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Abstract

Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is commonly used to 

visualize and quantify left atrial (LA) scars. The position and extent of LA scars provide 

important information on the pathophysiology and progression of atrial fibrillation (AF). Hence, 

LA LGE MRI computing and analysis are essential for computer-assisted diagnosis and treatment 

stratification of AF patients. Since manual delineations can be time-consuming and subject to 

intra- and inter-expert variability, automating this computing is highly desired, which nevertheless 

is still challenging and under-researched.

This paper aims to provide a systematic review on computing methods for LA cavity, wall, scar, 

and ablation gap segmentation and quantification from LGE MRI, and the related literature for 

AF studies. Specifically, we first summarize AF-related imaging techniques, particularly LGE 

MRI. Then, we review the methodologies of the four computing tasks in detail and summarize 

the validation strategies applied in each task as well as state-of-the-art results on public datasets. 

Finally, the possible future developments are outlined, with a brief survey on the potential clinical 

applications of the aforementioned methods. The review indicates that the research into this topic 

is still in the early stages. Although several methods have been proposed, especially for the 

LA cavity segmentation, there is still a large scope for further algorithmic developments due to 

performance issues related to the high variability of enhancement appearance and differences in 

image acquisition.
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1 Introduction

1.1 Clinical goals

Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered in the clinic, 

occurring in up to 2% of the population and rising in prevalence along with advancing 

age (Chugh et al., 2014). Fig. 1 presents a comparison of sinus rhythm and AF. One can 

see that there are chaotic electrical signals in the atrium of AF patients compared to sinus 

rhythm, resulting in a rapid and irregular heart rhythm. Radiofrequency catheter ablation 

via pulmonary vein isolation (PVI) is a promising procedure for treating AF, especially for 

paroxysmal AF patients (Calkins et al., 2007). The left atrium (LA) is a crucial structure 

in the pathophysiology of AF, and the observation of LA remodeling can be important for 

the initial evaluation of AF (Tops et al., 2010). Besides, structural changes in the LA wall 

(especially changes in the wall thickness) are known to occur in AF patients (Karim et al., 

2018). The wall thickness can be used to predict the response to invasive treatment of AF 

and has the potential for improving the safety of AF ablation (Whitaker et al., 2016). The 

wall thickness is also important to measure the transmurality of scars which is related to 

the AF recurrence (Ranjan et al., 2011). The success of AF treatments is highly related to 

the formation of a contiguous scar completely encircling the veins (Ranjan et al., 2011). 

Unfortunately, the encircling lesion is often incomplete with a combination of ablation scars 

and gaps of healthy tissue (Miller et al.,2012). Therefore, the extent and distribution of both 

scars and gaps are important information for AF patient selection (Akoum et al., 2011), 

diagnosis prediction (Arujuna et al., 2012), and treatment stratification (Njoku et al., 2018). 

For example, patients were divided into four grades according to their degrees of fibrosis 

(refers to preexisting scars) in Akoum et al. (2011), shown in Table 1. Based on the scoring, 

various therapeutic strategies were suggested by electrophysiologists.

Recently, late gadolinium enhancement magnetic resonance imaging (LGE MRI) has 

evolved as a tool for defining the extent of fibrosis/ scars and visualizing the ablation gaps 

(Siebermair et al., 2017; Li et al., 2020b; Nuñez-Garcia et al., 2019). Therefore, it is crucial 
to develop techniques for the four progressive tasks, i.e., (1) LA cavity segmentation, (2) 
LA wall segmentation together with wall thickness measurement, (3) scar segmentation and 
quantification, and (4) ablation gap localization from LGE MRI. Fig. 2 provides the clinical 

pipeline for AF ablation procedures, where the role of LGE MRI is highlighted and the four 

closely related tasks of clinical interests are presented, followed by several related clinical 

applications.

1.2 Challenges of LA LGE MRI computing

Manual delineations of the LA, LA wall, scars, and ablation gaps are all labor-intensive and 

prone to be subjective, so their automation is highly desired, which nevertheless remains 

challenging. The challenges for automatic LA cavity segmentation are mainly from the 

large variations in terms of LA shape, intensity range as well as poor image quality. For 

the LA wall analysis, two additional difficulties are presented, i.e., the intrinsic thin wall 

thickness and the complex structure of the LA wall. Here, the complex structure refers 

to the multiple openings in its 3D structure such as the pulmonary veins (PV) and mitral 

valve (MV) of the LA. For the scar analysis, its unique challenge lies in the enhanced noise 
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from surrounding tissues. For the gap quantification, the large variability in PV morphology 

(position, orientation, size, thickness) and the robustness to scar segmentation changes are 

the two major concerns. Fig. 3 illustrates and explains part of these challenges in an intuitive 

way.

1.3 Study inclusion and literature search

In this work, we aim to provide the reader with a survey of the state-of-the-art image 

computing techniques, important results as well as the related literature for AF studies. 

To ensure comprehensive coverage, we have screened publications from the last 10 years 

related to this topic. Our main sources of references were Internet searches using engines 

such as Google Scholar, PubMed, IEEE-Xplore, and Citeseer. To cover as many related 

works as possible, flexible search terms have been employed when using these search 

engines, as summarized in Table 2. Both peer-reviewed journal papers and conference 

papers were included here. We have also followed the references found in papers from 

these sites, and finally collected a comprehensive library of more than 130 papers. Fig. 4 

presents the distributions of papers in segmentation and quantification from LGE MRI for 

AF patients per year/task. Note that we generally picked the most detailed and representative 

ones for this review when we encountered several papers from the same authors about the 

same subject.

1.4 Related review literature

Table 3 lists existing review papers related to AF. One can see that most current AF-related 

review papers focused on a clinical survey instead of the methodology of image computing, 

such as segmentation or quantification algorithms. Only two reviews, Pontecorboli et al. 

(2017) and Jamart et al. (2020), are similar to ours in terms of the topic (LGE MRI) and 

style (technical). However, only conventional thresholding methods or only deep learning 

(DL)-based methods were reviewed in each work. Fig. 5 visualizes the scopes of current 

reviews as well as this review, and one can see that the scopes are different although partial 

overlaps can be found. Besides, our review organizes the related works according to the 

clinical pipeline (see Fig. 2), resulting in an intuitive structure of the paper.

1.5 Structure of this review

The remainder of the paper is organized as follows (compare Fig. 2): Section 2 presents 

the current common imaging tools used in AF ablation and the importance of LGE MRI 

in the management of AF. Section 3 systematically reviews the state-of-the-art image 

computing techniques and results of LA cavity, wall, scar, and ablation gap segmentation 

and quantification. Section 4 presents the public data, evaluation measures, and state-of-the-

art evaluation results on the public data for each task. Potential clinical applications are 

provided in Section 5. Discussion of current LA LGE MRI computing challenges and future 

perspectives are given in Section 6, along with a conclusion in Section 7.

2 Imaging of atrial fibrillation

Medical images can offer crucial information for the evaluation and treatment of AF 

patients, and have been widely used in the ablation process (Tops et al., 2010; Obeng-
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Gyimah and Nazarian, 2020). Table 4 summarizes the common imaging modalities used in 

three ablation stages (before, during, and after catheter ablation), mainly referring to Tops 

et al. (2010) and Obeng-Gyimah and Nazarian (2020). One can see that diverse imaging 

modalities have been introduced in the ablation process, each of which assists in various 

aspects of the procedure.

2.1 Imaging for ablation procedures

Before catheter ablation (CA), the first step is to exclude contraindication, such as 

the LA appendage (LAA) thrombi which are normally detected using transesophageal 

echocardiography (TEE) (Ellis et al., 2006; Calkins et al., 2007; Pathan et al., 2018). MRI 

and computed tomography (CT) can be used to detect LA thrombi, but both tend to have 

a low inter-observer agreement (Mohrs et al., 2006; Gottlieb et al., 2008). In addition, the 

images are statically acquired a few seconds after the arrival of contrast to the LAA. Hence, 

it could be difficult to differentiate LAA thrombi from sluggish flow (Romero et al., 2013). 

To select patients expected for successful CA, the assessment of LA, PVs, and fibrosis 

are the key steps (Berruezo et al., 2007; Akoum et al., 2011). Three-dimensional (3D) 

imaging techniques, such as CT and MRI, are generally used for PV anatomy assessment. 

PV anatomy can also be measured by TEE, achieving up to 95% concordance with MRI 

(Toffanin et al., 2006). Moreover, cardiac MRI remains the gold standard for fibrosis 

assessment (Obeng-Gyimah and Nazarian, 2020). Especially, LGE MRI appears to be a 

promising alternative for pre-ablation scar visualization and quantification (Siebermair et al., 

2017).

During CA, fluoroscopy is the most commonly employed imaging technique in the 

electrophysiology laboratory. Intracardiac echocardiography (ICE) offers real-time imaging 

of the PVs and adjacent structures and enhances the safety of transseptal puncture by 

visualizing inter-atrial septum and puncture needle (Jongbloed et al., 2005a). Both ICE and 

fluoroscopy can visualize the LA and PVs (Saad et al., 2002). Note that the integration of 

different imaging modalities during CA is promising (Tops et al., 2010), but is out of the 

scope of this review.

After CA and during the follow-up study, the main target of post-procedural imaging 

is to monitor complications and help predict recurrence. The most frequently occurring 

complications of AF ablation include PV stenosis, pericardial effusion, and atrio-

oesophageal fistul. Multi-slice CT and MRI are usually used for accurate assessment of PV 

stenosis and esophageal injury (Holmes et al., 2009). Transthoracic echocardiography (TTE) 

is a recommended imaging tool for screening to detect pericardial effusion (Calkins et al., 

2007). To predict recurrence, LA size and functions are important indices, as LA ablation 

can lead to the formation of scars and subsequent changes in LA anatomy (Casaclang-

Verzosa et al., 2008). For the follow-up analysis of LA volumes, TTE is typically used, but 

3D techniques, such as real-time 3D echocardiography (Zhang et al., 2017), multi-slice CT 

(Polaczek et al., 2019), and MRI (Tsao et al., 2005), especially LGE MRI (McGann et al., 

2014), may provide more accurate information. For the measurement of LA wall thickness, 

TEE has the advantages of high temporal resolution and short acquisition time, but it is 

difficult to obtain descriptive information on the LA wall due to its low spatial resolution 
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(Nakamura et al., 2011). CT is an ideal modality, thanks to its high resolution, and MRI 

is widely considered to be the gold standard for the viability assessment of wall pathology 

(Karim et al., 2018).

LGE MRI has been recently widely explored for scar and ablation gap quantification 

(Nuñez-Garcia et al., 2019; Mishima et al., 2019). Note that T1 mapping MRI could be used 

to obtain valuable imaging-based biomarkers for diffused cardiac fibrosis, which has been 

validated against histological studies (Sibley et al., 2012). For example, it is possible with 

T1 mapping to non-invasively quantify myocardium extracellular volume fraction, which is 

a biomarker of diffuse reactive fibrosis (Taylor et al., 2016). Nevertheless, it can be difficult 

to localize fibrosis using T1 mapping MRI, and it is therefore not appropriate for ablation 

procedure guidance or ablation gap identification. LGE MRI remains a promising method to 

detect focal and cohesive fibrosis (Pontecorboli et al., 2017).

2.2 LGE MRI for AF studies

LGE MRI is mainly used to evaluate fibrosis and scars of AF patients before and after 

ablation. This is because LGE MRI can discriminate scarring and healthy tissues by their 

altered wash-in and wash-out contrast agent kinetics (Marrouche et al., 2014). Scars are 

thus visualized as the regions of being enhanced or high signal intensity compared to 

healthy tissues (Yang et al., 2018a). There is still no consensus on the option and dosage 

of the contrast agent, nor on the timing of image acquisition after contrast administration, 

as Table 5 shows. Among the listed protocols, the DECAAF (Delayed-Enhancement MRI 

Determinant of Successful Radiofrequency Catheter Ablation of Atrial Fibrillation) protocol 

can be considered the most widely used one for LA fibrosis imaging (Siebermair et al., 

2017). Considering the importance and advances of LGE MRI in AF studies, in this review 

we mainly focus on the computing works on LGE MRI.

3 Image computing

We structure the review of image computing methodology according to the segmentation 

and quantification tasks in question, as presented in Fig. 2. To understand the key elements 

of methodologies, we further classify the methods applied in each task (see Fig. 6). In 

the following sections, we will elaborate and discuss these methods and the corresponding 

results of different tasks in detail.

3.1 LA cavity segmentation

In recent years, many algorithms have been proposed to perform automatic LA cavity 

segmentation from medical images, but mostly for non-enhanced imaging modalities. 

Conversely, a limited number of works for the LA cavity segmentation from LGE MRI 

were reported in the literature before 2018. Most of the current studies on the LA cavity 

segmentation from LGE MRI are still based on time-consuming and error-prone manual 

segmentation methods (Higuchi et al., 2018; Njoku et al.,2018). This is mainly because LA 

cavity segmentation methods in non-enhanced imaging modalities are difficult to directly 

apply to LGE MRI, due to the existence of contrast agents and low-contrasted boundaries. 

Existing conventional automatic LA LGE MRI segmentation approaches generally require 
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additional information, such as shape priors (Zhu et al., 2013) or other images, such 

as non-enhanced 3D MRI (Li et al.,2020b) and contrast enhanced magnetic resonance 

angiogram (MRA) (Ravanelli et al., 2014; Tao et al., 2016a; Roney et al.,2020). Recently, 

with the development of DL in medical image processing, numerous DL-based algorithms 

are proposed for the automatic LA cavity segmentation directly from LGE MRI (Xiong et 

al., 2020). Table 6 summarizes the representative methods and their results in chronological 

order. The upper and lower parts of the table summarize conventional (non-DL-based 

methods) and DL-based methods, respectively.

3.1.1 Conventional methods for LA cavity segmentation—Conventional methods 

for LA cavity segmentation can be classified into four kinds, i.e., shape models, clustering 

algorithms, deformable models (region growing, activate contour, and level-set), and atlas-

based methods.

Shape models/ clustering algorithms: Many works incorporated anatomical or shape 

priors to improve the robustness against the large variability of LA shapes and intensity 

distributions. For example, Gao et al. (2010) used shape learning and region-based active 

contour evolution for the LA cavity segmentation. The shape learning aimed to utilize prior 

shape knowledge, to solve the unclear boundary problem in LGE MRI when using the active 

contour method. Zhu et al. (2013) achieved the LA cavity segmentation using a variational 

region growing with a moments-based shape prior. They adjusted the weights between 

the data-driven term and shape prior constraint to adapt for the changes in the volume of 

the target region. Nuñez-Garcia et al. (2018) constructed LGE MRI atlases via multi-atlas 

segmentation (MAS) and then clustered the LA shapes using principal component analysis 

to perform a second MAS for the LA cavity segmentation, as presented in Fig. 7. It remains 

too complicated so far to cover the large shape variation between LA cavities of different 

subjects by simply imposing a shape prior.

Deformable models: The major challenge of deformable models on the LA cavity 

segmentation arises from the wide variability of the intensity distribution in LGE MRI. 

To solve this, Zhu et al. (2013) designed a variational region growing method to reduce 

its sensitivity to the change of intensity distribution. The seed search in their work was 

performed by incorporating certain geometric information of PVs relative to the LA. Instead 

of performing global optimization, Tao et al. (2016a) and Qiao et al. (2018) employed 

level-set for local refinement on the global segmentation obtained by MAS. The advantage 

of deformable models is that they do not have a prior assumption about the object geometry 

and are therefore skillful at capturing local shape variations, such as the PV regions of the 

LA. Therefore, it is effective to combine deformable models for local attention with other 

models considering the global shape information of LA. Examples include Gao et al. (2010) 

and Zhu et al. (2013) where a shape prior was employed as a global constraint.

Atlas-based methods: An alternative way is to use atlas-based methods that can be robust 

to the LA cavity with high anatomical variations. For instance, Tao et al. (2016a) and Li 

et al. (2020b) utilized atlas-based methods employing the label of another image (from the 

same patient) with better anatomical information to assist the LA cavity segmentation of 
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LGE MRI. Tao et al. (2016a) employed MAS to segment the LA cavity from the MRA, 

and then mapped the generated label to LGE MRI followed by a level-set based refinement. 

They compared the results with that of solely using LGE MRI (directly employing MAS 

on LGE MRI) and found that the former achieved better results. They also tested their 

method on the public dataset from the Atrial Segmentation Challenge where only LGE 

MRI was provided (Qiao et al., 2018), and achieved better performance in terms of Dice 

compared to that in Tao et al. (2016a) (0.88 ± 0.03 vs. 0.86 ± 0.05). This may be due to 

the difference in the dataset, as the public data includes both pre- and post-ablation images. 

Similarly, Li et al. (2020b) employed an auxiliary MRI sequence to assist the LA cavity 

segmentation of LGE MRI using MAS methods and obtained a better Dice score (0.898 ± 

0.044) than other conventional methods. Particularly, Li et al. (2020b) and Nuñez-Garcia 

et al. (2018) adopted a multi-atlas based whole heart segmentation (MA-WHS) and then 

extracted the LA sub-structure. This is because the LGE MRIs employed in their studies 

cover the whole heart, and MA-WHS could be helpful to exclude surrounding sub-structures 

of LA. Although in clinical routine LGE MRI may have limited field-of-view, all current 

public LA LGE MRI datasets were specifically acquired to cover the whole heart with the 

development of novel whole-heart high-resolution LGE techniques (Toupin et al., 2021). 

Although auxiliary images can provide better anatomical information, the anatomy extracted 

from them may be highly deformed compared to that acquired from LGE MRI. It may cause 

difficulties in the co-registration step and lead to subsequent incorrect segmentation of the 

LA cavity. Moreover, conventional atlas-based methods are generally time-consuming due to 

multiple image registration steps.

3.1.2 Deep learning-based methods for LA cavity segmentation—For the 

LA cavity segmentation, many basic neural network architectures have been employed. 

To boost the feature learning ability of networks, a series of works have focused 

on optimizing network structures, investigating different loss functions, and applying 

anatomical constraints. Here, we mainly classify these DL-based methods according to the 

network architectures, and will also discuss the loss functions and anatomical constraints 

used to train the networks.

Architecture of network: Recently, many methods based on different network structures 

were developed with the launch of the Atrial Segmentation Challenge in MICCAI 2018, 

where U-Net was commonly employed as the backbone. For example, Vesal et al. (2018) 

employed a 3D U-Net with dilated convolutions at the bottom of the network and residual 

connections between encoder blocks, to incorporate both local and global knowledge. Li 

et al. (2018a) proposed an attention-based hierarchical aggregation network for the LA 

cavity segmentation, and the basic network is a 3D U-Net. Borra et al. (2020) tested both 

2D and 3D U-Net for the LA cavity segmentation and found that 3D pipelines showed 

significantly better performance compared to the 2D pipelines. Wang et al. (2019a) utilized 

ensemble attention U-Net, dense U-Net, and residual U-Net models to segment LA. Liu 

et al. (2018), Preetha et al. (2018), and de Vente et al. (2018) all employed 2D U-Net 

for the LA cavity segmentation, and Liu et al. (2018) also tested the performance of fully 

convolutional networks (FCNs). Instead of using U-Net as the backbone, Bian et al. (2018) 

used ResNet101 for the LA cavity segmentation and adopted a pyramid module to learn 
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multi-scale semantic information in the feature map. Puybareau et al. (2018) achieved the 

LA cavity segmentation by transfer learning from VGG-16, a pre-trained network used 

to classify natural images. Savioli et al. (2018) presented a 3D volumetric FCN for the 

LA cavity segmentation. Besides the architecture, Jamart et al. (2020) emphasized the 

importance of relevant loss function selection for the LA cavity segmentation. Jia et al. 

(2018) proposed a novel contour loss function to include distance information for good 

shape consistency. Zhao et al. (2021) employed a hybrid loss to focus on the boundaries 

as much as on regions, and therefore reduced the impact of noisy neighboring tissues. Li 

et al. (2021c) introduced a spatial encoding (SE) loss to incorporate continuous spatial 

information of the LA. Their experiments showed that the SE loss could be effective to 

remove noisy patches in the final predicted segmentation, and therefore evidently reduced 

the Hausdorff distance (HD) value. For the loss function selection, one could refer to 

the review paper (Ma et al., 2021), where Dice-related compound loss functions were 

recommended for medical image segmentation tasks.

Multi-task networks: Multi-task learning has been adopted for the LA cavity segmentation 

to utilize its possible relationship with other auxiliary tasks. For example, Chen et al. 

(2018b) and Li et al. (2021c) performed simultaneous LA cavity and scar segmentation via 

multi-task learning. The simultaneous optimization scheme showed better performance than 

solving the two tasks independently which ignored the intrinsic spatial relationship between 

the LA cavity and scars. Chen et al. (2018a) designed a two-task network for both LA cavity 

segmentation and pre/ post ablation image classification to learn additional anatomical 

information. The results indicated that multi-task learning obtained better segmentation 

performance compared to baseline U-Net method training with a single segmentation task.

Two-stage networks: A two-stage training strategy has been gradually employed to replace 

conventional pre-processing (such as the Otsu’s algorithm employed in Borra et al. (2018)) 

for the region of interest (ROI) extraction. For instance, Jia et al. (2018), Xia et al. (2018), 

Yang et al. (2018b), and Jamart et al. (2019) all utilized two-stage U-Net/ V-Net and 

achieved top performances in the LA cavity segmentation. The first stage was to roughly 

locate the LA cavity center for ROI extraction, while the second stage was to perform the 

LA cavity segmentation from the cropped ROI. In this way, a memory-efficient and accurate 

framework was developed, and the class imbalance problem was also mitigated. It is worth 

mentioning that Xia et al. (2018) obtained the first-ranked results (mean Dice score of 0.932 

± 0.022) in Left Atrium Segmentation Challenge by using the two-stage network.

Multi-view networks. The major drawback of 2D networks is that they ignore the inter-

slice correlation in the 3D LGE MRI. To solve this, a number of works have employed 

multi-view images as the input of networks to learn additional contextual information, 

namely multi-view learning. Examples include Chen et al. (2018b), Yang et al. (2020), 

and Xiao et al. (2020) where the features learned from axial, sagittal, and coronal views 

were combined for the LA cavity segmentation. Specifically, Chen et al. (2018b) and Yang 

et al. (2020) regarded axial view as the main view due to its finer spatial resolution and 

extracted information by sequential learning; and then employed dilated residual learning 

to extract complementary information from sagittal and coronal views (with lower spatial 
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resolution). Instead of employing 2D networks, Xiao et al. (2020) constructed three 3D deep 

convolutional streams to extract features from the patches of three views, and then fused the 

features for the LA cavity segmentation.

Multi-scale networks: There exists inconsistency in the sizes of LA anatomical structures 

such as the PVs among different patients in LGE MRI. Multi-scale networks are therefore 

commonly used to learn both local and global features from LGE MRI. For instance, Du 

et al. (2020) adopted a dual-path structure network with a multi-scale strategy for the LA 

cavity segmentation from LGE MRI. Xiong et al. (2018) proposed an AtriaNet consisting 

of a multi-scale and dual pathway architecture, to capture both local LA tissue geometries 

and global positional information. They evaluated their algorithm on 154 LGE MRIs and 

obtained average Dice scores of 0.940 ± 0.014 and 0.942 ± 0.014 for the LA epicardium and 

endocardium, respectively.

Uncertainty-aware models: LA structures such as the mitral valve are difficult to segment 

due to the lack of a clear anatomical border between the LA and the LV. The ambiguity 

of the boundary gives rise to uncertainty for the LA cavity segmentation. Yang et al. 

(2018b) designed a composite loss to combat uncertainty, and the main idea was to enlarge 

the gap between background and foreground predictions. Yu et al. (2019) proposed an 

uncertainty-aware self-ensembling model for semi-supervised LA cavity segmentation. This 

is achieved by encouraging the segmentation to be consistent for the same input under 

different perturbations of the unlabeled data. Therefore, they could use abundant unlabeled 

data for training and obtained similar performance compared to the fully supervised methods 

using abundant labeled data.

3.1.3 Summary of LA cavity segmentation methods—In summary, conventional 

methods generally rely on the information from shape priors or additional paired MRI/ MRA 

for accurate LA cavity segmentation from LGE MRI. However, acquiring the auxiliary 

images requires extra work, and may introduce further errors, i.e., misalignment between 

LGE MRI and the auxiliary images. Recently, with the development of DL and the release 

of public data, many methods could directly segment the LA cavity from LGE MRI, and 

achieved promising results. However, there still exist large errors in the PV and MV regions. 

This is mainly due to the small size, the large variability of PVs, including the number, 

position and orientation of the PVs, and the unclear boundary of MV. Note that PVs are 

crucial structures for AF analysis, as scars and ablation gaps are mainly located around 

PVs after PVI procedures. To improve the performance of DL-based methods, multi-task 

learning is effective, and a two-stage network is also a recommended training strategy. It is 

also important to include shape prior or spatial information into the DL-based framework for 

robust LA cavity segmentation, especially when the size of training dataset is small. Besides, 

the accuracy of segmentation was found to be correlated to the image quality of LGE MRI 

(Pearson’s correlation = 0.38, p-value = 0.005) (Xiong et al., 2020). It is interesting that 

the reviewed methods show that 2D and 3D convolutional neural networks (CNNs) had 

comparable performance, though the target LGE MRI belongs to a 3D image.
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3.2 LA wall segmentation

To the best of our knowledge, there are limited works reported for automatic LA wall 

segmentation in the literature, especially from LGE MRI. Many groups estimated the LA 

wall from LGE MRI just as an initialization step for the LA scar segmentation (Karim 

et al., 2013; Yang et al., 2018a; Wu et al.,2018). These works are not included in this 

section, as most of them simply dilated the generated LA endocardium by assuming a fixed 

wall thickness for approximated LA wall segmentation (Karim et al., 2013). However, LA 

wall thickness varies with positions of the same patient and patients with different gender, 

age, and disease status (Pan et al., 2008). With an accurate segmentation result, the wall 

thickness, which is useful in clinic studies, could be calculated. For the review of existing 

techniques of wall thickness measurement, one can refer to Table 1 of the benchmark 

paper (Karim et al., 2018). Considering the limited number of works reported on LA 
wall segmentation, in this section we further review the segmentation on other modalities, 
including non-enhanced MRI and CT. Table 7 summarizes the representative works and 

results from (LGE) MRI and CT.

3.2.1 Conventional methods for LA wall segmentation

Morphological operations: The most straightforward method is to perform morphological 

operations on the LA endocardium by assuming a fixed wall thickness. For example, Bishop 

et al. (2016) adopted morphological operations on the segmented blood pool for wall 

segmentation from CT. This method ignores the thickness variation among different LA 

positions.

Deformable models: In contrast, deformable models can dynamically adapt to the changes 

of wall thickness, and hence obtain more plausible LA wall segmentation results. For 

example, Tao et al. (2016b) used the level-set approach to extract the inner and outer LA 

surface for the final wall segmentation. Jia et al. (2016) adopted the region growing method 

for endocardial segmentation and then utilized Marker-controlled geodesic active contour 

for the epicardial segmentation. Karim et al. (2018) presented the LA wall segmentation 

and thickness measurement results using three conventional methods, i.e., level-set, region 

growing, and watershed. The results showed that level-set performed evidently better than 

the other two methods; region growing generally over-estimated thickness and performed 

poorly in the wall segmentation task. They also found that algorithms performed worse in 

MRI than in CT, which may be due to the fact that the image quality of MRI was generally 

worse than CT. However, CT has limited soft tissue contrast, so Tao et al. (2016b) employed 

nonlinear intensity transformation to enhance the LA wall region in CT.

Laplace-based solutions: Laplace-based solutions generate a series of smooth non-

intersecting field lines between two boundaries in space and are ideal for simulating the 

highly variable LA epicardial and endocardial surfaces. Wang et al. (2019b) employed 

the multi-planar convex hull approach to extract the epicardial and endocardial surfaces, 

and then used the coupled partial differential equations (PDE) for the wall thickness 

measurement. They evaluated their method on both LGE MRI and ex vivo data, and 

observed that wall thickness values in LGE MRI were more difficult to measure and 

validate. Besides, there was a discrepancy in wall thickness measured by ex vivo data 
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and LGE MRI. Specifically, the wall thickness values measured from ex vivo data were 

consistently higher than those measured in LGE MRI. Zhao et al. (2017) calculated the wall 

thickness by solving the Laplace equations on both epicardial and endocardial surfaces. 

Despite its prominence, the Laplace-based method still requires explicitly calculating 

gradient as well as distance trajectories, which are time-consuming and error-prone (Wang et 

al., 2019c).

Graph-based methods: Graph-based methods are promising alternatives. Veni et al. (2017) 

proposed a shape-based generative model namely ShapeCut, to extract epicardial and 

endocardial surfaces for the LA wall segmentation from LGE MRI, as presented in Fig. 

8. The model could incorporate both local and global shape priors within a maximum-a-

posterior estimation framework, and the shape parameters could be optimized via graph-cuts 

algorithm. The optimization could be executed in two phases in an iterative manner, i.e., 

one for multi-surface updates based on multi-column graphs and the other for global shape 

refinement based on closed forms. For evaluation, besides directly assessing the LA wall 

segmentation performance, they also adopted the LA scar segmentation based on their 

LA wall segmentation for further evaluation. Specifically, they extracted the scars using 

thresholding based on both manual and automatic wall segmentations. Then, they plotted the 

fibrosis percentage from manual annotations versus that from automatic ones for each scan. 

They obtained a linear relation with a small error, demonstrating a high overlap between the 

manual and automatic scarring regions. Here, the linear relation error was indicated using 

the MSE and R-square values.

3.2.2 Summary of LA wall segmentation methods—In summary, currently 

reported works were all based on conventional methods, and no DL-based method has been 

reported, to the best of our knowledge. This could be due to the limited number of relevant 

public datasets and the large inter- and intra-observer variations of the manual segmentation. 

As Karim et al. (2018) reported, a common error of LA wall segmentation arises from 

the surrounding tissue such as the neighboring aortic wall. Improving the image quality 

may mitigate this problem, and the active contour-based methods with shape constraints 

and coupled level-set approaches could be helpful. One of the main applications of LA 

wall segmentation is to measure wall thickness. Most of the reported algorithms relied 

on ruler-based assessments via digital calipers instead of performing a prior segmentation 

of the LA wall (Karim et al., 2018). Several works employed the Laplace equation or 

PDE to measure wall thickness after achieving the LA wall segmentation. Karim et al. 

(2018) demonstrated that their proposed wall thickness atlas could be effective for thickness 

prediction in new cases via atlas propagation. They constructed a flat thickness map via a 

surface flattening and unfolding strategy, to compare the mean thickness in each sub-region 

of the LA wall. Finally, though CT is a good modality for imaging the thin wall owing to its 

high resolution, MRI could be effective to assess the wall tissue viability. Therefore, more 

attention is expected to the LA wall segmentation from MRI, especially LGE MRI.

3.3 LA scar segmentation and quantification

In the literature, a limited number of works have been reported targeting the fully automatic 

segmentation or quantification of LA scars, probably due to the particular challenge of 
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this task. Most of the methods require an accurate initial manual segmentation of the LA 

cavity or LA wall for the following scar classification on the LA wall. For example, Left 
Atrium Fibrosis and Scar Segmentation Challenge (Rhode and Karim, 2012) provided LA 

cavity labels for participants to develop scar segmentation algorithms. Eight research teams 

contributed their methods to this task, including histogram analysis, thresholding, k-means 

clustering, region-growing with EM-fitting, active contour, and graph-cuts (Karim et al., 

2013). The benchmark study showed that semi-automatic methods initialized with manual 

LA wall segmentation were much more reliable, and performed better than fully automatic 

approaches (Karim et al., 2013). Currently, the most commonly used approach for the LA 

scar segmentation is based on thresholding, which is nevertheless sensitive to intensity 

changes of LGE MRI (Pontecorboli et al., 2017). Table 8 summarizes all the works, where 

conventional methods are listed in the upper part and DL-based algorithms are enumerated 

in the bottom part.

3.3.1 Conventional methods for LA scar segmentation and quantification

Thresholding: Thresholding is the most popular method for LA scar segmentation. The 

threshold value is normally defined by assuming a fixed standard deviation (SD) above 

the average intensity value of the normal wall region or blood pool (Oakes et al., 2009; 

Badger et al., 2010; Ravanelli et al., 2014). For details, one can refer to the survey 

from Pontecorboli et al. (2017), where different thresholding-based scar segmentation 

techniques were reviewed and compared. These methods are easy to implement and 

intuitive, but also have several disadvantages. Firstly, the selection of threshold values 

is subjective, and the values can differ significantly across various scans, due to the 

difference of timing from gadolinium administration (Karim et al., 2014; Chubb et al., 

2018). Secondly, the performance of scar segmentation highly relies on the accuracy of 

LA or LA wall segmentation that is also challenging, and therefore thresholding based LA 

scar segmentation was typically achieved via semi-automatic or manual approaches (Oakes 

et al., 2009; Badger et al., 2010). The benchmark paper (Karim et al., 2013) compared 

eight methods with the full-width-at-half-maximum (FWHM) and n-SD methods, and all 

thresholding methods employed manual LA cavity segmentation as initialization and three 

of them further utilized manual LA wall segmentation. In general, all the evaluated eight 

methods in the benchmark paper outperformed the FWHM and n-SD methods.

Maximum intensity projection: Similar to thresholding, maximum intensity projection 

(MIP) is also a scar quantification scheme that employs scar intensity characteristics. 

However, unlike thresholding, MIP is more robust to the inaccurate LA cavity segmentation 

due to the projection step. Examples include Knowles et al. (2010) and Tao et al. (2016a), 

where projection was performed at ±3 mm and ±2 mm along each normal vector of the LA 

surface respectively, to consider the potential errors of LA cavity segmentation. Razeghi et 

al. (2020) also employed MIP for scar segmentation (3 mm externally and 1 mm internally). 

Nevertheless, the projection range of MIP must be selected carefully, as it needs to be large 

enough to extend into the LA myocardium, but not too far to include the intensity of other 

regions.
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Clustering algorithms: Considering the complex intensity distribution of LGE MRI, 

clustering algorithms could be another solution for LA scar segmentation. This is because 

clustering can provide a mechanism to statistically separate voxels into groups that are 

analogous to various tissue types, such as blood pool, healthy wall tissue, and scars. Perry 

et al. (2012) employed k-means clustering to segment scars from manually segmented 

LA wall regions. Veni et al. (2017) used the same k-means clustering method as Perry 

et al. (2012), and the LA wall was automatically segmented by their proposed ShapeCut 

method. Yang et al. (2018a) employed super-pixel via a linear iterative clustering algorithm 

to over segment scars, and then utilized the support vector machine algorithm to classify 

the over-segmented super-pixels into scarring and normal wall regions. They scored the 

image quality into 0 (non-diagnostic), 1 (poor), 2 (fair), 3 (good), and 4 (very good) on 

a Likert-type scale, according to the level of signal to noise ratio (SNR), appropriate T1, 

and the existence of navigator beam and ghost artifacts. Only subjects with image quality 

≥ 2 were selected into their study for evaluation. Wu et al. (2018) combined LGE MRI 

with anatomical MRI for the scar quantification based on the multivariate mixture model 

(MvMM) and maximum likelihood estimator (MLE). They formulated a joint distribution 

of images using the MvMM (Zhuang, 2019), where the registration of the two MRIs and 

scar segmentation of LGE MRI were performed simultaneously. Then, the transformation 

and model parameters were optimized by an iterated conditional model algorithm within the 

MLE framework.

Deformable models: Two deformable models were employed to segment LA scars from 

LGE MRI, i.e., region growing and active contour with EM-fitting, as reported in Karim 

et al. (2013). Among the eight methods mentioned in Karim et al.(2013), region growing 

with EM-fitting method obtained the best performance on a post-ablation dataset in terms of 

Dice, even better than those methods that directly employed manual LA wall segmentation 

for initialization. For pre-ablation data, the three methods with manual LA wall initialization 

achieved evidently better Dice compared to the other five methods only with manual LA 

initialization. Similar to Yang et al. (2018a), Karim et al. (2013) classified the LGE MRIs 

into three types, i.e., good, average, and poor, according to its SNR and contrast ratio (CR) 

for scars. They found that most methods had a marginally lower Dice on scans with worse 

quality, but without statistical significance. This could be attributed to the minor quality 

difference and accurate initialization of manual LA cavity segmentation.

Graph-based methods: Graph-based methods naturally consider inter-dependencies by 

introducing links (or edges) between related objects, thus effectively capturing their long-

range relatedness. It may be an effective solution to capture these small and diffuse scars 

distributed on the LA wall. Karim et al. (2011) proposed a probabilistic tissue intensity 

model which was formulated as a Markov random field and solved using graph-cuts. In 

their following work (Karim et al.,2014), they presented a scar quantification method by 

combining the scar intensity model priors and Gaussian mixture model (GMM). Besides, 

they added constraints via the graph-cuts approach to ensure smoothness and avoided 

discontinuities in the final scar segmentation. The proposed method was evaluated on both 

numerical phantoms and clinical datasets, and demonstrated a good concordance between 
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the automatic results and manual delineations. Here, numerical phantoms could offer a wide 

range of variation in scar contrast, which is usually unavailable in clinical datasets.

3.2.2 Deep learning-based methods for LA scar segmentation and 
quantification—Yang et al. (2017b) was the first work applying a DL-based classifier 

for the LA scar segmentation. Specifically, they used super-pixel over-segmentation for 

feature extraction, and then adopted a supervised classification step via stacked sparse 

auto-encoders. However, they only used handcrafted intensity features, which provided 

limited information. Similar to the DL-based LA cavity segmentation methods, multi-scale, 

multiview, and multi-task networks were also employed for LA scar segmentation and 

quantification.

Multi-scale networks: As Fig. 3 (d) shows, the surrounding enhanced regions can seriously 

disrupt the segmentation of scars. Multi-scale learning could be an effective strategy 

to alleviate the interference, as it provides both local and global views when learning 

features of scars. Li et al. (2018b) proposed a hybrid approach utilizing a graph-cuts 

framework combined with CNNs to predict edge weights of the graph for the automatic 

scar segmentation. They extended their work by introducing multi-scale CNN (MS-CNN) 

to learn local and global features simultaneously (Li et al., 2020b), as presented in Fig. 9. 

The experimental results showed that the multi-scale learning scheme (number of scales = 

3) improved the performance when compared with a single scale (Dicescar: 0.702 ± 0.071 

vs. 0.677 ± 0.070). Besides, the scheme is also less dependent on an accurate LA cavity 

segmentation, which makes it more robust. A major limitation of this study was the lack of 

an end-to-end training style, as the framework was split into three sub-tasks, i.e., LA cavity 

segmentation as an initialization, feature learning via the MS-CNN, and optimization based 

on graph-cuts. This indicated the limitation of multi-scale patch strategies, which resulted in 

an expensive time and space complexity and an infeasible end-to-end training on the whole 

graph.

Multi-task/ multi-view networks: To achieve end-to-end optimization, multi-task learning 

is desired. Li et al. (2020a) developed a new framework where LA cavity segmentation, 

scar projection onto the LA surface, and scar quantification are performed simultaneously 

in an end-to-end fashion based on a multi-task network. In this framework, they proposed 

a shape attention (SA) mechanism by an implicit surface projection, to utilize the inherent 

spatial relationship between the LA cavity and scars. The mechanism also alleviated the 

class-imbalance problem in the scar quantification and proved to be effective in the ablation 

study. Similarly, Chen et al. (2018b) and Yang et al. (2020) adopted multi-task learning for 

simultaneous LA and scar segmentation, but the spatial relationship between the two regions 

was not explicitly learned in their works. Moreover, as mentioned in Section 3.1.2, they 

employed multiple views as the input of multi-task networks.

3.3.3 Summary of LA scar segmentation and quantification methods—In 

summary, scar segmentation/ quantification from LGE MRI remains an open problem. 

Most methods relied on interactive correction/ manual initialization, or on accurate initial 

estimation of LA wall segmentation for following application of thresholding. These 
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semi-automatic approaches generally obtained high accuracies in terms of Dice scores. 

Compared to the conventional automatic methods, DL-based algorithms could obtain better 

performance. However, DL-based models could have limited model generalization ability. 

In general, pre-ablation data with fibrosis is more challenging to segment than post-ablation 

data with scars. This may be attributed to the fact that fibrosis appears more diffusely 

compared to postablation scars (Karim et al., 2013). In addition, it is difficult to differentiate 

the native fibrosis and post-ablation scars for long-standing persistent AF patients (Yang et 

al., 2017a). One major challenge for scar segmentation/ quantification is the artifacts from 

the boundary regions, such as the right atrial (RA) wall and aorta wall. A good initialization, 

i.e., accurate LA or LA wall segmentation, could be helpful to counteract this problem. 

Li et al. (2020b) tried to reduce the dependence on accurate LA cavity segmentation 

via projection and MS-CNN, while Li et al. (2020a) introduced a distance-based spatial 

encoding loss for training a deep neural network to learn the spatial information of scars 

around the LA boundary. Another challenge arises from the imaging, including poor image 

quality and data-mismatch issues in DL-based methods. Therefore, a more consistent and 

standard image acquisition protocol is highly required. Alternatively, domain generalization 

algorithms need to be considered to improve the model generalization ability across different 

sites or on unseen datasets (Li et al., 2021a; Campello et al., 2021).

3.4 LA ablation gap quantification

Gaps around PVs can be classified into electrical/ conduction gaps and anatomical ablation 

gaps. Conduction gaps refer to the electrical reconnection regions with high voltages in the 

electroanatomical mapping (EAM), and they can be detected using intra-cavitary catheters 

during a redo procedure. Ablation gaps indicate the gaps of healthy tissue in the (ideally 

continuous) scars, which are typically identified by LGE MRI. Therefore, in this section, we 

only focus on the developed methods to quantify ablation gaps from LGE MRI. Note that 

the ablation gaps do not belong to the inherent structure of the LA, but instead are “gaps” 

left during the LA ablation procedure. Table 9 summarizes representative (semi-)automatic 

LA ablation gap quantification methods, results, and main findings.

3.4.1 Conventional methods for LA gap quantification—Visual detection. To the 

best of our knowledge, most of the methods reported in the literature relied on visual 

inspection, which could result in biased estimations of gap characteristics, such as the 

number, length, and position of gaps. For instance, Badger et al. (2010) and Mishima 

et al. (2019) both employed thresholding for the scar segmentation and then detected 

ablation gaps visually. Moreover, as ablation gaps are highly correlated with scars, there 

is a certain overlap for quantification methods of scars and ablation gaps, such as MIP 

and thresholding. Bisbal et al. (2014) manually segmented the LA wall for an accurate 

initialization and then adopted MIP for the scar and gap classification. Linhart et al. (2018) 

used the image intensity ratio as a threshold for LA scar segmentation and defined the gaps 

as the discontinued ablation line ≤ 3 mm. Several software packages were also employed 

for ablation gap quantification, such as Osirix (Ranjan et al., 2012) and Custom-written 

software (Harrison et al., 2015a).
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Graph-based methods: Recently, Nuñez-Garcia et al. (2019) proposed a reproducible 

framework for semi-automatic gap quantification using a graph-based method, as presented 

in Fig. 10. One can see that the gap quantification was performed via minimum path search 

in a graph where each node was a scarring patch, and the edges denoted the geodesic 

distances between patches. They proposed a quantitative measure to estimate the percentage 

of gaps around a vein, namely the relative gap measure. One major limitation of this work 

was that a fixed regional parcellation was assumed, i.e., four-PV configuration in the LA, but 

actually only around 70% of LA have four PVs (Prasanna et al., 2014).

3.4.2 Summary of LA ablation gap quantification methods—It is considered 

difficult to achieve complete circumferential lesions, so the majority of patients have gaps 

after ablation (Badger et al., 2010; Bisbal et al., 2014; Linhart et al., 2018). The most 

common locations appearing gaps are the area between the left superior PV (LSPV) and 

the LAA. This may be due to the presence of a thicker myocardium in this area, which 

leads to non-transmural lesions (Galand et al., 2016). In Bisbal et al. (2014) and Mishima et 

al. (2019), the largest number of gaps occurred in right superior PV (RSPV) was reported; 

while in Nuñez-Garcia et al. (2019) it appeared in LSPV. In contrast, the fewest of gaps 

occurred consistently in the left inferior PV (LIPV) (Bisbal et al., 2014; Mishima et 

al., 2019; Nuñez-Garcia et al., 2019). The different distributions of gaps in different PV 

positions could be attributed to the differences in imaging and limited accuracy of scar 

segmentation in these regions.

The relationship between electrical gaps of EAM and anatomical gaps of LGE MRI is still 

unclear. Mishima et al. (2019) found that the location of electrical gaps was well matched 

to that of the detected ablation gaps from LGE MRI. However, Harrison et al. (2015a) 

claimed a weak point-by-point relationship between scars and EAM in the patients with 

repeated LA ablation. Besides, the relationship between ablation gaps and AF recurrence 

is also controversial, with positive answers (Peters et al., 2009; Taclas et al., 2010; Badger 

et al.,2010; Bisbal et al., 2014; Linhart et al., 2018) but also negative conclusions (Spragg 

et al., 2012; Harrison et al., 2015b; Nuñez-Garcia et al., 2019). These are partially due to 

the lack of an objective and consistent method for ablation gap quantification, primarily 

depending on visual observation. The task has not been properly addressed in the literature, 

and research on this is still in an early stage.

3.5 Image computing and analysis on the LA LGE MRI

So far, we have presented and discussed the recent progress in LA LGE MRI computing. 

Table 10 summarizes the various properties of different targets with corresponding potential 

processing schemes. The LA cavity is a relatively large target but with variable shapes; 

the LA wall is equivalent to two surfaces with extremely small and inconsistent distance; 

and the LA scars/ ablation gaps belong to small, discrete, and space-constrained (scars 

and ablation gaps are localized at the LA wall) targets with distinct features. Most of the 

methods summarized here are customized to the corresponding attributes and challenges of 

each task. For example, due to the variable shapes of the LA cavity, many atlas-based 

methods were proposed to incorporate the shape priors. Auxiliary images, uncertainty-

aware, and coarse-to-fine training schemes are also beneficial for LA cavity segmentation. 
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Due to the properties of the LA wall, variants of deformable models were employed, 

such as coupled level-set, region growing, and watershed algorithms. With an accurate 

LA initialization, it is straightforward yet effective to adopt thresholding for the scar 

segmentation, as scarring regions are enhanced in intensity compared to the healthy wall. 

Moreover, due to the thin wall, some researchers proposed to project the scars onto the LA 

surface ignoring the wall thickness for scar quantification.

Nevertheless, there is a certain overlap in these reviewed approaches, mainly as the four 

tasks are coherent and share similar challenges (please refer to Sec 1.2 of the manuscript for 

the challenges of each task). Among the conventional methods, several classical algorithms 

were commonly employed, such as graph-based methods, deformable models, and clustering 

algorithms. For example, Fig. 8, Fig. 9, and Fig. 10 present the graph-based methods for 

LA wall segmentation, LA scar quantification, and LA gap quantification, respectively. It is 

evident that for different tasks the graphs were constructed in different styles. Specifically, 

for LA wall segmentation a graph was represented by a set of columns and a neighborhood 

structure among adjacent columns for a multi-surface update, namely a multi-column 

graph. For LA scar quantification, a graph was designed on the LA surface mesh, and 

the graph weights were learned by MS-CNN. For LA gap quantification, the scar patches 

were regarded as the nodes of a graph, and the geodesic distances between patches were 

denoted as the edges. Among the DL-based methods, there are several commonalities 

for LA cavity and scar segmentation/ quantification, which can be categorized into three 

kinds, (1) alleviating the class imbalance problem via pre-processing, a two-stage pipeline, 

or weighted sampling; (2) improving the robustness of networks via multiscale learning, 

multi-task learning, or multi-view feature fusion; (3) forcing the network to generate 

more plausible segmentation results by incorporating shape priors, applying anatomical 

constraints, or introducing uncertainty maps. It is worthwhile to highlight that for LA cavity 

and scar segmentation/ quantification, leveraging spatial relationship of LA cavity and scars 

via simultaneous optimization has been explored and shown to be beneficial for improving 

the accuracy.

There are apparent trade-offs between conventional and DL-based algorithms. Conventional 

approaches are transparent and well-established, while DL has potential of higher precision 

and versatility but with the cost of an enormous amount of data and computing resources 

(O’Mahony et al., 2019). Therefore, it is interesting to explore hybrid approaches combining 

the advantages of them. Several works have demonstrated their benefits for LA LGE MRI 

computing. For example, for LA cavity segmentation, Borra et al. (2018) utilized Otsu’s 

algorithm to extract ROI and then performed segmentation on the ROI via U-Net. Li et 

al. (2021c) employed the conventional distance transform maps to incorporate continuous 

spatial information of the target label. The limited receptive view and spatial awareness in 

the standard CNN-based methods could lead to a noisy segmentation, especially for the 

target with highly variable shapes, such as LA. Their results showed the effectiveness of 

distance transform maps in the DL-based framework removing the noisy patches of the 

segmentation. Statistical shape models (SSMs) can be a promising alternative to combine 

CNN with prior knowledge of anatomical shapes for the LA cavity segmentation (Ambellan 

et al., 2019). Recently, DL-based cross-modality MAS frameworks are promising for the left 

ventricle (LV) myocardial segmentation (Ding et al., 2020), and could be extended for the 
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LA cavity segmentation, especially when the additional paired modalities are available. For 

LA scar quantification, Li et al. (2020b) combined the conventional graph-cuts algorithm 

and MS-CNN (LearnGC) for hybrid representations of structural and local features. They 

employed MS-CNN to learn multi-scale features of patches corresponding to nodes on 

the graph and obtained better results than conventional graph-cuts algorithms which were 

based on hand-crafted features. For LA wall segmentation and gap quantification, no DL-

based method has been reported, to the best of our knowledge. However, the conventional 

ShapeCut algorithm proposed by Veni et al. (2017) can be adapted for such application, 

by extracting features from the intensity profiles via CNN for more accurate LA wall 

segmentation. Similar schemes can be employed on the proposed graph-based method for 

LA gap quantification (Nuñez-Garcia et al., 2019). Moreover, the utility of level-set for LA 

wall segmentation has been proven (Karim et al., 2018), and the combination of DL and 

level-set for the LV segmentation obtained accurate results with small training sets (Ngo et 

al., 2017). Therefore, such combination and hybrid approaches are expected and should be 

further explored in the near future.

4 Data and evaluation measures

Validation work not only reveals the performance and limitations of a proposed method, 

but also clarifies the scope of its application (Jannin et al., 2006). Hence, it is essential 

to validate an algorithm before applying it to a clinical setting. This section examines 

and analyzes the validation methods used for each aforementioned task in the literature, 

including the data and performance measures. We also focus on the evaluation of clinically 

relevant measures, besides the evaluation of computing accuracy of the algorithms.

4.1 Public AF related datasets

Several challenge events have been organized in recent years at international conferences 

such as ISBI (International Symposium on Biomedical Imaging) and MICCAI (Medical 

Image Computing and Computer-Assisted Interventions), with corresponding public 

datasets released. For example, Zhuang et al. organized the Multi-Modality Whole Heart 
Segmentation Challenge, in conjunction with STACOM’17 and MICCAI’17. They provided 

120 multi-modality images covering a wide range of cardiac diseases, such as AF, 

myocardial infarction, and congenital heart disease (Zhuang et al., 2019). Ten algorithms for 

CT data and eleven methods for MRI data have been evaluated, and most of the submitted 

algorithms were DL-based. The evaluated results showed that the LA cavity segmentation 

of AF patients was particularly more accurate compared to other categories of patients. 

Moreover, public datasets were released along with the challenge events focusing on a 

specific anatomical structure instead of the whole heart. Table 11 summarizes the public 

AF-related events and datasets with corresponding download links.

For LA cavity segmentation, Tobon-Gomez et al. organized the Left Atrium Segmentation 
Challenge, in conjunction with STACOM’13 and MICCAI’13. They offered a dataset 

including 30 CT and 30 MRIs with the manual LA cavity segmentation and presented 

the results of nine algorithms for CT and eight for MRI (Tobon-Gomez et al., 2015). Their 

results showed that the methodologies that combined statistical models with region-growing 
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were the most suitable for the target task. Zhao et al. organized the Atrial Segmentation 
Challenge, in conjunction with STACOM’18 and MICCAI’18. They provided 150 LGE 

MRIs with manual LA cavity segmentation generated from three experts, and the data 

covered both pre- and post-ablation images (Xiong et al., 2020). To explore the quality 

of the dataset, they calculated three measures, i.e., SNR, CR, and heterogeneity, which 

were in agreement. The quality measurements showed that less than 15% of the data had 

high quality (SNR>3), 70% had medium quality (SNR = 1~3), and over 15% was of low 

quality (SNR<1). In total, 27 teams contributed to the automatic LA cavity segmentation, 

and most of the methods were DL-based except for two MAS methods. The results 

showed that two-stage CNNs achieved superior results than other single CNN methods 

and conventional methods. This challenge event provided a significant step towards much-

improved segmentation methods for the LA cavity segmentation of LGE MRI.

For LA wall segmentation, Karim et al. organized the Left Atrial Wall Thickness Challenge, 

in conjunction with STACOM’16 and MICCAI’16. The released images consisted of 10 CT 

and 10 MRIs of healthy and diseased subjects with manual LA wall segmentation. Only 

two of the three participants contributed to the automatic segmentation of the CT data, 

but no work on the MRI data was reported (Karim et al., 2018). The limited number of 

submitted algorithms generally performed poorly compared to the inter-observer variability, 

which revealed the difficulty of the wall segmentation task. Zhao and Xiong (2018) and Utah 

(2012) released a public LGE MRI dataset with LA wall segmentation. This segmentation 

was however generated using the morphological (dilation) operation from the LA cavity 

manual segmentation.

For LA scar segmentation, Karim et al. organized the Left Atrium Fibrosis and Scar 
Segmentation Challenge at ISBI 2012. They provided 60 multi-center and multi-vendor 

LGE MRIs with manual labels of both LA and scars, and summarized the submitted 

algorithms from seven institutions in Karim et al. (2013). To the best of our knowledge, 

no public dataset for gap quantification and evaluation has been reported.

4.2 Evaluation measures

The methods are evaluated in different ways for different tasks in the literature. However, all 

the measures are generally designed based on the idea of comparing automatic segmentation 

results with reference segmentations. In this section, we summarize common measures 

employed in each LA computing task. The reader is referred to Fig. 11 for an illustration of 

each evaluation measure listed below.

4.2.1 LA cavity measures—For assessing the performance of LA cavity segmentation, 

a range of different measures have been explored, as shown in Table 6. The most widely 

used measures include the Dice coefficient/ score, Jaccard index, HD, and average surface 

distance (ASD). They are defined as follows,

Dice V auto, V manual = 2 V auto ∩ V manual
V auto + V manual

, (1)
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Jaccard V auto, V manual = V auto ∩ V manual
V auto ∪ V manual

, (2)

HD X, Y = max sup
x ∈ X

inf
y ∈ Y

d x, y , sup
y ∈ Y

inf
x ∈ X

d x, y , (3)

and

ASD X, Y = 1
2

∑x ∈ X miny ∈ Y d x, y

∑x ∈ X 1
+ ∑y ∈ Y minx ∈ Xd x, y

∑y ∈ Y 1
, (4)

where Vmanual and Vauto denote the set of pixels in the manual and automatic segmentation, 

respectively; X and Y represent two sets of contour points; d(x, y) indicates the Euclidean 

distance between the two points x and y; and |·| refers to the number of pixels in set V. Dice 

and Jaccard are selected for volumetric overlap measurement, where Jacquard index can be 

more sensible and severe upon small variation compared to Dice (Jamart et al., 2019). ASD 

and HD are used to evaluate the shape and contour accuracy of the object of interest. ASD 

calculates the average of the distances between all pairs of pixels between two surfaces. HD 

calculates the largest error distance of the 3D segmentation defined for a prediction of the 

target. Therefore, HD can further measure the existence of outliers, and sometimes 95% HD 

will be used to eliminate the influence of a small subset of outliers.

In addition, three statistical measurements are employed, i.e., Accuracy (Acc), Specificity 

(Spe), and Sensitivity (Sen), defined as follows,

Acc = TP + TN
TP + FP + FN + TN , (5)

Spe = TN
TN + FP , (6)

and

Spn = TP
TP + FN , (7)

where TP, TN, FN, and FP stand for the number of true positives, true negatives, false 

negatives, and false positives, respectively. Acc represents the proportion of true results 

(both TP and TN) among the total number of cases examined. Spe and Sen are used to 

reflect the success of the algorithm for the foreground and the background segmentation, 

respectively. Besides, the diameter and volume error calculations are used to assess the 

medical relevance of the automatic reconstructed LA volumes in the clinic.

4.2.2 LA wall measures—For the LA wall segmentation, wall thickness and Dice are 

currently the most commonly used measures. The thickness (Tk) of the LA wall can be 
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calculated by averaging the thickness over each pixel pi ∈ Sepi from the epicardium Sepi to 

the endocardium Sendo, and therefore is defined as,

Tk =
∑pi ∈ Sepid pi, Sendo

Sepi
. (8)

Actually, when the object size is much smaller than the background (as in the case of the 

LA wall), overlap-based metrics based on the four overlap cardinalities (TP, TN, FP, FN) 

are generally inappropriate (Taha and Hanbury, 2015). This is because they will provide 

the same metric value, regardless of the distance between two non-overlapping regions 

evaluated, ultimately affecting the objectivity in precision. Therefore, both Dice and Jaccard 

are not suitable since they can also be represented as,

Dice = 2TP
2TP + FP + FN , (9)

Jaccard = TP
TP + FP + FN . (10)

In this case, distance-based metrics are recommended, as they consider the precision and 

accuracy of both the shape and local alignment of segmented regions. Apart from its 

small size, the LA wall is also accompanied by adjacent PV structures, which also exhibit 

large inter-observer variation and could be regarded as outliers. Compared to HD which is 

sensitive to outliers, ASD is a better option for LA wall quantitative assessment. As the LA 

wall segmentation involves the two surfaces, i.e., the epicardium and endocardium, the ASD 

of the LA wall is defined as,

ASDwall = max ASDepi, ASDendo . (11)

Apart from these measurements, tissue mass and clinical evaluation are also employed for 

the evaluation of LA wall segmentation. The tissue mass M is designed to predict the 

volume error, and the difference in mass is defined as,

ΔM = ρ × V − V , (12)

where ρ = 1.053 g/ml (Vinnakota and Bassingthwaighte, 2004) is the average wall tissue 

density, and V and V  refer to the reference and predicted volume, respectively (Karim et 

al., 2018). Furthermore, Veni et al. (2017) proposed to compare the scar percentages within 

the manually and automatically segmented LA wall. The basic idea behind this is that the 

LA wall segmentation is usually regarded as an initial step for the scar segmentation as 

mentioned earlier.

4.2.3 LA scar measures—The optimal evaluation method to quantify scars from LGE 

MRI is still controversial due to the lack of ground truth. Currently, the EAM system is 
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regarded as the clinical standard technique for the scar assessment, as presented in Fig. 12. 

The widely used bipolar voltage threshold defining the LA scars is ≤ 0.05 mV, which has 

been propagated through the literature and clinical practice (Harrison et al., 2014). However, 

the correlation between the LA scars identified by LGE MRI (enhanced regions) and EAM 

(low voltage regions) is still being questioned (Floria et al., 2020). The subjective and 

inaccurate scar segmentation might be one of the main reasons.

Alternatively, most algorithms employ manual segmented LA scars as the ground truth. For 

this evaluation, volume overlap measures and scar percentage are commonly used, as Table 

8 shows. For example, Perry et al. (2012) proposed a novel overlap measure for the scar 

evaluation, namely XOR overlap,

XOR V auto, V Manual = W + V auto ⊕ V manual
W , (13)

where |W| is the set of voxels that belong to the LA wall, and ⊕refers to exclusive OR. The 

XOR overlap measure emphasizes the difference between overlapping scars, and will not be 

affected by the size of scars.

However, as mentioned in Section 4.2.2 volume overlap measures (such as Dice) could be 

highly sensitive to the mismatch of small structures (namely scars here), so in instances it 

will impose disproportionate penalties on the algorithm. To mitigate the effect of the small 

size of scars, Li et al. (2020b) proposed to project the appearance of scars onto the LA 

surface for both ground truth and automatic segmentation results, and then calculate the Dice 

scores of scars on the projected LA surface instead of on the 3D volume (Wu et al., 2018; 

Li et al., 2018b, 2020b,a). Furthermore, Li et al. (2020b,a) computed the generalized Dice 

(GDice) of scars from the projected LA surface for a better interpretation. GDice is defined 

as follows,

GDice =
2∑k = 0

Nk − 1
Sk

auto ∩ Sk
manual

∑k = 0
Nk − 1

( Sk
auto + Sk

manual)
, (14)

where Sk
auto and Sk

manual indicate the segmentation results of label k from the automatic 

method and manual delineation on the LA surface, respectively, Nk is the number of labels. 

Here, Nk = 2, where k = 1 represents normal wall and k = 1 refers to scarring regions.

Karim et al. (2013) proposed a surface-based metric, which employed MIP to calculate 

the distance error between the mesh vertex points on the LA surface. The distance error is 

defined as the root mean squared error (RMSE), i.e.,

RMSE = 1
N ∑

i = 1

N
d viauto, vimanual 2, (15)

where viauto and vimanual are the set of mesh vertices belonging to scars from the prediction 

and ground truth, respectively. The major limitation of the surface based metric is that 
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targets with a significant amount of FP scars will have a low RMSE error. Nevertheless, it 

can be overcome by combining the surface measure with a volume-based index.

Scar percentage is directly related to clinical categorization of AF patients, as presented 

in Table 1, and thus should be appropriate as an assessment measure. Besides, one 

could analyze the relationship of scar percentages between manually and automatic scar 

segmentations, to evaluate the performance of automatic scar segmentation. For example, 

Veni et al. (2017) quantified the scar percentage correlation using the mean square error 

(MSE) and R-square value. Many works also calculate the volume error of scars for 

evaluation, which is defined as,

δV = V auto − V manual . (16)

Statistical measurements related to scar classification could be employed for evaluation, 

including Acc, Sen, Spe, receiver operating characteristic (ROC) curve, and balanced error 

rate (BER).

4.2.4 LA ablation gap measures—As Table 9 shows, most gap quantification 

methods in the literature employed ablation gap characteristics (i.e., number, length, and 

position of gaps) for evaluation. Similar to the evaluation of scars, these works also analyzed 

the correlation with EAM, by comparing the ablation gaps in LGE MRI to the electrical 

gaps in EAM. However, the applicability of EAM for ablation gap quantification is limited. 

This is mainly because: 1) the difficulty of the gap position registration between LGE MRI 

and EAM; 2) the voltage mapping does not entirely reflect scar/ gap formation; 3) the 

requirement of a voltage threshold for scar/ gap classification, with the same issues as for the 

LGE MRI threshold. Therefore, direct extrapolation of EAM data to verify LGE MRI should 

be performed carefully, in particular when they offer contradictory information (Nuñez-

Garcia et al.,2019). Besides, Ranjan et al. (2012) calculated the correlation between gap 

length (GL) measured via LGE MRI for evaluation. Nuñez-Garcia et al. (2019) proposed 

a quantitative index, i.e., relative gap measure (RGM), to calculate the proportion of the 

ablation gaps on a defined standard LA parcellation.

RGM = Gap length
Encircling Path Length , (17)

where “Gap length” indicates the sum of all GLs along the “Encircling Path”, and the 

“Encircling Path length” refers to the length of the complete closed-loop on the PVs. The 

RGM is between 0 and 1, which means that if RGM = 0, the vein is completely surrounded, 

and if RGM = 1, there are no scars around the veins. To alleviate the effect of the scar 

segmentation, one could adopt a multi-threshold scheme for the scar segmentation, and then 

integrate the results into the RGM calculation (Nuñez-Garcia et al., 2019).

4.3 Evaluation results on the AF-related public dataset

In general, the segmentation accuracy of different methods is not directly comparable, unless 

these methods are evaluated on the same dataset using the protocols. Therefore, we only 
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summarize the state-of-the-art results of reviewed LA LGE MRI computing methods on the 

public dataset here, as presented in Table 12.

For LA cavity segmentation, three public datasets are available, and Dice, ASD and HD are 

commonly used for evaluation. On the dataset from Utah (2012), the state-of-the-art results 

of the LA cavity segmentation in all metrics were from Zhu et al. (2013). On the dataset 

from Zhuang et al. (2019), mean Dice scores from different methods have been reported for 

each pathology including AF. The methods evaluated on the public dataset from Xiong et 

al. (2020) have been separated into conventional methods and DL-based methods. For each 

metric, we list the state-of-the-art results from conventional and DL-based methods, and the 

best Dice score for the LA cavity segmentation was obtained by Xiong et al. (2018) (Dice = 

0.942±0.014). The DL-based methods demonstrated great potential, as the best result in each 

metric was all obtained by DL-based methods on this dataset.

For LA wall segmentation, there is only one available public dataset for evaluation, which 

included 10 CT and 10 non-enhanced MRIs instead of the LGE MRI. We present both the 

state-of-the-art results and inter-observer variations for each metric. One can see that the 

results based on semi-automatic algorithms were generally comparable to the inter-observer 

variations for each metric. However, the size of this dataset is small, and current semi-

automatic methods are labor-intensive and subjective.

For LA scar segmentation, two public datasets are accessible, and typically Dice is used 

for evaluation. On both datasets, only semi-automatic algorithms were applied. There was 

performance variation among pre- and post-ablation images from Karim et al. (2013). 

Specifically, the best Dice scores were 0.48 and 0.85 on pre- and post-ablation LGE MRIs, 

respectively. However, in terms of RMSE and δV, the performance on the pre-ablation 

LGE MRIs was better than that on the postablation LGE MRI. The possible reason could 

be that the volume of post-ablation LGE MRI is generally larger than that of pre-ablation 

image. Nevertheless, pre-ablation LGE MRI is still generally more challenging for fibrosis 

segmentation due to its more diffuse distributions.

5 Potential clinical applications of the developed algorithms

It is essential to evaluate the clinical utility of the developed approaches for AF. Instead 

of blindly improving the accuracy of methods, researchers therefore can focus more on 

answering some clinical questions related to AF. The exploration and understanding of 

potential clinical applications of AF can guide the development of segmentation and 

quantification algorithms and answer important clinical questions. For example, we can 

employ the developed segmentation and quantification techniques to compare native and 

ablation-induced scars (Section 5.1), inspect the regional distribution of wall thickness 

(Section 5.2), fibrosis/ scars and ablation gaps from LGE MRI, and analyze the relationship 

between fibrosis/ scars/ gaps and AF recurrence (Section 5.3). Moreover, there are several 

other clinical applications, such as analyzing the relationship between the low-voltage 

regions in EAM and scars detected by LGE MRI, the relationship between ablation 

parameters (power of the radiofrequency signal, catheter contact force, etc.) and the created 

chronic lesion detected by LGE MRI, as well as assessing the reproducibility of LGE MRI 
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scar imaging with respect to imaging parameters. However, the latter three applications 

require additional EAM data or LGE MRIs with different ablation and imaging parameters, 

and therefore are out of the scope of this review.

To the best of our knowledge, there are a limited number of review papers targeting the 

clinical applications of LGE MRI. Zghaib and Nazarian (2018) summarized the new insights 

into the use of MRIs for the decision-making of AF management. They explored LGE, 

native T1-weighed, T2-weighted as well as cine MRI, and for LGE MRI they only reviewed 

studies on the relationship between the extent of scars on post-ablation LGE MRIs and the 

rate of AF recurrence. In this section, we will provide a comprehensive review from the 

perspective of the clinical applications for AF analysis.

5.1 Comparisons of native and ablation-induced scars

Recent studies demonstrated the differences in the extent and distribution of fibrosis/ scars 

of pre-/ post-ablation LGE MRI (Malcolme-Lawes et al., 2013; Fukumoto et al., 2015). 

For instance, Malcolme-Lawes et al. (2013) found that there was no difference of scars 

between ostial and LA cavity regions for pre-ablation data, but in post-ablation data the 

extent of scars in the ostia is larger than that in the LA cavity. They also reported a positive 

association between the extent of preexisting fibrosis and AF recurrence, which coincides 

with the finding in the literature (Verma et al., 2005b; Mahnkopf et al., 2010). However, 

they did not find any relationship between the amount of ablation-induced scars and AF 

recurrence, which should be negatively associated according to the studies of Peters et al. 

(2009); McGann et al. (2011). Fukumoto et al. (2015) demonstrated that ablation-induced 

scars are related to greater contrast affinity and thinner walls compared to preexisting 

fibrosis. Yang et al. (2017a) tried to distinguish native and ablation-induced scars via a 

texture based feature extraction. They stated the difficulty of the differentiation between 

native and ablation-induced scars, especially for longstanding persistent AF. Therefore, the 

understanding of the characteristics of pre- vs. postablation scars can be important and may 

inform future ablation strategies for AF.

5.2 Regional distribution analysis of wall thickness and fibrosis/ scars

To date, there are already several studies on LA wall thickness measurements, to analyze 

the relationships between wall thickness and patient age, AF stage/ type, scar formation, 

and AF recurrence (Karim et al., 2018). For example, Hall et al. (2006) studied 34 patients 

of different ages and found that the thinnest and thickest areas were the roof (1.06 ± 

1.49 mm) and septum (2.2 ± 0.82 mm), respectively. They did not find any significant 

relationships between the wall thickness and age. In contrast, Pan et al. (2008) measured the 

wall thickness on 180 AF patients of various ages and concluded that the thickness increased 

with age. They also found that the anterior wall (2.0 ± 0.9 mm, 3.2 ± 0.2 mm and 3.7 ± 

0.9 mm in 40~60, 60~80 and 80+ year olds) was thicker than the posterior wall (0.7 ± 0.2 

mm, 1.8 ± 0.2 mm and 2.4 ± 0.4 mm in 40~60, 60~80 and 80+ year olds) among all the 

age groups. Beinart et al. (2011) and Hayashi et al. (2014) both observed that the middle 

superior posterior wall was the thinnest region with a thickness of 1.43 ± 0.44 mm and 1.44 

± 0.17 mm, respectively. Suenari et al.(2013) analyzed the thickness of 54 AF patients, and 

showed that the thickest wall area is in the left lateral ridge (4.42 ± 1.28 mm), while the 
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thinnest is in the LIPV (1.68 ± 0.27 mm). Besides, they found that the thickness of the 

left lateral ridge was correlated to the AF recurrence (p=0.041). However, the superior right 

posterior wall was found to be significantly associated with both AF recurrence (p=0.048) 

and electrical reconnection (p=0.014) in Inoue et al. (2016). Despite this progress, most 

of these works were based on manual segmented the LA wall, and focused on CT images 

instead of LGE MRI. Note that transmural lesion formation is critical to the success of AF 

ablation and is dependent on the knowledge of regional LA wall thickness. Therefore, the 

distribution analysis of wall thickness from LGE MRI could be important and might provide 

insight into the progress of the AF.

As for the regional distribution of fibrosis/ scars in the LA LGE MRI, related information 

is limited and has not been comprehensively reported. Cochet et al. (2015) divided the LA 

into four segments and reported an irregular fibrosis anatomical distribution. However, they 

found that fibrosis generally occurred more often on the posterior LA wall than the anterior 

one, particularly in the area adjacent to and below LIPV. Benito et al. (2018) manually 

defined the LA parcellation with 12 sub-regions: 1~4, posterior wall; 5~6, floor; 7, septal 

wall; 8~11, anterior wall; 12, lateral wall (see Fig. 13 (a)). They selected 76 consecutive 

AF patients for analysis and also observed that the fibrosis was preferentially located at the 

posterior wall and floor around the antrum of the LIPV, i.e., segments 3 and 5 (40.42% and 

25.82% fibrosis), as Fig. 13 (b) shows. In contrast, segments 8 and 10 (2.54% and 3.82% 

fibrosis) in the anterior wall contained the fewest fibrosis. Similar to the increased wall 

thickness in Pan et al. (2008), they found that age (>60 years old) was also significantly 

correlated to increased fibrosis (p=0.04). Recently, (Lee et al., 2019) separated the LA into 

nine segments, and also found that scars were most frequently seen at the posterior wall 

around the LIPV. Besides, they studied 195 paroxysmal and 121 persistent AF patients and 

observed that the presence of fibrosis assessed in LIPV from LGE MRI was associated with 

the chronicity of AF. This preliminary research suggests that the knowledge of preferential 

fibrosis/ scar position may open further perspectives in ablation strategies, patient selection, 

and AF recurrence prediction.

5.3 Relationship analysis between fibrosis/ scars/ gaps and AF recurrence

As mentioned in Section 5.1, both the extent of preexisting fibrosis and ablation-induced 

scars are correlated with AF recurrence, but with opposite effects. Specifically, AF 

recurrence is positively associated with the extent of preexisting scars, but negatively 

related to that of post-ablation scars. The characteristics of pre- vs. post-ablation scars 

may explain the seemingly paradox and inform future strategies for ablation (Fukumoto 

et al., 2015). With respect to the pre-ablation scars (also namely fibrosis), it has been 

regarded as a potential cause of the abnormalities in atrial activation, which may underlie 

the initiation and maintenance of AF. Note that AF belongs to a progressive disease, and 

several studies revealed that causality between AF and fibrosis may be bidirectional (Oakes 

et al., 2009). This might explain why patients with a greater extent of fibrosis normally 

suffer much higher recurrence rates after ablation. Apart from the extent of fibrosis, Oakes 

et al. (2009) investigated 81 AF patients with pre-ablation LGE MRI, and found that AF 

recurrence was also related to the locations of fibrosis. In their experiments, patients with 

recurrent AF presented fibrosis on the whole LA, whereas patients without recurrent AF had 
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fibrosis only located primarily to the posterior wall and septum. As for post-ablation scars, 

robust evidence supports that complete circumferential and transmural lesion formation is 

critical to successful AF ablation (Cappato et al., 2003; Verma et al., 2005a; Ouyang et 

al., 2005). Here, the ablation lesion just refers to the post-ablation scars or can be named 

ablation-induced scars. Therefore, patients with a smaller degree of post-ablation scars on 

LGE MRI tend to recur AF after ablation. Similar to fibrosis, the location of post-ablation 

scars is also an important index for AF recurrence prediction. For example, several studies 

emphasized the importance of right inferior PV (RIPV) scars, which is the most highly 

correlated to clinical ablation success (Yamada et al., 2006; Peters et al., 2009). This could 

attribute to the reported technical difficulty in ablating the RIPV region due to poor catheter 

access, resulting in its greater variability of scars. For example, Peters et al. (2009) studied 

35 AF patients undergoing the first ablation procedure, and compared the extent of scars 

on different sub-regions. They demonstrated that the PVs of patients without recurrence had 

more completely circumferential scars, especially on RIPV regions. In the case of ablation 

gaps, which are generally caused by incomplete PVI, the extent and distribution of gaps are 

regarded to be positively associated with AF recurrence. The identification and localization 

of ablation gaps from LGE MRI have been used to predict AF recurrence and further guide 

repeated PVI procedures (Bisbal et al.,2014).

6 Discussion and future perspectives

LGE MRI has attracted increasing attention in the assessment of AF before and after an 

ablation procedure. Automatic segmentation and quantification algorithms of LA structures 

and tissues can facilitate the diagnosis and therapy of AF patients. However, the translation 

of current algorithms into the clinical environment remains challenging. In this section, 

we summarize existing major challenges in the field of LA LGE MRI computing and 

the solutions recently proposed. The exploration of these challenges and related works is 

expected to provide useful information for developing novel methods and applications for 

AF analysis.

6.1 Surface projection and LA unfolding mapping

Recent studies have shown that the success of AF treatment highly relies on the formation 

of contiguous and transmural scars on the LA wall (Glover et al., 2018). However, the wall 

thickness is difficult to measure based on current LGE MRI techniques. In clinical practice, 

the location and extent of scars are believed to have greater clinical significance and can 

be used to predict outcomes of AF ablation procedures (Arujuna et al., 2012). Therefore, 

several studies have been proposed to project scars onto the LA surface to perform scar 

quantification (Ravanelli et al., 2014; Tao et al., 2016a; Li et al., 2020b, 2021c). Fig. 14 (a) 

presents an example of scar projection achieved by MIP. By projection, the errors due to 

LA wall thickness can be mitigated, and the computational complexity of algorithms can be 

drastically reduced.

Nevertheless, the cross-subject comparison of 3D surface data is still arduous. To solve 

this, (Roney et al., 2019) developed a universal atrial coordinate mapping system for 2D 

visualization of both the LA and right atrium. Williams et al. (2017) created a 2D LA 
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standardized unfolding mapping (LA-SUM) template where the MV was mapped to a disk, 

the PVs to circles, and the LAA to an ellipse, as presented in Fig. 14 (b). The target 3D 

LA will be registered to a 3D template and then transferred to the 2D template via a 3D-2D 

template mapping. The LA flattening of LA-SUM may result in undesired information 

loss between 3D and 2D LA representations due to the possible inaccurate registration 

between LA surfaces with high shape variability. Instead of relying on a 3D registration step, 

(Nuñez-Garcia et al., 2020) proposed a quasi-conformal LA flatting scheme and employed 

additional regional constraints to overcome undesired mesh self-folding. The advantages of 

these LA unfolding mapping techniques include 2D visualization, LA regional assessment, 

and multi-modal data combination. However, their templates were generally designed for the 

most common LA topology with four PVs. We therefore expect that more flexible templates 

can be developed to adapt for the LA topological variants.

6.2 Joint optimization and independent analysis of the AF-related tasks

The target regions of the four tasks reviewed in Section 3 are all inherently related, 

particularly in the spatial information of images, as shown in Fig. 2. Several studies 

employed multi-task learning for simultaneous LA cavity segmentation and scar 

segmentation/ quantification and proved the effectiveness of joint optimization (Chen et 

al., 2018b; Li et al., 2020a). The spatial information between the LA cavity and scars could 

simply be learned via spatial attention, i.e., multiplying the LA cavity feature map by the 

scar feature map (Chen et al., 2018b), or projecting the scars onto the LA endocardial 

surface (Li et al., 2020a). At the same time, several studies have been devoted to reducing 

the correlation between the accuracy of related tasks in LA LGE MRI computing, i.e., their 

conditional dependencies. For instance, MIP schemes have been widely used in LA scar and 

gap quantification to mitigate the effect of inaccurate LA cavity segmentation (Knowles et 

al., 2010; Tao et al., 2016a; Razeghi et al., 2020; Bisbal et al., 2014). Patch shift scheme 

was developed to apply a random shift along the LA boundary when performing surface 

projection (Li et al., 2020b). Li et al. (2020a) learned the spatial information around the 

LA boundary to reduce the dependence on accurate LA cavity segmentation. Despite these 

advances, the joint optimization and independence analysis of the AF-related tasks are yet to 

be explored in further depth in the future.

6.3 Challenges with deep learning in LA LGE MRI computing

It is evident that DL-based methods have obtained promising results on the LA cavity 

and scar segmentation and quantification. It is mainly attributed to the release of related 

public datasets and the emerge of advanced network architectures. With the release of public 

datasets, the research on the LA cavity and scar segmentation from LGE MRI started to 

increase, as Fig. 4 shows. Despite the promising results, deep neural networks still confront 

a number of challenges, such as poor interpretability, scarcity of annotated data, class 

imbalance problems, limited domain generalization ability, and catastrophic forgetting. One 

may refer to the review papers (Chen et al., 2020; Hesamian et al., 2019) to follow these 

challenges and state-of-the-art solutions for DL-based medical image segmentation. Here, 

we mainly discuss the limited data (Section 6.3.1) and model generalization issues (Section 

6.3.2), as there exist several unique points in the two challenges for AF studies.
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6.3.1 Scarcity of (annotated) data—The scarcity of (annotated) data is a serious issue 

in LA LGE MRI computing. Though this is common in many other tasks, LGE imaging 

could be more challenging, due to the existence of contrast enhancement, its complex 

patterns, and the large quality and contrast variations across different patients. Especially, 

LGE MRI of LA wall requires substantially higher spatial resolution, patient-specific 

optimization of scan parameters, strict criteria for contrast dosage and delay between 

contrast injection and image acquisition, compared to LGE MRI of the LV (Siebermair 

et al., 2017; Chubb et al., 2018). These precise requirements are difficult to meet in practice, 

resulting in scarcity and poor image quality of LGE MRI. It is also complicated to collect 

many annotated cases of 3D LGE MRI. However, DL-based LA LGE MRI computing 

typically relies on a large number of annotated samples for training. Several schemes have 

been proposed to solve this. For example, Yu et al. (2019) employed a semi-supervised 

learning method for the LA cavity segmentation from LGE MRI, to fully utilize the 

unlabeled data. Li et al. (2020b) adopted a patch-wise training for the LA scar quantification 

from LGE MRI, which considerably increased the amount of labeled training data. Data 

argumentation is generally useful in deep learning with limited training data, for example the 

method of partially region rotation of scars was employed for LV segmentation from LGE 

MRI (Campello et al., 2019). Unsupervised domain adaptation has also been proven to be 

capable to alleviate the problem of limited annotated data from the target domain, which has 

been widely used for LV LGE MRI segmentation (Zhuang et al., 2020; Wu and Zhuang, 

2020, 2021; Pei et al., 2021). Finally, the methods making full use of sparse annotation 

(Cicek et al., 2016) are promising for LA LGE MRI computing with limited annotated data 

and could be further explored in the future.

6.3.2 Limited domain generalization ability—Currently, most existing algorithms 

have only been evaluated on center- and vendor-specific LGE MRI. Though the Left Atrium 
Fibrosis and Scar Segmentation Challenge offered multi-center and multi-scanner data, the 

benchmark algorithms only tested on center- and vendor-specific images. Their suitability 

and performance had not been tested on data from other centers or vendors (Karim et al., 

2013). Note that LGE MRIs from different centers can vary evidently in appearance, as 

Fig. 15 shows. This is mainly due to the absence of standardized LGE MRI acquisition 

protocols, leading to poor reproducibility of LGE MRI (Benito et al., 2017; Sim et al., 

2019). Even in the same dataset, one could encounter a severe data mismatch problem, 

resulting in poor outlier results (Li et al., 2021c). Several schemes have been employed to 

solve this, such as data augmentation/ generation, domain-invariant representation learning, 

and meta-learning (Wang et al., 2021). Nevertheless, large multi-center and multi-scanner 

datasets are needed to validate the robustness and generalizability of current methods, which 

is more useful in practice. It is also worthy of promoting deep models with efficient inherent 

generalization abilities for the LGE MRI data processing from different centers and vendors 

(Li et al., 2021b). Moreover, it could be interesting to study the domain shift between pre- 

and post-ablation LGE MRIs from the same center, and the label variations of LGE MRIs 

from different centers.
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7 Conclusion

We have presented and discussed the current progress of LGE MRI computing for LA 

studies, particularly for the four tasks, including segmentation and (or) quantification of LA 

cavity, wall, scars, and ablation gaps. Though LGE MRI has been proven to be a powerful 

diagnostic and prognostic tool in the study of AF, a standardized imaging protocol should 

be further investigated. Furthermore, a limited number of works have been reported focusing 

on image computing tasks, especially for automatic LA wall segmentation and ablation gap 

quantification. Most research relies on manual delineation for further analysis and clinical 

applications. Therefore, more accurate and robust automatic methods are desired for overall 

wide and intelligent use in the clinical setting. The data-driven approaches have shown 

great potential for the LA cavity and scar segmentation and quantification, thanks to the 

development of deep neural networks. The joint optimization of these related tasks can be 

a new direction for the utilization of their spatial relationship. To research for a broader 

clinical application, well-controlled and large-cohort studies are expected to better guarantee 

the reproducibility of measurements, refine the evaluation methods, and validate the impact 

on clinical outcomes as well as the computing accuracy.

Although we limit our survey related to AF analysis in the article, the described 

methodologies can be useful to other clinical applications. We described in detail the 

characteristics of targets, which motivated the methodologies. Consequently, such methods 

can be used for other targets sharing similar characteristics as the targets in AF studies. 

For instance, tumor lesions are also small and diffuse targets, so the review on the scar 

segmentation and quantification methods could inspire the development of methods on 

tumor lesion segmentation, and vice versa. We believe that this review has the potential to 

help researchers to design appropriate frameworks according to their problems and be aware 

of similar challenging issues and state-of-the-art solutions.
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Fig. 1. 
The electrical activities of the left atrium (LA) in sinus rhythm and atrial fibrillation (AF), 

respectively. The sinoatrial node (SAN) produces an electrical impulse, which is regular 

in the sinus rhythm and can be overwhelmed by disorganized electrical waves, usually 

originating from the pulmonary veins.
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Fig. 2. The pipeline of LA image computing for AF studies and the structure of this review.
Top row: common image modalities for AF treatments, such as late gadolinium 

enhancement magnetic resonance imaging (LGE MRI), non-enhanced MRI, transesophageal 

echocardiography (TEE) (image adapted from Stanford HEALTH CARE), CT, and real-

time 3D echocardiography (RT3DE) (images adapted from Regazzoli et al. (2015) with 

permission); Middle row: computation and evaluation steps for LA analysis reviewed in this 

study (images adapted from Li et al. (2021c); Nuñez-Garcia et al. (2019) with permission); 

Bottom row: possible clinical applications (images adapted from Siebermair et al. (2017) 

with permission).
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Fig. 3. The challenges of automatic segmentation and quantification of LGE MRI for AF
(a) various LA and pulmonary vein (PV) shapes; (b) two typical LGE MRIs with poor 

quality; (c) thin atrial walls highlighted using bright white color in the figure; (d) 

surrounding enhanced regions pointed out by the arrows, where (1) and (2) indicate 

the enhanced walls of descending and ascending aorta, respectively; and (3) denotes the 

enhanced walls of the right atrium (RA). Images (b)-(d) adapted from Li et al. (2020b) with 

permission.
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Fig. 4. The distributions of papers of LGE MRI segmentation and quantification for AF patients 
per year and task.

Li et al. Page 46

Med Image Anal. Author manuscript; available in PMC 2023 January 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 5. Comparison of the scopes of related review studies via Venn diagram.
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Fig. 6. Key elements of LA LGE MRI computing methodologies on the four tasks.
MIA: medical image analysis.
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Fig. 7. A framework example for the LA cavity segmentation from Nuñez-Garcia et al. (2018).
The LA cavity segmentation was achieved via multiatlas whole heart segmentation (MAS-

WHS) and shape modeling of the LA. Image adapted from Nuñez-Garcia et al. (2018) with 

permission.
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Fig. 8. A framework example for the LA wall segmentation from Veni et al. (2017).
The LA wall segmentation was achieved by predicting the LA epicardium and endocardium 

respectively, so the task was converted into a surface estimation problem. ShapeCut 

constructed a geometric graph to discretize continuous parameterization of the set of 

possible surfaces for global optimization. (a) continuous parameterization of the surface 

estimate S; (b) discrete approximation of the continuous parameterization where the 

surface estimation performed. Here, each layer maintained a topology similar to the 

desired surface, and each column ensured that the estimated surface traverses it; (c) shape 

complying properly ordered graph construction. Picture modified from Veni et al. (2017) 

with permission.
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Fig. 9. A framework example for the LA scar quantification from Li et al. (2020b).
The scar quantification was performed on the LA surface mesh where a graph was 

constructed, and the weights of a graph were explicitly learned via an MS-CNN. Image 

adapted from Li et al. (2020b) with permission.
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Fig. 10. A framework example for the LA gap quantification from Nuñez-Garcia et al. (2019).
The gap quantification was performed through minimum path search in a graph where every 

node referred to a scarring patch and the edges denoted the geodesic distances between 

patches. Image adapted from Nuñez-Garcia et al. (2019) with permission.

Li et al. Page 52

Med Image Anal. Author manuscript; available in PMC 2023 January 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 11. Sketch map of measures employed in LA LGE MRI computing.
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Fig. 12. The spatial correspondence of LGE MRI and EAM data.
Image adapted from Núñez García et al. (2018) with permission.
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Fig. 13. Example of a LA parcellation and its corresponding fibrosis distribution
(a) the LA surface template parcellated from anatomical landmarks; (b) the regional 

distribution of LA fibrosis (the same color with different transparencies refers to the same 

region category), where the values were obtained from Benito et al. (2018). Illustrations 

designed referring to Benito et al. (2018).
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Fig. 14. Alternative visualizations and representations of LA scars via
(a) maximum intensity projection (images adapted from Tao et al. (2016a) with permission); 

(b) LA standardized unfolding mapping (images adapted from Williams et al. (2017) with 

permission).
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Fig. 15. Multi-center pre- and post-ablation LGE MRIs, where LA cavity contour is labeled in 
the yellow and scarring region is labeled in red.
The images differ in contrast, enhancement as well as background, and the labels across 

different centers also exist variations, especially in the MV and PV regions.
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Table 1
AF patient classification that depends on fibrosis extent (Akoum et al., 2011).

Utah grade Percentage Success rate AF recurrence

Utah 1 (minimal) ≤ 5% 100% 0

Utah 2 (mild) 5~20% 81.8% 28%

Utah 3 (moderate) 20~35% 62.5% 35%

Utah 4 (extensive) ≥ 35% 0 56%
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Table 2
Search engines and expressions used to identify potential papers for review.

Engine Google scholar, PubMed, IEEE-Xplore, and Citeseer

Term

“Atrial fibrillation” or AF and

“Late gadolinium/ delayed enhancement/ contrast enhanced (cardiac) magnetic resonance” or “LGE/ DE/ CE MR(I)” or “LGE-/ DE-/ 
CE-MR(I)” or “LGE/ DE/ CE CMR” or “LGE-/ DE-/ CE-CMR” and

Classif*/ segment*/ quantif*/ localiz*/ detect* and

“Left atrium/ atrial” or LA or

“Atrial wall/ myocardi*” or “wall thickness” or

“Atrial scars/ fibrosis/ lesion” or “ablation pattern”or

“Ablat*”/ lesion gaps” or “gaps in ablation lesion” or “incomplete ablation pattern”
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Table 3
Summary of the review papers related to AF

Source Venue Scope Limitation

Cox (2003) Europace Surgical treatment of AF Clinical review

Rolf et al. (2014) JAF EAM of AF Clinical review

Dzeshka et al. (2015) JACC Mechanisms and clinical implications of AF Clinical review

Whitaker et al. (2016) Europace Wall thickness measurement for CT Target image is not LGE MRI

Peng et al. (2016) RMPBM Cardiac chamber segmentation Target partially includes LA cavity

Pontecorboli et al. (2017) Europace Fibrosis segmentation from LGE MRI Only thresholding methods are included

Siebermair et al. (2017) JACC LGE fibrosis imaging Clinical review

Obeng-Gyimah and Nazarian (2020) JICRM Imaging for AF ablation Clinical review

Jamart et al. (2020) FCM LA cavity segmentation from LGE MRI Only DL-based methods are included

Chen et al. (2020) FCM DL-based cardiac segmentation Target partially includes LA and its scars

Habijan et al. (2020) CET Whole heart and chamber segmentation Target partially includes LA cavity

EAM: electroanatomical mapping; JAF: Journal of Atrial Fibrillation; JACC: Journal of the American College of Cardiology; RMPBM: Magnetic 
Resonance Materials in Physics, Biology and Medicine; JICRM: The Journal of Innovations in Cardiac Rhythm Management; FCM: Frontiers in 
Cardiovascular Medicine; CET: Cardiovascular Engineering and Technology; DL: deep learning; CT: computed tomography.
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Table 4
The role of different imaging modalities in AF ablation procedures.

Stage Target Imaging modality Important summary

Before CA

Assessment of LAA 
thrombus

TEE Clinical reference for LAA thrombi identification (Calkins et al., 2007)

CT/ MRI Low inter-observer agreement (Mohrs et al., 2006; Gottlieb et al., 2008)

Assessment of LA size 
and anatomy

TTE The most commonly used imaging technique in daily clinical practice (Tops 
et al., 2007)

RT3DE/STE New techniques for the assessment of LA volumes (Cameli et al., 2012)

MRI Gold standard for the assessment of LA volumes (Kuchynka et al., 2015)

Assessment of PV 
anatomy

CT/ MRI Provides detailed 3D information on PV anatomy as a “road-map” for 
ablation (Bhagirath et al., 2014)

Assessment of fibrosis LGE MRI The most widely used MRI protocol for LA fibrosis imaging (Siebermair et 
al., 2017)

During CA

Positioning catheters Fluoroscopy Standard imaging modality in the electrophysiology laboratory; used to 
visualize catheters and devices (Bourier et al., 2016)

Transseptal puncture ICE Used to enhance the safety of transseptal puncture and catheter tissue contact; 
used to visualize inter-atrial septum and puncture needle (Jongbloed et al., 
2005a)

Fluoroscopy New rotational angiography technique to accurately identify PV anatomy and 
diameters (Thiagalingam et al., 2008)

Visualization of LA and 
PVs

ICE Real-time assessment of PV ostium with a limitation on the detection of small 
proximal branches from PVs (Saad et al., 2002; Wood et al., 2004; Jongbloed 
et al., 2005b)

After CA

Assessment of PV 
stenosis

CT/ MRI Preferably, these 3D techniques are correlated with pre-procedural images for 
detection of PV stenosis (Holmes et al., 2009)

Detection of pericardial TTE Routine echocardiography should be performed before discharge and during 
the follow-up study (Calkins et al., 2007)

Esophageal injury CT/ MRI Performed when atrio-oesophageal fistula is suspected (Calkins et al.,2007)

TTE Conventional method for the detection of LA volumes and function 
(Blondheim et al., 2005)

Assessment of LA size 
and function

RT3DE/CT/(LGE) 
MRI

3D assessment of LA volumes allows the detection of LA reverse 
remodelling (Zhang et al., 2017; Polaczek et al., 2019; Tsao et al., 2005; 
McGann et al., 2014)

Assessment of wall 
thickness

TEE/CT/(LGE) 
MRI

Increased atrial wall thickening was seen in the post-ablation scans 
(Nakamura et al., 2011; Karim et al., 2018; Habibi et al., 2015)

LGE MRI Promising in the ablation lesion visualization (McGann et al., 2008)

Assessment of scars and 
gaps

T1 mapping MRI New technique without contrast agent for the assessment of scars (Beinart et 
al., 2013)

CA: catheter ablation; LAA: LA appendage; ICE: intracardiac echocardiography; TTE: transthoracic echocardiography; STE: speckle tracking 
echocardiography.
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Table 5
Imaging parameters for the LGE scar assessment utilized in several leading centers 
worldwide

Source Center Scanner TR/TE (ms) Acq. T (min) Gadolinium dose Spacing (mm3)

Badger et al. (2010) Utah, USA 1.5 T, SA 5.5/2.3 15 0.1 mmol/kg 1.25 × 1.25 × 2.5

Taclas et al. (2010) Boston, USA 1.5 T, PA 3.8/1.52 15~25 0.2 mmol/kg 1.3 × 1.3 × 4.0/5.0

Hunter et al. (2013) Imperial/Barts, UK 1.5 T, PA N/A 20 0.4 mmol/kg 1.5 × 1.5 × 4.0

Bisbal et al. (2014) Barcelona, Spain 3T 2.3/1.4 25~30 0.2 mmol/kg 1.25 × 1.25 × 2.5

McGann et al. (2014) CARMA
† 1.5 T; 3 T, SA 5.2/2.4; 3.1/1.4 5~9; 6~12 0.1 mmol/kg 1.25 × 1.25 × 2.5

Fukumoto et al. (2015) John Hopkins, USA 1.5 T, SA 3.8/1.52 10~32 0.2 mmol/kg 1.3 × 1.3 × 2.0

Harrison et al. (2015a) KCL, UK 1.5 T, PA 6.2/3.0 20 0.2 mmol/kg 1.3 × 1.3 × 4.0

Akoum et al. (2015) DECAAF
† 1.5 T; 3 T 5.2/2.4; 3.1/1.4 15 0.1~0.2 mmol/kg 1.25 × 1.25 × 2.5

Cochet et al. (2015) Bordeaux, France 1.5 T, SA 6.1/2.4 15~30 0.2 mmol/kg 1.25 × 1.25 × 2.5

SA: Siemens Avanto; PA: Philips Achieva; TR: repetition time; TE: echo time; Acq. T: acquired time after contrast agent injection; CARMA: 
Comprehensive Arrhythmia Research and Management; DECAAF: Delayed-Enhancement MRI Determinant of Successful Radiofrequency 
Catheter Ablation of Atrial Fibrillation.

†
Here, † refers to multiple centers.
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Table 6
Summary of previously published works on the automatic LA cavity segmentation from 
LGE MRI.

Study Num Pre/ Post Algorithm Evaluation DiceLA

Gao et al. (2010) 20 Post + Pre Active contours +statistical shape 
learning

N/A N/A

Kutra et al. (2012) 59 Pre Multi-model based fitting + SVM Acc N/A

Zhu et al. (2013) 64 Post + Pre Variational region growing + shape 
prior

Dice, VO, 95HD, ASD 0.79 ± 0.05

Deng and Zhang (2016) 64 Post + Pre KNN + super pixel voting Dice, VO 0.81 ± 0.08

Tao et al. (2016a) 56 Pre MAS + 3D level-set Dice, ASD 0.86 ± 0.05

Nuñez-Garcia et al.(2018)
‡ 154 Post + Pre MA-WHS + shape clustering Dice, HD, ASD 0.859 ± 0.061

Qiao et al. (2018)
‡ 154 Post + Pre MAS + level-set Dice, APD 0.861 ± 0.036

Li et al. (2020b) 58 Post MA-WHS Dice 0.898 ± 0.044

Chen et al. (2018b) 100 Post + Pre Multi-view two-task network Dice, Acc, Spe, Sen 0.908 ± 0.031

Xiong et al. (2018) 154 Post + Pre Dual CNNs Dice, HD, Spe, Sen 0.942 ± 0.014

Chen et al. (2018a)
‡ 154 Post + Pre Multi-task 2D U-Net Dice, Jc, HD, ASD 0.921 ± 0.026

Vesal et al. (2018)
‡ 154 Post + Pre 3D U-Net+ dilated + residual Dice, Jc, Acc 0.925 ± 0.027

Savio Li et al. (2018)
‡ 154 Post + Pre 3D volumetric FCN Dice, HD 0.851 ± 0.051

Li et al. (2018a)
‡ 154 Post + Pre Attention based 3D HAANet Dice 0.923 ± 0.029

Bian et al. (2018)
‡ 154 Post + Pre ResNet101 + 2D pyramid Network Dice, Cf, Jc, HD, ASD 0.926 ± 0.022

Puybareau et al. (2018)
‡ 154 Post + Pre VGG-16 +transfer learning + 

“pseudo-3D”
Dice 0.923 ± 0.023

Liu et al. (2018)
‡ 154 Post + Pre 2D U-Net + FCN Dice 0.903 ± 0.032

Preetha et al. (2018)
‡ 154 Post + Pre 2D U-Net Dice 0.887 ± 0.031

de Vente et al. (2018)
‡ 154 Post + Pre 2D U-Net Dice 0.897 ± 0.035

Jia et al. (2018)
‡ 154 Post + Pre Two-stage 3D U-Net + contour 

loss
Dice, HD, Spe, Sen 0.907 ± 0.031

Xia et al. (2018)
‡ 154 Post + Pre Two-stage 3D V-net Dice 0.932 ± 0.022

Yang et al. (2018b)
‡ 154 Post + Pre Two-stage 3D U-Net + transfer 

learning
Dice, Cf, Jc, HD, ASD 0.925 ± 0.023

Borra et al. (2018) 154 Post + Pre Otsu’s algorithm + 3D U-Net Dice 0.898

Jamart et al. (2019) 154 Post + Pre Two-stage 2D V-net Dice, Jc, HD, ASD, 
Diam. Err, Volume Err

0.937

Yu et al. (2019) 100 Post + Pre Uncertainty-aware model Dice, Jc, 95HD, ASD 0.889

Wang et al. (2019a) 100 Post + Pre Ensembled U-Net Dice 0.921 ± 0.020

Du et al. (2020) 100 Post + Pre Multi-scale dual-path network Dice, Cf, Jc, HD 0.936 ± 0.005

Borra et al. (2020) 100 Post + Pre 2D/ 3D U-Net Dice, HD, Spe, Sen 0.895 ± 0.025/0.914 ± 
0.015

Xiao et al. (2020) 100 Post + Pre Multi-view network Dice, HD, ASD 0.912

Zhao et al. (2021) 100 Post +Pre ResNet101 + hybrid loss Dice, 95HD, ASD 0.918 ± 0.011
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Study Num Pre/ Post Algorithm Evaluation DiceLA

Li et al. (2021c) 60 Post Multi-task 3D U-Net + spatial 
encoding

Dice, HD, ASD 0.913 ± 0.032

CNN: convolutional neural network; MAS: multi-atlas segmentation; MA-WHS: multi-atlas whole heart segmentation; SVM: support vector 
machine; KNN: K nearest neighbor; FCN: fully convolutional network; HAANet: hierarchical aggregation network; ASD: average surface 
distance; 95HD: 95%Hausdorff distance; VO: volume overlap; Jc: Jaccard; Acc: Accuracy; Sen: Sensitivity; Spe: Specificity; Cf: Conform; APD: 
average perpendicular distance; Diam. Err: antero-posterior diameter error; Volume Err: volume error.

‡
Note that the results in studies labeled via ‡ are from the benchmark paper (Xiong et al., 2020) for a fair comparison. The reported values in their 

manuscript may be inconsistent with the results reported in Xiong et al. (2020) as they may employ parts of training data from the challenge as test 
data for evaluation.
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Table 7
Overview of previously published works on the LA wall segmentation from (LGE) MRI 
and CT.

Study Data Algorithm Evaluation Result

Hsing et al. 
(2014)

55 LGE MRI Manual Tk Tk = 7.0 ± 1.8 mm (before ablation)
Tk = 10.7 ± 4.1 mm (after ablation)

Veni et al. (2017) 72 LGE MRI + 
170 Synthetic

ShapeCut ASD, HD, clinical 
evaluation

Synthetic: ASD = 0.25 ± 0.04 mm; HD = 1.95 ± 
0.38 mm
LGE MRI: ASD = 0.66 ± 0.14 mm
LGE MRI scar segmentation: MSE = 3.07;
R-square = 0.83

Zhao et al. 
(2017)

LGE MRI Laplace equation Tk Tk = 3.7 ± 1.7 mm

Wang et al. 
(2019b)

154 LGE MRI + 
ex vivo data

Convex hull method + 
coupled PDE

Tk LGE MRI: Tk = 0.4–11.7 mm and median = 3.88 
mm

Level-set Tk = 2.16 ± 0.58 mm, Dice = 0.72

Karim et al. 
(2018)

10 MRI Region growing
Watershed

Tk, Dice, tissue 
mass

Tk = 6.04 ± 3.63 mm, Dice = 0.39
Tk = 3.45 ± 3.57 mm, Dice = 0.67

Inoue et al. 
(2014)

5 enhanced CT Multi-region 
segmentation software + 
manual correction

Tk, visualization Tk = 0.5-3.5 mm

Bishop et al. 
(2016)

10 CT Morphological 
operations + Laplace 
equation

Tk Errors ≤ 0.2 mm for Tk of 0.5–5.0 mm

Inoue and Dran-
gova (2016)

10 CT Mesh vertex normal 
traversal

Tk, Dice, tissue 
mass

Tk = 1.13 ± 1.02 mm (A), 1.26 ± 0.83 mm (P)
Dice = 0.33 (A), 0.39 (P)

Tao et al. (2016b) 10 CT Nonlinear intensity 
transformation + level-
set

Tk, Dice, tissue 
mass

Tk = 1.34 ± 0.89 mm (A), 0.78 ± 0.41 mm (P)
Dice = 0.43 (A), 0.21 (P)

Jia et al. (2016) 10 CT Region growing + 
Marker-controlled GAC

Tk, Dice, tissue 
mass

Tk = 0.75 ± 0.38 mm (A), 1.46 ± 1.57 mm (P)
Dice = 0.30 (A), 0.50 (P)

MSE: mean square error; A: anterior; P: posterior; Tk: thickness; GAC: geodesic active contour; PDE: partial differential equations. Note that the 
evaluation measures and results in Inoue and Drangova (2016), Tao et al. (2016b) and Jia et al. (2016) are from the benchmark paper (Karim et al., 
2018).
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Table 8
Summary of previously published works on the (semi-)automatic LA fibrosis/ scar 
segmentation and quantification from LGE MRI.

Study Num Pre/ Post Algorithm auto? Evaluation Dicescar

Oakes et al. (2009) 81 Pre 2–4SD semi-auto Percentage, EAM-c N/A

Badger et al. (2010) 144 3-20M Post 3 SD semi-auto Percentage, EAM-c N/A

Knowles et al. (2010) 7 Post + Pre MIP semi-auto Percentage, EAM-c N/A

Karim et al. (2011) 9 6M Post Probabilistic intensity 
model

auto Percentage N/A

Perry et al. (2012) 34 3M Post K-means clustering semi-auto Dice, XOR, percentage 0.807 ± 0.106

Karim et al. (2013)

60 Post + Pre Hysteresis threshold

semi-auto Dice, RMSE, volume

0.76post; 0.37pre

60 Post + Pre Region growing + EM-
fitting

0.85post; 0.22pre

40 Post + Pre Graph-cuts + FCC 0.73post; 0.17pre

15 Post Active contour + EM-
fitting

0.76post

30 Post + Pre Simple threshold* 0.84post; 0.48pre

60 Post + Pre Graph-cuts 0.78post; 0.30pre

60 Post + Pre Histogram analysis + 

threshold*
0.78post; 0.42pre

60 Post + Pre K-means clustering* 0.72post; 0.45pre

60 Post + Pre 2SD 0.58post; 0.24pre

60 Post + Pre 3 SD 0.17post; 0.16pre

60 Post + Pre 4SD semi-auto Dice, RMSE, volume 0.14post; 0.31pre

30 1-6M Post 6 SD 0.35post

60 Post + Pre FWHM 0.59post; 0.05pre

Ravanelli et al. (2014) 10 Pre 4SD semi-auto Dice, EAM-c 0.600 ± 0.210

Karim et al. (2014) 15 6M Post GMM + graph-cuts semi-auto Dice, ROC, volume > 0.8

Tao et al. (2016a) 46 Pre MIP auto Qualitative visualization N/A

Veni et al. (2017) 72 Post + Pre K-means clustering auto Percentage N/A

Yang et al. (2018a) 37 Post Super-pixel +SVM auto Dice, Acc, Sen, Spe, ROC, 
BER

0.790 ± 0.050

Wu et al. (2018) 36 Post Multivariate mixture 
model

auto Dice, Acc, Sen, Spe 0.556 ± 0.187

Razeghi et al. (2020) 207 12M Post + Pre MIP auto ICC, PCC, RMSE N/A

Yang et al. (2017b) 20 Post + Pre Super-pixel + SSAE auto Dice, Acc, Sen, Spe, ROC 0.776 ± 0.146

Li et al. (2018b) 100 Post + Pre Graph-cuts + CNN auto Dice, Acc, Sen, Spe 0.566 ± 0.140

Chen et al. (2018b) 100 Post + Pre Multi-view two-task 
network

auto Dice, Acc, Sen, Spe, 
percentage

0.78 ± 0.08

Yang et al. (2020) 190 Post + Pre Multi-view two-task 
network

auto Dice, Acc, Sen, Spe 0.870

Li et al. (2020b) 58 6M Post Graph-cuts + MS-CNN auto Dice, Acc, Sen, Spe, GDice 0.702 ± 0.071

Li et al. (2020a) 60 3-27M Post Multi-task network auto Dice, Acc, GDice 0.543 ± 0.097

~M Post: ~months post-ablation; Pre: pre-ablation; XOR: XOR overlap; Percentage: scar percentage; RMSE: root MSE; Volume: total scar 
volume; ROC: receiver operating characteristic; BER: balanced error rate; FCC: fuzzy c-means clustering; MIP: maximum intensity projection; 
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GMM: Gaussian mixture model; SSAE: stacked sparse auto-encoders; MS-CNN: multi-scale CNN; EAM-c: correlation with electroanatomical 
mapping; FWHM: full-width-at- half-maximum; ICC: intraclass correlation coefficients; PCC: Pearson correlation coefficient.

*
Here, the asterisk (*) indicates the method employed manual LA wall segmentation.
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Table 9
Summary of previously published works on the (semi-)automatic ablation gap 
quantification from LGE MRI

Study Num Algorithm Evaluation Results & Main findings

Badger et al. 
(2010)

144 3 SD for scar 
segmentation + visually 
detect gap

Visual, EAM-c Significant relationship between gaps and recurrence;
Achieving complete circumferential lesions around the PV is
difficult.

Ranjan et al. 
(2012)

12 Measurement tool in
Osirix

GL, pathology 
correlation

The correlation coefficient (R2) between the GL identified by LGE 
MRI and the gross pathology was 0.95;
GL = 1.0 mm (via gross pathology) and GL = 1.4 mm (via LGE 
MRI);
Real time MRI system can be used to identify gaps.

Bisbal et al. 
(2014)

50 Manual LA wall + MIP GL, # gaps, 
EAM-c

# gaps = 4.4/patient; # gaps = 1.27 ± 0.41/PV
Median GL = 13.33 ± 5.8 mm/gap;
Position of highest # gaps: RSPV (=1.53);
Position of fewest # gaps: LIPV (=0.67);
The majority of patients (73.3%) had gaps in all PVs.
LGE MRI may identify non-conducting gaps that could be
related to later recurrences.

Harrison et al. 
(2015a)

20 Custom-written software Visual, EAM-c Weak point-by-point relationship (R2=0.57) between scars
and endocardial voltage in patients undergoing repeat LA ablation;
The mean voltage within scar region is lower than that within normal 
wall region.

Linhart et al. 
(2018)

94 IIR for scar 
segmentation + gap is 
defined as
discontinuation of the
ablation line by ≤ 3 mm

GL, # gaps, 
EAM-c

# gaps = 5.4/patient; Mean GL = 7.3 mm/gap;
90 out of 94 patients (96%) had at least 1 anatomic gap;
Anatomic gaps are frequently detected in LGE MRI at 3
months after first PVI;
An increase of 10% relative GL increased the likelihood of
AF recurrence by 16%.;
The total relative GL was significantly associated with recurrence 
instead of # gaps.

Mishima et al. 
(2019)

10 2 SD for scar 
segmentation + visually 
detect gap

GL, # gaps, 
EAM-c

Mean GL = 11.6 ± 3.9 mm/gap;
# gaps = 1.6/patient (1st ablation);
# gaps = 1.4/patient (2nd ablation);
Position of highest # gaps: RSPV (=2);
Position of fewest # gaps: LIPV (=0);
The location of electrical gaps are well matched to that on the
LGE MRI.

Nuñez-Garcia 
et al. (2019)

50 Graph-based method GL, # gaps, 
RGM

Position of highest # gaps: LSPV (=1.73);
Position of fewest # gaps: LIPV (=1.16);
No significant differences between left and right PVs;
No significant relationship between gaps and recurrence.

# gaps: mean number of gaps; GL: gap length; IIR: image intensity ratio; NAUC: normalized area under the curve; RSPV: right superior PV; LIPV: 
left inferior PV; LSPV: left superior PV.
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Table 10
Summary of current computing methods on the LA LGE MRI for AF analysis

Target Unique characteristic Potential processing strategies & future perspective

LA cavity large shape variability introducing shape prior; combining complementary information
from other paired modalities; uncertainty-aware schemes; coarse-to-fine 
training

LA wall thin thickness; irregular opening; varying thickness
across the wall

level-sets; ShapeCut and its possible future version combining
DL-based feature extraction

LA scars small; diffusion; spatial constrained; intensity-
related;
corresponding to the low voltage regions of EAM

multi-scale learning schemes; surface projection; multi-task
learning schemes; thresholding based on an accurate initialization

LA gaps without an unified definition; uncertain number of 
PVs

quantitative instead of visual qualitative quantification
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Table 11
Summary of the public datasets whose research targets are AF patients or include AF 
patients.

Source Year Data Target Name & Hyperlink

Utah (2012) 2012 155 LGE MRI + 3D MRI LA cavity, LA scar CARMA, University of Utah

Karim et al. (2013) 2012 60 LGE MRI* LA scar Left Atrium Fibrosis and Scar Segmentation 
Challenge

Tobon-Gomez et al. (2015) 2013 30 CT, 30 bSSFP MRI LA cavity Left Atrium Segmentation Challenge

Karim et al. (2018) 2016 10 CT, 10 black-blood MRI LA wall Left Atrial Wall Thickness Challenge

Zhuang et al. (2019) 2017 60 CT, 60 bSSFP MRI*
Whole heart including LA 
cavity

Multi-Modality Whole Heart Segmentation 
Challenge

Xiong et al. (2020) 2018 150 LGE MRI LA cavity Atrial Segmentation Challenge

*
Here, the star (*) indicates that the data is acquired from multiple centers and vendors. bSSFP: balanced steady-state free precession.
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Table 12
Summary of representative results for LA LGE MRI computing on public AF-related 
datasets.

Public dataset source Target Representative result

Utah (2012) LA cavity Dice = 0.79 ± 0.05, OV = 0.65 ± 0.07, ASD = 2.79 ± 2.84 mm, 95% HD = 14.4 ± 3.65 mm
(Zhu et al., 2013)

Xiong et al. (2020) LA cavity

Dice = 0.861 ± 0.036 (CV) (Qiao et al., 2018), 0.942 ± 0.014 (DL) (Xiong et al., 2018)
Jc = 0.758 (CV) (Qiao et al., 2018), 0.874 (DL) (Xia et al., 2018)
HD = 11.8 mm (CV) (Qiao et al., 2018), 8.60 mm (DL) (Chen et al., 2018a)
ASD = 1.473 mm (CV) (Nuñez-Garcia et al., 2018), 0.748 mm (DL) (Xia et al., 2018)
Sen = 0.847 (CV) (Qiao et al., 2018), 0.949 (DL) (Preetha et al., 2018)
Spe = 0.999 (CV) (Qiao et al., 2018), 1.000 (DL) (Vesal et al., 2018)

Zhuang et al. (2019) Whole heart including
LA cavity Dice = 0.844 ± 0.097 (only on AF patients)

Karim et al. (2018) LA wall

Dice = 0.43 (A) (Tao et al., 2016b), 0.39 (P) (Inoue and Drangova, 2016), 0.67 ± 0.22
(Inter-ob) on the CT; 0.72, 0.56 ± 0.14 (Inter-ob) on the MRI
Tk error = 0 (P/A), 0.25 mm (P) and 0.20 mm (A) (Inter-ob)
Tissue mass error = 3.84~14.63 g, 10.03 ± 4.0 g (Inter-ob)

Karim et al. (2013) LA scar
Dice = 0.85post, 0.48pre

RMSE = 6.34 ± 8.2post mm, 0.17 ± 0.1pre mm (Lu et al., 2012)
δV = 6.34 ± 8.2post ml, 1.25 ± 1.5pre ml

Utah (2012) LA scar
Dice = 0.807 ± 0.106 (semi-auto) (Perry et al., 2012)
XOR = 0.916 ± 0.035 (semi-auto) (Perry et al., 2012)
CoV = 0.62 (Andalò et al., 2018)

CoV: coefficient of variation; CV: conventional methods.
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