.52

rs2032583 87531245 G(a) 0.14 0.92

rs2032582 87531302 A(c) 0.39 0.81

rs2235033 87549827 A(g) 0.40 0.58

rs1128503 87550285 A(g) 0.38 0.99

rs2235015 87570248 A(c) 0.18 0.90

rs28373093 87714707 C(g) 0.42 0.46

rs10245483 90008294 G(t) 0.49 0.78
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rs1128503 and rs2032582 minor allele carriers using [123I]β-CIT
SPECT [11]. No association between SERT occupancy and
rs1128503 genotype was found in our study. Increases in
dopamine transporter binding following chronic paroxetine
administration as shown in prior studies [56, 57] may hinder
interpretation of results of the SPECT study considering non-
selectivity of the applied radiotracer. Acute pharmacological
challenge during PET measurements allows to neglect drug
metabolism, first-pass and secondary effects, such as SERT up- and
downregulation. Moreover, paroxetine applied in the SPECT study
was demonstrated to be a relatively weak substrate of the P-gp
while citalopram is one of the strongest P-gp substrates among
SSRIs [58].
The intronic SNP rs2235015 is among the most frequently

studied ABCB1 SNPs in the context of antidepressant treatment [9].
Two studies support an association of rs2235015 with antide-
pressant response [18, 59]. Although these findings are in contrast
to our results, the power for the investigation of the genetic
impact on antidepressant response was limited due to the
relatively high response rate and small sample with clinical
follow-up. In the study by Uhr et al. rs2235015 minor allele carriers
were more likely to remit after a six-week treatment trial with a
P-gp substrate when compared to non-carriers [18]. Under the
hypothesis of a direct relationship between target tissue drug
concentration and treatment response, this finding is at odds with
the results of our study that demonstrates lower SERT occupancy
in minor allele carriers. This discrepancy may be interpreted in
light of heterogeneous antidepressant treatment in the study by
Uhr et al. and previously reported substrate-specific differences in
the direction of effects of SNPs [30]. Moreover, direct comparisons
of our results with those obtained after chronic oral drug
administration neglects the influence of ABCB1 variants on
intestinal drug absorption [60]. Breitenstein et al. did not detect
an association of rs2235015 genotype on treatment response but
a significant genotype x plasma level interaction [59]. Interestingly,
minor allele carriers had numerically higher antidepressant plasma
concentrations when compared to non-carriers. An interpretation

that might reconcile these findings with our results is that P-gp
has a higher affinity for citalopram in rs2235015 minor allele
carriers. This might result in higher efflux of citalopram at low
concentrations, as observed after acute challenge of a low dose in
our study, but lower efflux at high concentrations during chronic
treatment due to a lower transport capacity of P-gp.
We detected a significant effect of sex on SERT occupancy.

While previous studies did not assess sex specific differences in
cerebral drug concentration, this finding is in line with known
pharmacokinetic differences during antidepressant treatment
between men and women [61–63]. Lower body weight and blood
volume may account for higher plasma drug levels and,
subsequently, higher cerebral concentration in women [63].
Mediation analysis indicated that a part of sex differences in SERT
binding was due to differences in citalopram AUC in plasma. The
effect of plasma concentration might be underestimated by using
AUC, but equilibrium citalopram concentration in plasma was in
many cases below the sensitivity of our quantification method.
While gender-specific effects on CYP2C19 activity, the primarily
responsible enzyme for degradation of citalopram, were pre-
viously reported, drug metabolism following intravenous admin-
istration can be neglected within our measurement timeframe.
Sex differences in SERT occupancy were also associated with
differences in placebo BP in our study. Although our results are in
line with previously reported sex differences in SERT binding,
more recent findings are equivocal [64, 65]. Higher BP in women
in our study might have resulted in higher measures of occupancy
due to regression to the mean [66]. The persistence of sex effects
to correction for BP, indicates that there were sex differences in
either cerebral citalopram concentration or SERT affinity. In line
with our results, lower P-gp function was demonstrated in young
women when compared to young men in a recent (R)-[11C]
verapamil PET study [67].
Our findings may guide individual antidepressant dosing based

on sex and ABCB1 genotype. While several studies suggest a
dose–response relationship, higher doses come with the cost of
reduced tolerability [68]. Our results may reassure patients and

Fig. 3 Modeling SERT binding based on clinical variables and ABCB1 genotype. a The ratio of occupied to unoccupied (O/U) SERT after
citalopram infusion was predicted for different combinations of sex, ABCB1rs2235015 genotype, age and weight based on a linear regression
model fitted to the study data. O/U SERT is directly proportional to the product of drug affinity and concentration at target sites in equilibrium
and is reported as a percentage of the sample’s average to aid interpretation of effects. O/U SERT was predicted to be −14.48 ± 5.38% lower in
rs2235015 minor allele carriers, +19.10 ± 6.95% higher in women, −4.83 ± 2.70% lower per 10 kg bodyweight, and −2.68 ± 3.07% lower per 10
years of age. b Predictions of O/U SERT were transformed into SERT occupancy after citalopram 8mg infusion based on equation 1 after
multiplication with the sample’s mean O/U SERT.
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clinicians that the practice of lower starting doses of citalopram
and escitalopram to avoid initial side effects need not to come at
the cost of SERT occupancy when performed in a targeted manner
taking into account basic clinical variables and genotype. While
the effects of dose adjustments need to be investigated in further
clinical trials, this approach holds promise to reduce the rate of
initial side effects and, thus, increase adherence during SSRI
treatment. Our model employing occupied SERT ratio can be
directly applied as a guidance in this process if assuming a linear
relationship between drug dosage and concentration at target
sites [69, 70]. As described above, O/U SERT ratio is expected to be
directly proportional to the product of drug affinity and
concentration. Furthermore, considering that citalopram is a
competitive inhibitor of SERT, its effect on serotonin (5-HT) uptake
in vitro is described by the following Michaelis-Menten equation
(Km, Michaelis constant):

V
Vmax

¼ 5-HT½ �
Km 1þ I½ �

Ki

� �
þ ½5-HT�

: (3)

This illustrates that the 5-HT concentration at which the half
maximal velocity of SERT uptake (V) relative to the maximum rate
(Vmax) is achieved is increased by a multiple of [I]/Ki in the
presence of an inhibitor (I), which underlines the utility of O/U
SERT as an outcome measure.
While our results may be applicable to drug dosing during the

initiation of treatment, the effects of clinical variables and P-gp
variants during prolonged treatment need to be established. For
example, variants that lead to a higher affinity of P-gp and
increased clearance of drug from the brain at low concentrations
may lead to P-gp saturation at higher concentrations and thus
inversely affect concentration in the brain during different phases
of treatment [71].
Strengths of this investigation include the use of state-of-the-art

PET imaging procedures that allow for highly specific and reliable
SERT quantification in the context of a randomized, placebo-
controlled trial. Participants were free from psychopharmacologi-
cal medication, which allows for the investigation SERT occupancy
in the absence of interactions. A relatively large sample of 79
participants was enrolled in this study which is seldom attained in
resource intensive PET studies. Assessment of SERT occupancy
following intravenous citalopram challenge allows for probing the
genetic influence on active efflux transport at the BBB unaffected
by drug metabolism and receptor up- and downregulation as
observed during chronic treatment and, thus, is mainly dependent
on cerebral drug availability and affinity [57].
Clinical implications of our findings remain to be determined in

clinical trials with larger sample sizes. The assessed SNPs in our
study were common (MAF ≥ 0.05), however, investigation of
minor allele homozygotes could not be performed as group sizes
did not provide sufficient statistical power. Generalizability of our
results along a broader age spectrum need to be ascertained as
mainly young participants were investigated in this trial. We
observed differences in the arterial input function between
genotypes. Based on the available literature we cannot provide
a conclusive explanation for this phenomenon. However, pre-
clinical data suggests that [11C]DASB does not interact with the
P-gp at the BBB and, thus, no interferences with quantification of
citalopram SERT occupancy are expected [72]. Nevertheless,
possible interactions of [11C]DASB with the P-gp may be
considered a limitation as in vivo data is currently lacking.
In conclusion, we demonstrate significant differences in SERT

occupancy associated with ABCB1 genotype and sex. Our study
supports the further exploration of pharmacogenetic testing for
ABCB1 genotype during SSRI treatment. These results suggest that
initial dosing of SSRI may be modified a priori based on patient
characteristics and genotype, thus underscoring the potential of

precision pharmacotherapy in psychiatry. While genetic testing of
the ABCB1 gene may be restricted to specialized centers, dose-
adjustments based on sex could be performed easily in clinical
practice.
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