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Abstract

Since 2019, the coronavirus disease-19 (COVID-19) has been spreading rapidly worldwide, 

posing an unignorable threat to the global economy and human health. It is a disease caused 

by severe acute respiratory syndrome coronavirus 2, a single-stranded RNA virus of the genus 

Betacoronavirus. This virus is highly infectious and relies on its angiotensin-converting enzyme 

2-receptor to enter cells. With the increase in the number of confirmed COVID-19 diagnoses, 

the difficulty of diagnosis due to the lack of global healthcare resources becomes increasingly 

apparent. Deep learning-based computer-aided diagnosis models with high generalisability can 

effectively alleviate this pressure. Hyperparameter tuning is essential in training such models 

and significantly impacts their final performance and training speed. However, traditional 

hyperparameter tuning methods are usually time-consuming and unstable. To solve this issue, 

we introduce Particle Swarm Optimisation to build a PSO-guided Self-Tuning Convolution Neural 

Network (PSTCNN), allowing the model to tune hyperparameters automatically. Therefore, the 

proposed approach can reduce human involvement. Also, the optimisation algorithm can select 

the combination of hyperparameters in a targeted manner, thus stably achieving a solution closer 

to the global optimum. Experimentally, the PSTCNN can obtain quite excellent results, with a 

sensitivity of 93.65%±1.86%, a specificity of 94.32%±2.07%, a precision of 94.30%±2.04%, an 

accuracy of 93.99%±1.78%, an F1-score of 93.97%±1.78%, Matthews Correlation Coefficient 

of 87.99%±3.56%, and Fowlkes-Mallows Index of 93.97%±1.78%. Our experiments demonstrate 
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that compared to traditional methods, hyperparameter tuning of the model using an optimisation 

algorithm is faster and more effective.
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Introduction

COVID-19 is a new global epidemic characterised by high infectivity and variability, 

posing a significant threat to human life and the global economy (Chakraborty and Maity 

2020). The pathogen of COVID-19 is severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) (Hasöksüz, Kiliç et al. 2020), a single-stranded RNA virus of the genus 

Beta coronavirus and shares 79% nucleotide sequence identity with SARS-CoV, the 

causative agent of the 2002 SARS epidemic. Other viruses in the same genus include 

human coronavirus HCoV-HKu1, HCoV-OC43, and Middle East respiratory syndrome 

coronavirus (MERS-CoV). These coronavirus particles are composed of four structural 

proteins, including nucleocapsid (N), membrane (M), envelope (E), and spike (S) proteins. 

The S protein mediates the attachment and fusion of the coronavirus to the host cell 

membrane. The S protein consists of two non-covalently related subunits: (1) the S2 subunit 

anchors the S protein to the host cell membrane, and (2) the S1 subunit binds to its specific 

angiotensin-converting enzyme 2 (ACE2) receptor to enter the cell and infect patients 

(Jackson, Farzan et al. 2022). The new coronavirus is highly infectious. The number of 

confirmed COVID-19 diagnoses has been growing since first identified in 2019. As of April 

2022, the cumulative number of confirmed COVID-19 diagnoses is close to five billion, 

with over six million deaths (Organization 2022). At the same time, the novel coronavirus 

continues to mutate at a much faster rate than the vaccine development. In addition, it has 

undergone significant changes in its characteristics, making it challenging to sustain efforts 

to combat the disease.

Symptoms of COVID-19 vary significantly among individuals with a continuous cough, 

fever, taste loss, and, in severe cases, death, thus making COVID-19 even more dangerous. 

In general, the spread of infectious diseases can be stopped by isolating the source of 

infection and blocking the transmission route. However, because of (1) the mutation of 

the new coronavirus, (2) the increase in the number of asymptomatic patients, and (3) the 

difficulties of diagnosis, isolating the source of COVID-19 infection becomes a challenge 

(Kronbichler, Kresse et al. 2020).

The most widely used test for COVID-19 is the reverse transcription polymerase chain 

reaction (RT-PCR) (van Kasteren, van der Veer et al. 2020), which has improved 

considerably in recent years, allowing results to be obtained within tens of minutes. 

However, these tests are often associated with high false negatives and a high potential for 

underdiagnosis (Arevalo-Rodriguez, Buitrago-Garcia et al. 2020). Moreover, the availability 

of RT-PCR reagents is highly challenging due to the high number of infections and 
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the population’s fears of a global disease. Therefore, exploring more effective ways of 

diagnosing COVID-19 for outbreak control is essential.

COVID-19 is an infectious emergency respiratory disease, and the disease state is usually 

reflected in the lungs. X-ray and CT, the most common medical imaging techniques in 

modern medicine, can play a vital role in diagnosing COVID-19 by reflecting changes 

in the lung tissue through their chest impact. As a relatively new technology, computed 

tomography (CT) imaging allows multi-layered photography of the target area to form a 

three-dimensional image, providing multi-angle image data with a higher resolution than 

X-ray images (Berrimi, Hamdi et al. 2021). Therefore, the diagnosis of COVID-19 by CT 

imaging of the chest is significant research and practical value. However, the diagnosis of 

chest CT is often dependent on medical specialists, making it difficult to be helpful in the 

face of the shortage of medical resources associated with a COVID-19-like global epidemic.

As one of the most influential frontier technologies of the 20th century, artificial intelligence 

(AI) significantly impacts human work and life (Liang, On et al. 2021), especially in the 

medical field (Ning, Li et al. 2020, Han, Liu et al. 2022, Miller, Panneerselvam et al. 

2022). Artificial intelligence-based computer-aided diagnosis (CAD) is one of the research 

areas receiving the most attention (Chen, Yang et al. 2022, Guan, Chen et al. 2022, Yu, 

Liu et al. 2022, Yu, Han et al. 2022). In the face of the global pandemic of COVID-19, 

many researchers have risen to fight against it, hoping to contribute to its eradication. As a 

result, many studies on COVID-19 are rapidly emerging (BOBERMIN, MEDEIROS et al. 

2022, CARRETTA, DOMENICO et al. 2022, OZTURK and KARA 2022), especially on 

COVID-19 CAD systems.

Chen (2021) used the effectiveness of the greyscale co-occurrence matrix (GLCM) for 

texture feature extraction to extract features from chest CT images and a support vector 

machine (SVM) to perform binary classification on these features to achieve the diagnosis 

of COVID-19. Pi and Lima (2021) and Pi (2021) also used GLCM as a feature extraction 

method. Among them, Pi and Lima (2021) used the extreme learning machine (ELM) as a 

classifier to classify the features extracted from chest CT by GLCM, and Pi (2021) used the 

Schmitt Neural Network as the classifier of the model. These methods achieved promising 

performance, which demonstrates the effectiveness of GLCM for feature extraction from 

chest CT images. Some methods extract features using wavelet entropy. The study by 

Wang (2021) used Jaya algorithm-based training algorithm to train the model and achieved 

an encouraging performance. A further attempt by Wang, Zhang et al. (2022) to use 

the Self-Adaptive Jaya (SAJ) algorithm to train their model. Their model (WE-SAJ) has 

achieved further performance improvements. On the other hand, Field Wu (Wu 2020) used 

a particular wavelet entropy, Wavelet Renyi Entropy, as the feature extraction method and 

a three-stage biogeographic optimisation algorithm as the training algorithm, achieving 

excellent performance. Khan (2021) proposed a novel deep-learning approach to construct 

a diagnostic tool for COVID-19. They used Pseudo-Zernike moment derived from Zernike 

moment as feature values and deep sparse autoencoder as the classifier for chest CT image 

classification. Their model obtained an accuracy higher than 90% and achieved similarly 

excellent performance in other performance metrics. Some studies have also used models 

based on classical deep-learning methods to diagnose COVID-19. Hou and Han (2022) 
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used a six-layer convolutional neural network (CNN) for chest CT images based COVID-19 

diagnosis task. Their model has achieved about 90% accuracy. Yu, Wang et al. (2020) 

improved one of the most classical CNNs, GoogleNet, for the COVID-19 chest CT image-

based diagnosis task. They replaced the last two layers of GoogleNet with a dropout layer, 

two fully connected layers, and an output layer. Their model also achieved close to 90% 

accuracy. Zhang, Zhang et al. (2021) proposed a multi-input deep convolutional attention 

network constructed using a convolutional block attention module. Their model has achieved 

more than 90% accuracy. These models are well-designed but require hyperparameter tuning 

to achieve fast convergence and high performance, often requiring expert intervention. At 

the same time, manual tuning of hyperparameters often relies on empirical knowledge, 

which is subjective and requires a high level of expertise. These factors have primarily 

hindered the cross-domain generalisation of CAD methods. We believe an optimisation 

algorithm could be a solution to make the hyperparameter tuning process automatic.

This paper uses the particle swarm optimisation algorithm (PSO) to optimise the three 

hyperparameters and gradient-based localisation of CNN to generate visual explanations. 

The proposed approach uses particle swarm optimisation algorithms to perform auto 

hyperparameters tuning, reducing the dependence of model construction on machine 

learning experts. In addition, PSO purposefully finds the hyperparameters closest to the 

optimal solution more consistently. Our method has achieved a promising performance in 

COVID-19 diagnosis.

Our contributions to this study are i) we experimentally demonstrated the possibility 

of using optimisation algorithms for hyperparameter tuning, ii) we proposed a high-

performance COVID-19 diagnostic method with a visual explanation based on CT chest 

images, and iii) we further explored the potential of AI-based techniques in medical image 

processing. In the rest of the paper, Section 2 introduces the data set used, Section 3 

introduces the background of the methods involved in the experiment, Section 4 describes 

the experimental workflow of PSO-guided self-tuning CNN (PSTCNN), and Section 5 

presents the experiment results and discusses it in detail.

Dataset

The experiment used a publicly available chest CT image slice dataset proposed by (Zhang, 

Lu et al. 2022). The dataset was a binary classification dataset with the categories positive 

(COVID- 19) and negative (Health Control). The dataset contains a total of 296 slice 

images. The positive category contains 148 slice images taken from chest CT images of 66 

COVID-19-infected subjects, assessed as positive by nucleic acid test. The negative category 

contains 148 slice images taken from chest CT images of 66 uninfected subjects from 

COVID-19. These subjects included 77 males and 55 females. The detailed statistic of the 

dataset is shown in TABLE 1, and two sample images are illustrated in Fig. FIGURE 1.
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Methodology

10-Fold Cross Validation

The dataset used for the study was small, so we introduced the 10-Fold Cross Validation 

to train and evaluate the model. Specifically, we divided the dataset into ten groups and 

performed ten runs, with different groups selected as the test set and all other groups as 

the training set for each run. The model was thoroughly trained and evaluated for each run 

to obtain performance metric values. The final performance of the model was obtained by 

calculating the sum, the mean and standard deviation (MSD) of all ten sets of performance 

metric values. This approach allowed for efficient use of the samples in the dataset and 

effectively avoided overfitting.

Feature Learning Through Convolutional Neural Network

CNN is one of the trendiest research directions in computer-aided diagnosis tasks. It 

comprises different network layers, e.g., the input layer, convolutional layer, activation 

layer, pooling layer, and output layer. By combining these network layers, CNNs can 

effectively solve the problems of spatial information loss when expanding images into 

vectors, inefficiency training and network overfitting caused by high parameter volume 

when processing large images with fully connected neural networks (Gu, Wang et al. 2018).

Many existing deep learning-based CAD methods are based on CNNs. Polsinelli, Cinque et 

al. (2020) have made a simple modification to SqueezeNet by adding a batch normalisation 

layer between the squeeze convolution layer and the activation layer and replacing the 

original rectifier linear unit (ReLU) function with an exponential linear unit (ELU) function 

to build a lightweight CNN model. They tested the unmodified SqueezeNet and their 

proposed modified model separately using a COVID-19 chest CT dataset. Their proposed 

modification effectively improved the performance of the model. Horry, Chakraborty et al. 

(2020) used pre-trained VGG-19 based on transfer learning techniques to classify each of 

the three COVID-19 datasets, x-ray, CT, and ultrasound, and achieved promising results 

(precision up to 86% on x-ray, 100% on ultrasound and 84% on CT scans). Ismael and 

Şengür (2021) tested a variety of CNN models based on the COVID-19 x-ray dataset, 

including ResNet18 (accuracy of 88.42%), ResNet50 (accuracy of 92.63%), ResNet101 

(accuracy of 87.37%), VGG16 (accuracy of 85.26%), and VGG19 (accuracy of 89.47%). 

Their validation of multiple pre-trained CNN models with the excellent performance of their 

custom CNNs further demonstrated the effectiveness of deep learning techniques for the 

COVID-19 diagnostic task.

Our method uses a five-layer neural network, including three convolution layers and two 

fully connected layers.

Convolutional layers are based on the concept of convolution. It is the core component of 

CNNs and generates most of the computation in the network. A convolutional layer contains 

a number of learnable filters (kernels), where the kernels are usually squares with smaller 

widths and lengths but the same depth as the input image. The convolution is the process 

by which the kernel slides over the image. The sliding direction is from left to right for 

the width direction and then repeats sliding following the width direction from the top 

Wang et al. Page 5

Biocell. Author manuscript; available in PMC 2023 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



rows to the bottom rows of the image until reaching the bottom edge of the image. For 

each step of the sliding process of the convolution, each pixel of the region mapped by the 

kernel in the input image is multiplied by the information at the location corresponding to 

the flipped kernel. All the results generated are summed to aggregate the information. The 

region mapped by the kernel in the input image is called the sliding window. The step size 

of the sliding, S = (Sl, Sw), is a customisable hyperparameter, in which Sl represents the step 

size of the sliding across the length direction and Sw represents the step size of the sliding 

across the width direction.

In this process, the filters scan across the input image, so every neighbourhood of the 

image is processed by the same filter. This sharing weight feature reduces the number 

of parameters, thus reducing computational costs and preventing overfitting due to too 

many parameters. Assume the size of kernel K is F × F, and the size of a two-dimension 

single-channel image I is Nl × Nw, where Nl represents the length of I, and Nw represents 

the width of I.

The output o(m,n) of the sliding process of the convolution when the sliding window centred 

at (m, n) can be defined as presented in Equation (1). Let O be the output of the convolution, 

o ∈ O. Repeating the calculation to slide throughout the entire image will generate the 

output O of the convolution. If there are residuals (the sliding window cannot reach the edge 

of the image), the residual image pixels are abandoned. The output shape, Z = (Zl, Zw, Zc), 

of a convolutional layer can be calculated by Equation (2).

o m, n = ∑a − 0
F − 1∑b = 0

F − 1K a, b · I n + F
2 − a, m + F

2 − b , (1)

where (n, m) is the coordinate of the pixel point corresponding to the position of the centre 

of the sliding window in the input image. The range of n ∈ ℕ is F
2 , Nw − F

2 − 1 , and the 

range of m ∈ ℕ is F
2 , Nl − F

2 − 1 .

Z = Zl, Zw, Zc = Nl − F
sl

+ 1, Nw − F
sw

+ 1, Zc , (2)

where Zl, Zw, and Zc represent the length, width, and the number of channels of the output 

O, respectively. Nl and Nw represent the length and width of the input image, respectively. F 
× F is the size of the kernel.

Activation functions play an essential role in CNNs, bringing a non-linear factor to the 

neural network, enhancing its expressive power, and thus improving the final classification 

performance. Working with high-dimensional input data such as images would be 

computationally prohibitive for each neuron in a network layer to fully connect to all the 

neurons in the previous layer (Najafabadi, Villanustre et al. 2015). Therefore, neurons in a 

CNN are usually related to only one local region of the input data. The spatial size of this 

connected region is called the neuron’s receptive field, which depends on the kernel’s size 

and is a hyperparameter. Also, to give the network the ability to handle non-linear tasks, 

the convolutional layer often includes an activation function as a non-linear factor. The most 
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common activation function is the ReLU function. In addition, the ReLU activation function 

can be used to construct sparse matrices to remove redundancy from the data and retain 

the maximum possible features of the data. The formula for the ReLU function is shown in 

Equation (3).

f x = x, x > 0,
0, otherwise. (3)

Applying Equation (3) to every pixel of O generates O’, the output of the ReLU activation 

layer, as shown in Equation (4).

O′ a, b = f O a, b , (4)

where (a, b) is the coordinate of pixels in O, in which 0 ≤ a < Ow, a ∈ ℕ, 0 ≤ b < Ol, b ∈ 
ℕ. Each pixel in O’ corresponds to a pixel in O but with a new value generated by the ReLU 

function with an input of the pixel’s value in O. O’ has the same size and shape as O.

Padding can regulate the size of the output of the network layer. In the convolution process, 

pixels at the edges of input images are never located in the centre of the kernel. These pixels 

are used far less than the pixels in the centre of the image, resulting in a significant loss 

of information at the image boundaries. In addition, the output image from the convolution 

process often does not maintain the same size as the input image, and different kernel sizes 

result in various degrees of image shrinkage. Padding is designed to address this issue, 

which has two modes, VALID mode and SAME mode.

In the VALID mode, padding does not perform any operations, and convolution performs a 

basic convolution operation, where the output image size is smaller than the input image. 

In the SAME mode, additional pixels are padded around the input image according to the 

kernel size (the padding value is usually 0). It allows the kernel to extend beyond the 

original image boundaries, thus allowing the output image to remain the same size as the 

original and avoiding losing information from the edges of the input image. FIGURE 2 

illustrates convolution samples under VALID and SAME padding, respectively. Our method 

uses the SAME padding to preserve the image edge information, keeping the same size as 

the original image.

Training Algorithm

Training algorithms can determine the way how neural networks run. The essence of deep 

learning is to (1) take the loss function as the objective function, (2) input a large amount of 

data, (3) calculate the value of the objective function, and then (4) adjust and optimise the 

learnable parameters in the model to obtain the model that will give the closest result to the 

true value. In this process, the optimiser algorithm was followed. The choice of optimiser 

plays a vital role in deep learning training, as it affects the speed of convergence of the 

model and the final performance achieved.

Adam (Kingma and Ba 2014) is one of the most popular deep learning training algorithms 

that control the updating of model parameters. For each parameter, Adam uses the 
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hyperparameters β1 and β2 to calculate the exponential decay rates of the past gradient 

gt and the square of the past gradient gt2, respectively, dg and dgs, using first-order moment 

estimates and second-order moment estimates of the gradient to dynamically adjust the 

learning rate of each parameter. The calculation is shown in Equation (5). As dg and dgs are 

initialised to 0, their values are biased towards 0. A bias correction is introduced in Adam to 

bias dg and dgs to obtain dg and dgs, and further offset these initial biases. The bias correction 

is calculated as shown in Equation (6). Ultimately, Adam calculates the update step through 

the dg and dgs angles to update the parameters, as shown in Equation (7).

dg
t = β1dg

t − 1 + 1 − β1 gt,

dgs
t = β2dgs

t − 1 + 1 − β2 gt
2,

(5)

dg = dg
1 − β1

t ,

dgs = dgs
1 − β2

t ,
(6)

θt + 1 = θt − α
dgs + ∈

dg . (7)

Adam can adaptively adjust the learning rate of the model parameter updates, implement the 

step annealing process naturally, and makes the model parameter updates independent of the 

gradient scaling transformation. In addition, Adam has the advantages of high computational 

efficiency and low memory consumption (Saad Hikmat and Adnan Mohsin 2021). In simple 

words, Adam can achieve typically high levels of robustness and performance in various 

situations (Dogo, Afolabi et al. 2018). Therefore, our method uses Adam as the training 

algorithm.

Visual Explanation via Gradient-based Localisation (Grad-CAM)

Grad-CAM is a method for visualising the basis of CNN decisions. It uses a heat map to 

mark how much attention the neural network pays to different regions when classifying 

data, thus highlighting the regions on which the neural network focuses its attention. In 

detail, Grad-CAM uses the global average of the gradients to calculate the weight ak
c of the 

feature map k corresponding to the class c (as shown in Equation (8). then, it calculates the 

weighted sum of the weight and the last layer of the feature map, combining it with the 

ReLU activation function to produce the heat map LGradCAM
c . The procedure for calculating 

the heat map is shown in Equation (9).

ak
c = 1

z∑i∑j
∂yc

∂Aij
k , (8)
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where z is the number of pixels in the feature map, yc is the fraction corresponding to class 

c, and Aij
k  denotes the pixel values at the coordinate (i, j) of the k feature maps.

LGradCAM
c = f ∑kak

cAk , (9)

where f represents the ReLU function.

Hyperparameter Tuning

Almost all deep learning optimisers have customisable hyperparameters that can 

significantly influence the performance of the optimiser, hence the speed of convergence 

and the ultimate performance of the model. Many studies try to optimise hyperparameter 

tuning for better COVID-19 diagnostics. Ezzat, Hassanien et al. (2021) optimised the three 

hyperparameters OF DenseNet121, the batch size, the rate of dropout layer, and the number 

of neurons of the first dense layer and trained their proposed model using two sets of X-ray 

data from COVID-19. They could achieve 98.38% accuracy, a significant improvement over 

DenseNet121(94% accuracy) and Inception-v3(95% accuracy), which they used as controls. 

Monshi, Poon et al. (2021) tested the function loss, the number of epochs, and the batch size 

hyperparameters with different value combinations. Then, they selected the combinations of 

hyperparameters with the highest performance and used these combinations for the different 

models to test performances. In their approach, the accuracy of VGG19 improved by 

11.93% and that of ResNet-50 by 4.97%. Kiziloluk and Sert (2022) used the gradient-based 

optimiser (GBO) and the Quasi-Newton algorithm (Q-N) to optimise the hyperparameters of 

several CNN models, including Alexnet, Darknet-19, Inception-v3, MobileNet, Resnet-18, 

and ShuffleNet. Their results show that GBO improves the classification performance of 

the original CNN model by 6.22-13.29%, and the Q-N algorithm improves the performance 

of the original CNN model by 2.92% to 8.40%. These studies demonstrate the critical 

impact of hyperparameter optimisation on the performance of CNN models in COVID-19 

diagnostic tasks.

However, the hyperparameters can have an infinite number of possible combinations. 

Therefore, hyperparameter tuning becomes a challenging, time-consuming and 

computationally expensive stage in training deep learning models. There is no 

straightforward and efficient way to accurately and quickly find the optimal 

hyperparameters. The most commonly used hyperparameter selection methods are Random 

Search and Grid Search.

Grid Search—tries all the candidate hyperparameter combinations by loop traversal. Then 

it calculates the performance of the model under all the hyperparameter combinations and 

selects the parameter combination with the highest performance in the solution. However, 

the combination of the hyperparameters can be nearly infinite, so it is difficult to traverse 

all the possibilities in practical application and requires enormous time cost and calculation 

costs, which is inefficient.

Random Search—computes a neural network with a configuration of candidate 

parameters by randomly sampling the parameter space and stops the search when the 
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maximum number of iterations is completed, selecting the combination of hyperparameters 

with the highest performance. Although random search can be optimised to prevent repeated 

calculations of the same hyperparameter combinations, the search process is too random. 

Therefore, the large number of hyperparameter combinations makes it difficult to ensure that 

optimal hyperparameters are in the search range. As a result, the performance of the final 

model derived from random search can vary considerably for the same number of iterations.

Most hyperparameter tuning methods require many aimless attempts to find the 

most suitable hyperparameters, which are inefficient and ineffective, resulting in high 

consumption of time and computational resources. Optimisation algorithms could be a 

solution to this issue. This paper aims to discover the possibility of PSO in hyperparameter 

tuning. TABLE 2 discusses the advantages and disadvantages of PSO and traditional 

hyperparameter tuning methods from a theoretical perspective. Then, Section TABLE 2 

introduces the experiment design of PSO-guided hyperparameter tuning.

Particle Swarm Optimisation-guided Self-Tuning CNN

The Original Particle Swarm Optimisation

To discover more possibilities of optimisation algorithm-based hyperparameter tuning. 

Our experiments employed the PSO algorithm to adjust the three hyperparameters in 

the Adam optimiser. PSO (Kennedy and Eberhart 1995) is an easy-to-understand and 

easy-to-implement optimisation algorithm with global solid search capability. Because 

of these advantages, it is one of the most typical optimisation algorithms. The core 

idea of PSO is to keep all particles moving and update their position to find 

the optimal solution through collaboration and information sharing among particles 

in the population. Hyperparameter tuning involves purposefully trying out different 

hyperparameter configurations and calculating the corresponding performance to find the 

optimal combination of hyperparameters.

Encoding Scheme of Particle Properties

In PSO, a swarm represents the collection of all particles. Each particle pi in the swarm 

has two properties, a vector of velocity Vi = (Vi1, Vi2, …, Vin) represents how fast a 

particle is moving, and a vector of position Xi = (xi1, xi2, …, xin) represents the direction in 

which a particle is moving. The algorithm finds the best position of a particle, xpbest, and the 

best position of the swarm, xgbest. In each iteration, the particles update their velocities in a 

direction for moving to new positions closer to xpbest and xgbest.

The three essential variables of the Adam training algorithm to tune to obtain the highest 

performance of the model (as shown in Equation (5)) are the learning rate α, coefficient β1, 

which controls the exponential decay rates of the past gradient gt, and coefficient β2, which 

controls the exponential decay rates of the square of the past gradient gt2. The first step of 

our experiment is to encode these three variables into the PSO algorithm to perform tuning. 

Assume an n dimension search space, each particle pi has n positions (xi1, xi2, …, xin) and 

n velocities (Vi1, Vi2, …, Vin). For every position Vin stores a set of hyperparameter 

combinations and is encoded as a vector (αin, β1in, β2in). For every velocity, Vin is encoded 
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as a vector ( 1in, 2in, 3in), in which, 1in, 2in, and 3in are for movements of, αin, 

β1in and β2in, respectively. FIGURE 3 illustrates the encoding scheme.

Calculations of Velocities and Positions

At the beginning of PSO, all particles are initialised with random positions (hyperparameter 

configurations) and random velocity vectors. The CNN runs iteratively in each iteration 

with different hyperparameter configurations. It calculates the mean squared errors (MSE) 

for every hyperparameter configuration as its fitness value (F), according to which it finds 

the personal best hyperparameter configuration, xpbest, for each particle, and the global 

best hyperparameter configuration, xgbest, of the entire particle population, which is the 

current best hyperparameter configuration. The formulates of finding xpbest and xgbest are 

shown in Equation (10) and Equation (11), respectively, where xcur represents the current 

hyperparameter configuration.

xpbest
k + 1 =

xcur, if F xcur < F xpbest
k ,

xpbest
k , otherwise.

(10)

xpbest
k + 1 =

xpbest
k + 1, if F xpbest

k + 1 < F xgbest
k ,

xgbest
k , otherwise,

(11)

where k represents iteration count. At the end of each iteration, the velocities of all particles 

are iteratively updated to directions that are closer to xpbest and xgbest, following Equation 

(12). Also, the hyperparameter configurations of each particle are updated to newer values 

according to the new velocities, following Equation (13).

Vij
k + 1 = Vij

k + cprp xipbest
k − xijk + cgrg xgbest

k − xijk , (12)

where k represents iteration count, cp refers to the cognitive acceleration coefficient, cg 

refers to the social acceleration coefficient, rp and rg are random numbers.

xij
k + 1 = xijk + Vij

k + 1 . (13)

Repeating the above steps, all particles keep moving to hyperparameter configurations 

that can obtain better performance until the algorithm reaches the maximum number of 

iterations.

Structure of Particle Swarm Optimisation-guided Self-Tuning CNN

In our research, a number of experiments were performed in incremental steps to find out the 

neural network structure with the best performance. The final neural network is a five-layer 

CNN consisting of three convolution layers and two fully connected layers. A softmax 

function is introduced to classify the extracted features. All trainable parameters are updated 

following the Adam optimiser during the training process. In the tuning process, the neural 

networks are trained with a number of hyperparameter combinations generated or updated 

Wang et al. Page 11

Biocell. Author manuscript; available in PMC 2023 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



by PSO to obtain the performance of different combinations. Finally, the output of PSO is 

the hyperparameter combination of the final model with the best performance. FIGURE 4 

illustrates the overall structure of PSO-guided Self-Tuning CNN (PSTCNN). Theoretically, 

the framework can be generalised to other CNNs for image classification tasks in different 

domains.

Results and Discussion

The following values were used for various performance indicators to evaluate the model’s 

performance comprehensively. (1) True Positive (TP) represents the number of positive 

samples that the model correctly predicts as the positive class, (2) True Negative (TN) 

represents the number of negative samples that the model correctly predicts as the negative 

class, (3) False Positive (FP) represents the number of negative samples that the model 

incorrectly predicted as the positive class, and (4) False Negative (FN) represents the 

number of positive samples that the model incorrectly predicts as the negative class.

The seven performance metrics used to assess the model’s performance are accuracy, 

precision, sensitivity, specificity, F1-score, Matthews correlation coefficient, and the 

Fowlkes-Mallows index, which provide a comprehensive evaluation of the model from a 

variety of perspectives to ensure a comprehensive performance evaluation.

Accuracy is one of the most common metrics used to evaluate the performance of a model. 

The core idea is to calculate the number of correct predictions as a percentage of the total 

number of samples, covering both positive and negative samples. The formula for accuracy 

is shown in Equation (14).

Accuracy = TP+TN
TP+TN + FP + FN . (14)

Although accuracy can assess the overall performance of a model with a dataset containing 

both positive and negative samples, it is not rigorous for an unbalanced dataset. For example, 

suppose there is a dataset with 90% positive samples and only 10% negative samples. A 

model that predicts all samples as positive can achieve 90% accuracy, but this is not an 

accurate representation of the model’s performance. In short, accuracy is not an effective 

way to evaluate the predictive performance of a model for the positive and negative 

samples separately, so three performance metrics, precision, sensitivity, and specificity, were 

introduced to provide a more comprehensive evaluation of the model.

Precision evaluates model performance primarily based on prediction results by calculating 

the number of samples correctly predicted as positive as a proportion of all samples 

predicted as positive to assess the probability that the model is correctly predicted in the 

samples where the model is predicted as positive. The precision of a model increases as the 

FP decreases, which can be a guide for finding the lowest FP. The formula of precision is 

shown in Equation (15).
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Precision = TP
TP+FP . (15)

Specificity is another metric that can be used to measure the performance of a model for 

positive samples. The difference is that specificity is calculated based on the true labels of 

the data rather than the model predictions, and the ’performance of the model is assessed 

by calculating the number of samples predicted to be negative as a proportion of the total 

number of negative samples in the dataset. The specificity of a model also increases as the 

FP decreases and is calculated as shown in Equation (16).

Specificity = TP
TP+FP . (16)

Sensitivity is also calculated based on the true label of the data, except that it evaluates the 

model’s performance by calculating the proportion of samples predicted to be positive to the 

total number of positive samples in the data set. The phenomenon that sensitivity reflects is 

somewhat the opposite of precision. It increases as FN decreases, which can guide finding 

the lowest FN. Its formula is shown in Equation (17).

Sensitivity = TP
TP+FN . (17)

F1-score is the performance metric that considers both precision and sensitivity, tries to find 

the balance between these two metrics, and simultaneously makes them the highest possible 

values. The calculation of the F1-score is as shown in Equation (18).

F1‐score = 2 × Precision×Sensitivity
Precision+Sensitivity . (18)

Matthews Correlation Coefficient (MCC) compensates that the four elements TP, TN, FP, 

and FN are not fully considered in the abovementioned metrics. It considers the true and 

predicted values as two variables and calculates the correlation coefficient. The higher the 

correlation between the true and predicted values, the better the model performance. An 

MCC value of 1 indicates a perfect positive correlation between the predicted and true 

results (FP = FN = 0), meaning that the model performs perfectly. An MCC value of -1 

indicates a negative correlation between the predicted and true results (TP = TN = 0), 

meaning that the model predicts the exact opposite of the true results. An MCC of 0 means 

that the classifier cannot provide meaningful results. The calculation of MCC is shown in 

Equation (19).

MCC = TP × TN − FP × FN
TP+FP TP+FN TN+FP TN+FN . (19)
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The Fowlkes-Mallows Index (FMI) is a performance metric that considers both precision 

and sensitivity. Its calculation is as shown in Equation (20). When FMI is 0, the value of TP 

is 0, which means that the model will mispredict all positive samples, and the model is not 

considered a valid classifier. On the other hand, if FMI is 1, the model is deemed to have 

perfect classification ability.

FMI = precision×sensitivity = TP
TP+FP × TP

TP+FN, (20)

Area Under Curve (AUC) is an important performance metric for evaluating binary 

classification models and is derived by calculating the area under the receiver operating 

characteristic (ROC) curve. The vertical and horizontal axes are true positive rate (TPR) 

= sensitivity and false positive rate (FPR) = specificity. The ROC curves were obtained 

by traversing m thresholds used to differentiate the classification results to obtain different 

TPR and FPR values. The more significant the decrease in FPR with increasing TPR in the 

curve (i.e., the steeper the ROC curve), the better the model performance. As the AUC is 

calculated from the area under the ROC curve, the higher the AUC, the better the model 

performance. As both TPR and FPR are considered, the ROC curve has the excellent quality 

of not changing with sample proportion, and the AUC inherits this same advantage. The 

AUC is calculated as shown in Equation (21), where TPR and FPR represent a set of TPRs 

and a set of FPRs, respectively.

AUC = 1
2∑i = 1

m − 1 TPRi + TPRi − 1 × FPRi − FPRi − 1 . (21)

Statistical Analysis

To minimise the bias in the model performance evaluation results, we used the 10-fold cross-

validation to test the model’s performance under the optimal hyperparameter configuration 

obtained by the optimisation algorithm. As a result, we obtained a sensitivity (Sen) of 

93.65%±1.86%, a specificity (Spc) of 94.32%±2.07%, a precision (Prc) of 94.30%±2.04%, 

an accuracy (Acc) of 93.99%±1.78%, an F1-score (F1) of 93.97%±1.78%, Matthews 

correlation coefficient (MCC) of 87.99%±3.56%, and Fowlkes-Mallows index (FMI) of 

93.97%±1.78%. The 10-runs 10-fold cross-validation results are shown in TABLE 3.

Visual Explanation

FIGURE 5 illustrates three sample heatmaps generated from ten runs using Grad-CAM. The 

annotated parts are the basis of CNN decisions (the warmer colour and higher attention 

level), which correspond to COVID-19 lung infection areas. These reflect, to some extent, 

the soundness of the decision basis of the model.

Receiver Operating Characteristic Curve & Area Under Curve

FIGURE 6 illustrates the ROC curve and AUC of PSTCNN. Each of the points in the figure 

corresponds to a threshold value. The value of the AUC can be obtained by calculating the 

area under the curve formed by connecting these points. The figure shows that the PSTCNN 

Wang et al. Page 14

Biocell. Author manuscript; available in PMC 2023 January 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



can achieve a high TPR with a low FPR and an AUC close to 0.96. These results indicate a 

very promising performance of the model.

Comparison to the State-of-the-Art (SOTA)

FIGURE 7 illustrates the performance comparison between our method (PSTCNN) and the 

deep learning-based SOTA COVID-19 diagnostic methods, where the height of the bars 

represents the model performance; the higher bar, the better performance. PSTCNN shows 

superior performance in all metrics compared to deep learning-based SOTA COVID-19 

diagnostic methods. The detailed comparison is shown in TABLE 4. This demonstrates 

the feasibility of the optimisation algorithm for hyperparameter tuning. Compared to other 

methods, the proposed method’s comprehensive hyperparameter tuning can cover more 

possible combinations of hyperparameters. Furthermore, its purposeful search ensures that 

the global-optimal solution is approached step by step. Therefore, it can achieve better 

performance than manual hyperparameter tuning while automating hyperparameter tuning.

Conclusion

Since 2019, the global economy and human health have continuously received threats from 

COVID-19. In addition, the COVID-19 pandemic has highlighted the global shortage of 

healthcare resources. AI technologies to aid diagnosis are one of the vital viable options to 

alleviate this problem. This paper explores the possibility of further automation based on 

traditional AI techniques. It confirms this possibility by automating hyperparameter tuning 

using an optimisation algorithm and the excellent performance achieved by this method.

However, our method was only experimentally tested for three hyperparameters of the neural 

network training process, i.e., the learning rate, the coefficient that controls the exponential 

decay rates of the past gradient, and the coefficient that controls the exponential decay rates 

of the square of the past gradient. A few more hyperparameters can be tuned that we did 

not cover in this report, e.g., the number of network layers and the type of network layers. 

It means that the proposed method is insufficient as a final solution for self-tuning neural 

networks. In addition, the proposed method takes advantage of the purposeful movement of 

particles in the particle swarm optimisation algorithm for the hyperparameters to approach 

the optimal solution in each iteration. However, the movement of particles in each iteration 

is updated according to the direction of the best solution in the previous iteration, which may 

deviate from the global optimal solution and fall into the local optimal solution if the best 

solution is not in the path between the particles and the global optimal solution.

In future research, we will further explore the applicability of other optimisation algorithms 

to this task and attempt to avoid locally optimal solutions when obtaining combinations 

of hyperparameters while covering more hyperparameters in the experiment. We believe 

that reducing the dependence of model training on machine learning experts can effectively 

accelerate the generalisation of AI technologies across different domains. AI techniques will 

therefore become an essential tool in human life and industries in the near future.
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Figure 1. COVID-19 infected Chest-computed tomography (CT) slice image sample (a) and 
uninfected Chest-CT slice image sample (b).
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Figure 2. In the VALID mode
(a), the output size of the convolution for a 5 × 5 image is 3 × 3. In SAME mode (b), the 

input image is padded to size 6 × 6, and the output size remains the same as the original 

input, 5 × 5. The dotted blocks are the padded section.
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Figure 3. Illustration of Encoding Scheme.
A particle swarm contains i particles, each with n positions and n velocities. Each position is 

a vector of α, β, and β2, and each velocity contains three values corresponding to α, β, and 

β2 of the position.
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Figure 4. Overall Structure of PSO-guided Self-Tuning CNN (PSTCNN).
The framework can be divided into two main parts, PSO-guided Tuning (blue dashed 

box) and a Five-layer CNN (green dashed box). The PSO-guided Tuning part does 

the initialisation and updating of the parameter values. The Five-layer CNN is trained 

with the three hyperparameters from the PSO-guided Tuning and some pre-set constant 

hyperparameters (batch size is 128, kernel size is 3 × 3, and the number of epochs of 100). 

The MSE calculated from the output of the trained CNN is the fitness value of the PSO. The 

starting iteration index k=0, and when the value of k reaches the pre-set maximum number 

of iterations, The training of the model is completed.
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Figure 5. Heatmap examples generated by Grad-CAM.
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Figure 6. 
Receiver Operating Characteristic Curve of Particle Swarm Optimisation-guided Self-

Tuning CNN.
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Figure 7. Comparison with State-Of-The-Art methods.
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Table 1
Dataset Statistic

Class Ratio No. of Samples

Positive (COVID-19) 0.5 148

Negative (Health Control) 0.5 148
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Table 2
Advantages and disadvantages of search methods

Search Method Advantage Disadvantage

Grid Search

The grid search process
iterates through all
possible combinations of
hyperparameters without
missing possible
combinations as
far as time and computational
resources allow.

Grid search is difficult to
traverse a nearly infinite
number of all
hyperparameter combinations, requiring huge
time and computational costs,
and is inefficient.

Random Search

The random search
process is stochastic and
can cover a much larger
range of hyperparameter
combinations.

The search process is so
random that, even though it
can be optimized to prevent
repeated computation of the
same hyperparameter
combinations, the large
number of hyperparameter
combinations makes it
difficult to guarantee that the
optimal hyperparameter is
found.

Particle Swarm
Optimisation
(PSO; Ours)

PSO uses many particles
to purposefully find the
optimal combination of
hyperparameters, making
the search process more
efficient.

Updating particle positions
requires training neural
networks based on different
combinations of
hyperparameters, which
requires high computational
resources and time costs.
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Table 3
Ten runs results among seven performance metrics (in %)

Sen Spc Prc Acc F1 MCC FMI

R1 89.86 91.89 91.72 90.88 90.78 81.77 90.79

R2 91.89 95.27 95.10 93.58 93.47 87.21 93.48

R3 94.59 93.92 93.96 94.26 94.28 88.52 94.28

R4 93.92 93.92 93.92 93.92 93.92 87.84 93.92

R5 92.57 91.89 81.95 92.23 92.26 84.46 92.26

R6 93.92 96.62 96.53 95.27 95.21 90.57 95.21

R7 93.92 91.89 92.05 92.91 92.98 85.83 92.98

R8 96.62 97.30 97.28 96.96 96.95 93.92 96.95

R9 93.92 93.92 93.92 93.92 93.92 87.84 93.92

R10 95.27 96.62 96.58 95.95 95.92 97.90 95.92

MSD 93.65 94.32 94.30 93.99 93.97 87.99 93.97

±1.86 ±2.07 ±2.04 ±1.78 ±1.78 ±3.56 ±1.78

R1, R2, …, R10: Run 1, Run 2, …, Run 10; MSD: Mean ± Standard Deviation; Sen: Sensitivity; Spc: Specificity; Prc: Precision; Acc: Accuracy; 
F1: F1-score; Mcc: Matthews correlation coefficient; FMI: Fowlkes-Mallows index.
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Table 4
Comparison with State-Of-The-Arts methods (in %)

Model Sen Spc Prc Acc F1 MCC FMI

WRE+ 3SBBO (Wu 2020) 86.40 ± 3.00 85.81 ± 3.14 86.14 ± 3.03 86.12 ± 2.75 86.16 ± 2.77 72.42 ± 5.55 86.15 ± 2.76

GoogLeNet-COD-A (Yu, Wang 
et al. 2020)

90.54 ±2.16 82.77 ±2.65 84.07 ±1.93 86.66 ±1.14 87.15 ±1.06 73.59 ±2.25 87.23 ±1.07

GLCM-SVM (Chen 2021) 72.03 ±2.94 78.04 ±1.72 76.66 ±1.07 75.03 ±1.12 74.24 ±1.57 50.20 ±2.17 74.29 ±1.53

6L-CNN (Hou and Han 2022) 89.47 ±1.50 87.47 ±2.11 87.75 ±1.76 88.47 ±1.05 88.59 ±0.99 76.98 ±2.09 88.60 ±0.99

SIDCAN (Zhang, Zhang et al. 
2021)

92.86 ±1.59 93.64 ±2.09 93.36 ±2.02 93.26 ±0.74 93.08 ±0.71 86.55 ±1.49 93.10 ±0.72

PZM-DSSAE (Khan 2021) 92.06 ±1.54 92.56 ±1.06 92.53 ±1.03 92.31 ±1.08 92.29 ±1.10 84.64 ±2.15 92.29 ±1.10

GLCM-ELM (Pi and Lima 
2021)

74.19 ±2.74 77.81 ±2.03 77.01 ±1.29 76.00 ±0.98 75.54 ±1.31 52.08 ±1.95 75.57 ±1.28

WE-Jaya (Wang 2021) 73.31 ±2.26 78.11 ±1.92 77.03 ±1.35 75.71 ±1.04 75.10 ±1.23 51.51 ±2.07 75.14 ±1.22

GLCM+SNN (Pi 2021) 74.66 ±1.87 78.00 ±1.29 77.24 ±1.15 76.33 ±1.18 75.92 ±1.31 52.70 ±2.34 75.93 ±1.30

WE-SAJ (Wang, Zhang et al. 
2022)

85.47 ±1.84 87.23 ±1.67 87.03 ±1.34 86.35 ±0.70 86.23 ±0.77 72.75 ±1.38 86.24 ±0.76

PSTCNN (Ours) 93.65 ±1.86 94.32 ±2.07 94.30 ±2.04 93.99 ±1.78 93.97 ±1.78 87.99 ±3.56 93.97 ±1.78

Sen: Sensitivity; Spc: Specificity; Prc: Precision; Acc: Accuracy; F1: F1-score; Mcc: Matthews correlation coefficient; FMI: Fowlkes-Mallows 
index.
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