Skip to main content
. Author manuscript; available in PMC: 2023 Jan 31.
Published in final edited form as: Syst Sci Control Eng. 2022 Mar 6;10(1):325–335. doi: 10.1080/21642583.2022.2045645

Table 4. Performance comparison to State-of-the-art Approaches.

Method Sen Spc Prc Acc F1 MCC FMI
RBFNN [16] 66.89 75.47 73.23 71.18 69.88 42.56 69.97
±2.43 ±2.53 ±1.48 ±0.80 ±1.08 ±1.61 ±1.04
WE-BBO [18] 72.97 74.93 74.48 73.95 73.66 47.99 73.66
±2.96 ±2.39 ±1.34 ±0.98 ±0.98 ±2.00 ±1.33
GLCM-SVM [17] 72.03 78.04 76.66 75.03 74.24 50.20 74.29
±2.94 ±1.72 ±1.07 ±1.12 ±1.57 ±2.17 ±1.53
WE-JAYA [19] 73.31 78.11 77.03 75.71 75.10 51.51 75.14
±2.26 ±1.92 ±1.35 ±1.04 ±1.23 ±2.07 ±1.22
GoogLeNet [15] 77.64 83.85 82.82 80.74 80.12 61.65 80.17
±2.22 ±2.00 ±1.54 ±0.91 ±1.07 ±1.81 ±1.05
WE-SAJ 85.47 87.23 87.03 86.35 86.23 72.75 86.24
±1.84 ±1.67 ±1.34 ±0.70 ±0.77 ±1.38 ±0.76

(Sen = Sensitivity; Spc = Specificity; Prc = Precision; Acc = Accuracy; F1 = F1 Score; MCC = Matthews correlation coefficient; FMI = Fowlkes-Mallows Index)