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Abstract

Eco-evolutionary dynamics can mediate species and community responses to habitat warming and 

fragmentation, two of the largest threats to biodiversity and ecosystems. The eco-evolutionary 

consequences of warming and fragmentation are typically studied independently, hindering our 

understanding of their simultaneous impacts. Here, we provide a new perspective rooted in 

trade-offs among traits for understanding their eco-evolutionary consequences. On the one hand, 

temperature influences traits related to metabolism, such as resource acquisition and activity 

levels. Such traits are also likely to have trade-offs with other energetically costly traits, like 

antipredator defences or dispersal. On the other hand, fragmentation can influence a variety of 

traits (e.g. dispersal) through its effects on the spatial environment experienced by individuals, as 

well as properties of populations, such as genetic structure. The combined effects of warming and 

fragmentation on communities should thus reflect their collective impact on traits of individuals 

and populations, as well as trade-offs at multiple trophic levels, leading to unexpected dynamics 

when effects are not additive and when evolutionary responses modulate them. Here, we provide 

a road map to navigate this complexity. First, we review single-species responses to warming 

and fragmentation. Second, we focus on consumer−resource interactions, considering how eco-

evolutionary dynamics can arise in response to warming, fragmentation, and their interaction. 

Third, we illustrate our perspective with several example scenarios in which trait trade-offs 

could result in significant eco-evolutionary dynamics. Specifically, we consider the possible 

eco-evolutionary consequences of (i) evolution in thermal performance of a species involved in 

a consumer−resource interaction, (ii) ecological or evolutionary changes to encounter and attack 

rates of consumers, and (iii) changes to top consumer body size in tri-trophic food chains. In 

these scenarios, we present a number of novel, sometimes counter-intuitive, potential outcomes. 

Some of these expectations contrast with those solely based on ecological dynamics, for example, 

evolutionary responses in unexpected directions for resource species or unanticipated population 

declines in top consumers. Finally, we identify several unanswered questions about the conditions 

most likely to yield strong eco-evolutionary dynamics, how better to incorporate the role of 
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trade-offs among traits, and the role of eco-evolutionary dynamics in governing responses to 

warming in fragmented communities.
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dynamics; habitat fragmentation; food webs; metacommunities

I Introduction

Anthropogenic climate change and habitat fragmentation are two of the largest current 

threats to biodiversity and ecosystems (Opdam & Wascher, 2004; Tilman et al., 2017). 

Despite the attention placed upon them separately in the literature, they have rarely 

been considered simultaneously as interacting factors driving ecological and evolutionary 

responses in communities and ecosystems. A few recent studies have addressed their 

combined effects at the individual species level (Bakker et al., 2010; Cobben et al., 
2012; Martin et al., 2012; Laurent, Schtickzelle & Jacob, 2020), but impacts on species 

interactions and communities remain largely unexplored. This is surprising given both 

the multifaceted nature of global change, as well as the likelihood that the selective 

pressure induced by warming could be stronger in fragmented communities that have 

altered habitat connectivity and population genetic structure (Cobben et al., 2012; Martin 

et al., 2012; Laurent et al., 2020). Fragmentation divides previously contiguous habitat into 

discrete patches surrounded by an inhospitable environmental matrix or by other barriers to 

movement of individuals. Temperature can be heterogeneous at local scales (i.e. the scales 

at which sets of individuals interact directly) (Orizaola & Laurila, 2008), and under climate 

change some habitats can become warmer while others may remain unchanged (Urban et 
al., 2017). Fragmentation may consequently exacerbate thermal heterogeneity by creating 

additional habitat patches differing in thermal environment, which can have important 

consequences for species dispersal and evolutionary responses (Skelly & Freidenburg, 

2000).

Warming and fragmentation can both affect the dispersal of individuals among habitat 

patches with potentially important ecological consequences at the metacommunity level 

(Tuff, Tuff & Davies, 2016; Thompson & Gonzalez, 2017). For instance, altered dispersal 

in fragmented habitats can shift the relative importance of species interactions versus 
dispersal for colonization success, resulting in different compositions of local communities 

(Thompson & Gonzalez, 2017). Changes in dispersal can also alter gene flow among habitat 

patches and thus influence the likelihood of adaptive evolutionary responses. Different local 

communities with limited dispersal can be exposed to disparate selective pressures in terms 

of both abiotic (e.g. warming) and/or biotic (e.g. predation pressure) factors (Richardson 

et al., 2014). In addition, fragmentation can reduce opportunities for adaptive evolutionary 

responses through a number of processes [e.g. through reduced genetic diversity, smaller 

population sizes, genetic drift, or inbreeding depression (Joubert & Bijlsma, 2010; Legrand 

et al., 2017)].
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Alternatively, fragmentation may instead increase opportunities for local adaptation by 

creating heterogeneous landscapes and communities that result in complex selection mosaics 

within metacommunities. This remains empirically understudied and its implications 

poorly understood for community and ecosystem dynamics (Legrand et al., 2017). 

Nonetheless, the geographic mosaic theory of coevolution (Thompson, 2005) and the 

evolving metacommunity concept (Urban & Skelly, 2006) both posit that fragmented 

habitats can result in selection mosaics and local adaptation. They suggest that local 

adaptation spanning multiple generations across geographically structured populations is 

driven in part through variation in selection among habitat patches and a shifting genetic and 

evolutionary landscape (Gomulkiewicz et al., 2000; Thompson & Cunningham, 2002). Thus, 

although variable local adaptation across a metacommunity is conceptually not a new idea, 

it remains largely underexploited for predicting the effects of habitat warming in fragmented 

landscapes.

The joint influence of fragmentation and warming on eco-evolutionary dynamics [defined as 

ecological and evolutionary dynamics that occur at contemporary timescales and affect one 

another (Fig. 1)] remains similarly unexplored despite the pivotal role of eco-evolutionary 

dynamics for species persistence under rapid environmental change (Kinnison & Hairston, 

2007). Selection acting upon traits for which correlations exist (i.e. where selection on one 

trait is expected to alter performance in another trait or fitness attribute) is particularly likely 

to yield eco-evolutionary dynamics through ecological fitness trade-offs. Eco-evolutionary 

dynamics can have important consequences across levels of organization by altering 

phenotypic traits (Becks et al., 2012; Stuart et al., 2014), the dynamics of populations and 

communities (Yoshida et al., 2007; Becks et al., 2010; Faillace & Morin, 2016; Frickel, 

Theodosiou & Becks, 2017), and the functioning of ecosystems (Palkovacs et al., 2009; 

Bassar et al., 2012; Walsh et al., 2012).

Eco-evolutionary dynamics can be especially important in populations responding to 

novel environmental conditions, in part because they can depend upon the community 

context and complexity (i.e. the set of species and interactions in which the evolving 

species is embedded) (de Mazancourt, Johnson & Barraclough, 2008; Van Doorslaer 

et al., 2009a, 2010; Osmond & de Mazancourt, 2013). For example, a novel species 

may invade a community when tracking optimal thermal conditions. In fact, temperate 

species have been documented moving northward and warm-adapted invasive species are 

colonizing temperate habitats (Parmesan & Yohe, 2003; Walther et al., 2009). Fragmentation 

might simultaneously cause species to become ‘trapped’ in noanalogue communities or 

climates [i.e. ecological effect (eco)] (Williams & Jackson, 2007; Feeley & Rehm, 2012). 

The presence of novel species interactions could then result in evolutionary changes to 

interacting species [i.e. evolutionary effect (evo)], which then causes additional changes 

to abundances of species and community composition (eco) (akin to the eco-evolutionary 

feedbacks resulting from experimental invasions observed by Faillace & Morin, 2016). In 

fact, Van Doorslaer et al. (2009a) showed that community context altered the response 

of populations of Daphnia magna evolving in response to habitat warming. Single-species 

cultures of D. magna evolved higher intrinsic growth rates, while community-embedded 

Daphnia evolved larger size at maturity (Van Doorslaer et al., 2010). Given that habitat 

patches within a community can differ in both thermal environment and the species present, 
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eco-evolutionary dynamics occurring in a community context are thus likely to prove 

important for fragmented communities responding to warming.

Here, we review the effects of fragmentation and warming for single species before 

expanding to consumer−resource interactions. In focusing on the effects of dispersal 

limitation and selection on traits and responses linked to metabolism, we identify gaps 

in the current knowledge regarding the interactive effects of fragmentation and warming. 

We argue that ecological trait trade-offs provide a useful avenue for examining the role of 

eco-evolutionary dynamics that emerge in response to simultaneous warming and habitat 

fragmentation (i.e. patch isolation) in multi-trophic communities. Building upon theoretical 

and empirically demonstrated effects of fragmentation and warming, we present the use 

of trade-offs by developing example scenarios for the eco-evolutionary consequences of 

habitat warming and fragmentation. We use scenarios of increasing complexity to illustrate 

the sometimes unexpected or counterintuitive outcomes that might emerge from considering 

the joint effects of both stressors in driving eco-evolutionary responses across multiple 

trophic levels. In this review, we ask: what are the potential eco-evolutionary consequences 

in fragmented landscapes of (i) evolution in thermal performance of a species involved in 

a consumer−resource interaction, (ii) ecological or evolutionary changes to encounter and 

attack rates of consumers, and (iii) changes in top consumer body size in tri-trophic food 

chains. Finally, we present several unanswered questions guiding future research directions 

that provide opportunities to elucidate the potential role of eco-evolutionary dynamics under 

combined habitat warming and fragmentation.

II Single-Species Responses To Warming And Fragmentation

Single-species responses to both habitat warming and fragmentation have received a great 

deal of attention (Parmesan, 2006; Legrand et al., 2017). Here we briefly review responses 

of individual species to provide necessary background before considering sets of interacting 

species, for which much less is known.

(1) Responses to warming

Species can exhibit a wide range of evolutionary and ecological responses to warming 

[although not all species will have the necessary evolutionary capacity (e.g. see Hoffmann 

& Sgró, 2011; Lindsey et al., 2013; Quintero & Wiens, 2013; Buckley & Bridle, 

2014; Kingsolver & Buckley, 2015)]. In this review, we focus primarily on ecological 

and evolutionary responses associated with thermal performance of species and their 

populations. We do not aim to be exhaustive and acknowledge that changes to additional 

traits, like phenology or behavioural thermoregulation, could also be of importance (see, e.g. 

Abram et al., 2017; Boukal et al., 2019).

Intraspecific variability in thermal performance traits among individuals or populations can 

be of similar magnitude as trait variability at the interspecific level (Herrando-Pérez et al., 
2020). Evolution of species’ traits, such as changes in fecundity, growth, metabolic rates, 

and enzyme activities, has already been documented in response to warming (Van Doorslaer 

et al., 2009b; Schulte, Healy & Fangue, 2011; Merilä & Hendry, 2014; Geerts et al., 2015; 

Padfield et al., 2016; Schaum et al., 2017, 2018). For instance, in the green alga Chlorella 
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vulgaris, improved carbon-use efficiency at higher temperatures can evolve in around 100 

generations (Padfield et al., 2016), while evolution of increased thermal tolerance has 

been observed in the freshwater alga Chlamydomonas reinhardtii in warmed semi-natural 

mesocosms after a period of multiple years (Schaum et al., 2017). In the cladoceran 

Daphnia magna, clonal selection in semi-natural field conditions enabled populations to 

evolve rapidly in response to warming (Geerts et al., 2015). Evolution in larger organisms 

can occur rapidly as well, on timescales relevant to ongoing climate warming (but see 

Quintero & Wiens, 2013). Natural selection has been observed for thermal critical maximum 

(i.e. the upper bound of an organism’s thermal tolerance range) in the lizard Anolis sagrei 
(Logan, Cox & Calsbeek, 2014). Similarly, Higgins et al. (2014) documented a broadening 

of the thermal performance curve in Colias eurytheme caterpillars, while caterpillars of the 

related Colias eriphyle have increased the thermal optimum of feeding over the past 40 

years of climate warming. Evolutionary responses to the thermal environment have been 

documented at microgeographic scales as well (e.g. Skelly & Freidenburg, 2000). Overall, 

these examples highlight rapid evolution in the shape and position of thermal performance 

curves for a variety of biological traits.

In general, when evolution increases any of these biological rates at warmer temperatures, 

this results in improved thermal performance, leading to populations or species that are 

more successful in the warmer environmental conditions (Stoks, Geerts & De Meester, 

2014). However, traits under selection in response to climate warming, including those 

relating to metabolism, can exhibit trade-offs with other traits important to life history, 

such that improvement in one trait comes at the expense of performance in a second 

trait (Simon, Machado & Marroig, 2016). In Escherichia coli, for example, selection for 

improved fitness at moderate temperatures results in populations with reduced growth at 

temperature extremes (Cooper, Bennett & Lenski, 2001). Similarly, in natural populations 

of the common pond snail Radix balthica, increased growth rate at warm temperatures 

potentially trades off against survival and tolerance at cold temperatures (Johansson et 
al., 2016a). Selection on traits involved in trade-offs can yield unexpected results; for 

instance, algal lines of C. reinhardtii grown for many generations at high CO2 concentrations 

have significantly lower growth and CO2 affinity (Collins & Bell, 2004, 2006). In fact, 

Gilman et al. (2010) suggested the existence of a widespread trade-off between growth 

rate and broad tolerance to temperature (i.e. wider thermal niches) in which warming may 

be expected to favour species or individuals with greater stress tolerance compared to 

those that are competitively dominant with rapid growth rates. Johansson & Laurila (2017) 

found that thermal critical maximum likely trades off with tolerance to chronic thermal 

stress in warm-adapted populations of R. balthica. Evidence also suggests that the body 

size of some ectotherms is shrinking with warming (Daufresne, Lengfellner & Sommer, 

2009; Gardner et al., 2011), which potentially improves tolerance to thermal stress (Sentis, 

Binzer & Boukal, 2017). Finally, Van Doorslaer et al. (2009b) showed that local adaption 

to warmer temperatures in Daphnia reduced establishment success of immigrant genotypes 

from warmer regions. When considered collectively, these studies reveal the importance of 

taking into account multiple potential trade-offs to understand better the responses of single 

species to warming.
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(2) Responses to fragmentation

Fragmentation alters the opportunities for evolution in response to local conditions (Cote 

et al., 2017). Different genotypes can vary significantly in frequency and fitness among 

patches as a result of stochastic processes (e.g. genetic drift), dispersal, and survival 

of individuals. Habitat fragmentation can reduce dispersal among habitat patches as a 

result of increased inter-patch distances (Laurent et al., 2020). For instance, in the ciliate 

Tetrahymena thermophila, fragmentation lowers dispersal by increasing inter-patch distances 

and dispersal costs. Ciliates became choosier in their decision to stay or leave their patches 

in a more fragmented landscape, which decreased the frequency of random dispersal events 

(Laurent et al., 2020). Fragmentation can even promote the evolution of dispersal itself. For 

example, in experimental populations of the small forb Arabidopsis thaliana, after only six 

generations, evolving populations spread 200% further in fragmented landscapes than did 

nonevolving populations. By contrast, for populations evolving in continuous habitats, this 

difference was reduced to 11% (Williams, Kendall & Levine, 2016). Overall, intermediate 

levels of dispersal are most likely to promote local adaptation (Legrand et al., 2017) (see 

online Supporting Information, Fig. S1). However, in some cases, local adaptation can be 

enhanced even under higher potential gene flow as a result of habitat matching (Jacob et al., 
2017). As a result, fragmentation can impact emigration and immigration rates differently 

and thus modify ecological and evolutionary dynamics.

By creating habitat patches that differ significantly in local conditions, fragmentation can 

maintain higher intraspecific beta-diversity across patches in a metapopulation compared 

to that in a continuous landscape (Urban & Skelly, 2006). Coupled with its influence 

on dispersal (and gene flow) among patches, fragmentation may affect opportunities for 

adaptive evolution within patches (Hanski, 2012). Similar to thermal performance traits, 

the evolution of dispersal is likely to be constrained by trade-offs between dispersal ability 

and other fitness traits. For example, wingless aphids produce winged offspring in response 

to predators or crowding (Dixon & Agarwala, 1999; Srinivasan & Brisson, 2012). Winged 

aphids can disperse across long distances compared to wingless individuals, but developing 

wings is energetically costly, delays development, and reduces fecundity (Dixon, Horth 

& Kindlmann, 1993). These costs are expected to outweigh the benefits when dispersal 

is unsuccessful. Dispersal ability thus trades off against fecundity, which should limit the 

evolution of dispersal traits. The impact of habitat fragmentation on dispersal traits is 

likely to depend on the balance between dispersal success and the cost of dispersal in a 

fragmented landscape. In fact, when dispersal is not successful, the frequency of winged 

aphids decreases in isolated populations, resulting in faster population growth (Sentis et al., 
2018).

(3) Responses to simultaneous warming and fragmentation

Evidence of the combined effects of warming and fragmentation is very limited. Interactions 

between warming and fragmentation are expected to occur when dispersal is non-random or 

constitutive with regard to thermal conditions. For example, dispersal decisions in common 

lizards (Zootoca vivipara) can be related to their preferred thermal conditions and at least 

partially matched to phenotype-dependent survival (Bestion, Clobert & Cote, 2015). Another 

example is natural populations of black-capped chickadees (Poecile atricapillus), whose 
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overwintering populations in fragmented habitats were characterized by lower basal (i.e. 

maintenance) metabolic rates compared to populations from unfragmented habitats (Latimer 

et al., 2018). Birds with lower summit metabolic rates (i.e. upper limit to body heat 

production) were less likely to survive the winter in fragmented habitats. Fragmentation may 

therefore result in local populations within the metapopulation that differ in their phenotypic 

frequencies of thermal performance traits due to both stochastic and selective mechanisms.

At the species level, fragmentation and climate warming are generally expected to act 

synergistically to increase extinctions. For instance, habitat availability thresholds for 

species extinctions are predicted to decline when combined with general climate change 

(Travis, 2003). These theoretical predictions potentially occur in natural populations 

of British butterflies, where habitat modification, including fragmentation, combined 

with climate warming has led to population declines, with habitat generalists and better-

dispersing species being favoured over those that are specialists or more sedentary (Warren 

et al., 2001). In addition, recent research on several species of British butterflies suggests 

that persistence in the face of ongoing climate change would be achieved most effectively by 

incorporating semi-natural habitats that reduce effective fragmentation (Oliver et al., 2015). 

Similarly, local extinction patterns of multiple freshwater fish species over a 20-year period 

are best explained by a combination of climate warming and habitat modification, including 

fragmentation (Comte, Hugueny & Grenouillet, 2016).

Taken together, warming-induced changes to metabolism and fecundity have the potential 

to affect a population’s viability, while fragmentation can result in increasing population 

isolation and changes to dispersal and gene flow. If habitat connectivity and gene flow 

are too low and population sizes within patches are small, fragmentation should favour 

drift, reducing or preventing local adaption (Gandon & Nuismer, 2009), while high habitat 

connectivity and gene flow are potentially more likely to yield solely ecological responses, 

like plastic responses and migration (Fig. 2, outcomes A and B). When the degree of 

gene flow and the population sizes within patches are sufficient to favour selection, 

fragmentation can instead increase the trait−environment correlation such that it can then 

increase opportunities for local adaptation (Urban et al., 2008) (Fig. 2, outcomes C and D).

III Interactions Of Consumer−Resource Dynamics With Warming And 

Fragmentation

The previous section reviewed the range of single-species responses to both warming and 

fragmentation for a variety of taxa across different trophic levels. However, in nature, 

species are embedded in a community and the outcome of environmental change for a 

species also depends upon changes in the nature and strength of interactions with other 

organisms within the community. We focus this section on the consequences of warming 

and fragmentation for consumer−resource interactions, the most important building block of 

communities.

Consumer-resource dynamics have a rich history of study in both ecology and evolution. 

In general, the presence of multiple interacting species can result in additional direct and 

indirect ecological and evolutionary effects (Tseng & O’Connor, 2015; Osmond, Otto & 
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Klausmeier, 2017; ter-Horst et al., 2018; De Meester et al., 2019; Tabi et al., 2020). In terms 

of evolutionary responses to warming in fragmented landscapes, when selection occurs 

within an ecological community it is therefore likely qualitatively to change predictions 

about thermal adaptation derived from single populations (Angilletta et al., 2006). For 

instance, Tabi et al. (2020) recently demonstrated that individual species’ responses to 

temperature were insufficient to explain changes to community composition in experimental 

communities of protists feeding on bacteria. Similarly, in terms of evolutionary responses, 

the opportunities for trait trade-offs and epistatic (i.e. when the effect of one gene mutation 

depends on mutations in one or more additional genes) and/or antagonistic pleiotropic (i.e. 

when an allele that has a beneficial effect on one fitness component has a deleterious 

effect on a different fitness component) gene interactions increase with the number of 

interacting species. Such genetic effects and interactions can have important consequences, 

including slowing the rate of evolution or preventing it entirely (Etterson & Shaw, 2001; 

de Mazancourt et al., 2008; Hoffmann & Sgró, 2011; Scheuerl et al., 2020), and driving 

responses in otherwise unexpected ways (De Meester et al., 2011; Barraclough, 2015; Cairns 

et al., 2020). For example, in an experiment conducted by Cairns et al. (2020), protist 

predators exhibited unexpected higher population equilibrium densities when feeding on 

several evolved bacterial prey species compared to ancestral strains, despite anti-predator 

defence evolution in the bacteria. The authors suggested that this surprising result could 

have occurred as an indirect effect of bacterial resource evolution enabling higher prey 

densities, and thus predator densities, despite the observed bacterial anti-predator evolution. 

Mismatches in the potential for evolutionary responses across trophic levels are also possible 

and may arise out of smaller population sizes and longer generation times (terHorst, Miller 

& Levitan, 2010; Hague & Routman, 2016) frequently observed at higher trophic levels. 

This can affect the standing genetic variability and the rapidity with which mutations arise, 

and thus the relative importance of ecological and evolutionary changes in one species 

compared to those in other species, as well as to environmental changes. Ultimately, 

mismatches can result in significant differences in extinction risk across trophic levels 

(Quintero & Wiens, 2013; Dirzo et al., 2014), as well as differences in the degree of 

local evolution (Fig. 2). In fact, in consumer−resource interactions experiencing Red Queen 

dynamics (i.e. a coevolutionary arms race between the interacting species), theory predicts 

that the most rapidly evolving partner is locally adapted while the other is not (Blanquart et 
al., 2013). Predators can thus improve prey adaptation and persistence despite reductions 

in prey abundance. This occurs when the presence of predators reinforces directional 

selection and/or effectively reduces generation time by reducing prey population size to 

levels that maximize prey growth rate (thereby increasing the mutation rate) (Tseng & 

O’Connor, 2015; Osmond et al., 2017). Clearly, both evolution itself, as well as ecological 

responses to evolutionary change, depend greatly on community context and complexity, 

with consumer−resource interactions having important consequences for both interacting 

species.

(1) Responses to warming

A vast literature documents a number of ecological changes in trophic interactions that occur 

in response to warming. Warming typically increases consumer−resource encounter and 

feeding rates up to an optimal temperature, above which rates decrease due to physiological 
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constraints and behavioural modifications induced by heat (Lang, Rall & Brose, 2012; 

Sentis, Hemptinne & Brodeur, 2012; De Block et al., 2013; Tran et al., 2016; Abram et al., 
2017). The non-linearity of thermal dependency of multiple biological rates (Amarasekare, 

2015; Uszko et al., 2017; Zhang et al., 2017; Dee et al., 2020; Uiterwaal & DeLong, 2020; 

Zhao, Liu & Niu, 2020) can make predicting responses particularly difficult.

Feeding rates often scale with consumer−resource body mass ratios (Montoya et al., 2009; 

Vucic-Pestic et al., 2010). Therefore, the pervasive body size reductions associated with 

environmental warming can also alter consumer−resource dynamics. This can sometimes 

be compounded by trophic position, as these changes may be most prevalent at higher 

trophic levels (Sheridan & Bickford, 2011; Ohlberger, 2013) (but see also Yvon-Durocher 

et al., 2015). For instance, in a three-species food chain model, Sentis et al. (2017) 

showed that when warming reduces predator body size it can increase predator survival 

at higher temperatures, leading to improved persistence of tri-trophic food chains at high 

temperatures. This possibility is particularly intriguing given that consumer metabolic rates 

often increase faster with warming than their ingestion rates, which leads to decreased 

overall energetic efficiencies, defined as the ratio of ingestion gain versus metabolic loss 

(Rall et al., 2010; Vucic-Pestic et al., 2011). Rall et al. (2010) found that for spiders 

and predatory beetles warming generally increased feeding rates and short-term interaction 

strengths, but decreased their ingestion efficiencies and long-term interaction strengths. 

Fulfilling energetic demands is typically harder for consumers at higher trophic levels than 

for organisms at lower trophic levels (Boukal et al., 2019). In fact, the results reported by 

Rall et al. (2010) were striking as they suggest that warming can result in higher extinction 

risks from starvation for predators. Declines in energetic efficiency are also linked with 

weaker top-down effects in communities (Kratina et al., 2012; Fussmann et al., 2014; Iles, 

2014; Sentis et al., 2017). Given that secondary and top consumers also frequently have 

smaller population sizes and longer generation times than their resources, warming may 

thus exacerbate differences in population sizes across trophic levels resulting in profoundly 

altered community structures, including losses of consumers, especially at higher trophic 

levels (Petchey et al., 1999) (Fig. 2, outcome A).

(2) Responses to fragmentation

Fragmentation can similarly have a variety of effects on consumer−resource interactions. 

Consumer−resource interactions can affect dispersal of both interacting species. Theory 

about density-dependent dispersal (Hauzy et al., 2010) and habitat-matching/dispersal 

experiments indicate potential differences in drivers for predator and prey dispersal. 

Predators frequently disperse only below a critical threshold of prey abundance, while prey 

disperse as a result of strong intraspecific competition or perceived predation risk (Hauzy 

et al., 2007; Fronhofer et al., 2018). For example, for two protist species, the prey species 

Tetrahymena pyriformis and the predator Dileptus sp., Hauzy et al. (2007) determined that 

decreased density of T. pyriformis increased the dispersal of Dileptus sp., while increased 

density of Dileptus sp. increased the dispersal of T. pyriformis. Similarly, predatory water 

boatmen (Trichocorixa verticalis) emigrated more rapidly from mesocosms when their 

cladoceran prey, Moina macrocopa, was at low densities (Simonis, 2013). Fronhofer et 
al. (2018) tested the importance of top-down and bottom-up control in dispersal decisions 
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across numerous taxa, from protists to vertebrates, finding that predation risk and resource 

limitation increased emigration rates across all taxa and highlighting the importance of 

interactions with adjacent trophic levels.

Because fragmentation can increase predation risk during dispersal, it can potentially select 

for prey phenotypes that increa sesurvival (Bestion et al., 2014), for example by increasing 

anti-predator traits or locomotor speed (Cote et al., 2017). Despite the increased risk 

associated with dispersal in the presence of predators, predators can nonetheless increase 

movement and dispersal of prey through the surrounding matrix, and can preferentially 

favour movement of some phenotypes over others (e.g. Gilliam & Fraser, 2001). In the 

presence of predators, aphids produce winged offspring that can disperse further away while 

avoiding terrestrial predators (Dixon & Agarwala, 1999). In addition, different phenotypes 

can be favoured in predator-free and predator-occupied patches. For example, Trinidadian 

guppies (Poecilia reticulata) evolve differences in life history, behaviour, morphology, and 

male colour in populations exposed to predators compared to those that are predator-free 

(Bassar et al., 2017). Taken together, because fragmentation can modify both dispersal rates 

and prey phenotypic traits, it should change the flow of phenotypes that differ in fitness 

traits, including metabolism and consumption.

Fragmentation can result in variability of attack rates among local predator populations. For 

instance, in experimental populations of Libellula dragonflies, larval foraging rates were 

positively correlated with the degree of habitat fragmentation, with the individuals from 

the most isolated pools exhibiting significantly higher foraging rates than those from the 

most connected pools (McCauley, Brodin & Hammond, 2010). Theory shows that habitat 

fragmentation can result in increased predator−prey interaction strengths through spatial 

compression (i.e. higher concentrations of predator and prey individuals resulting in higher 

encounter rates), thereby affecting consumer and resource temporal population dynamics 

(McWilliams et al., 2019). At even larger scales (e.g. latitudinal) populations can differ in 

their genetically determined attack rates. For instance, in Nucella caniculata, a predatory sea 

snail, populations differed significantly in their drilling rate on Mytilus californianus, their 

mussel prey. Common garden experiments demonstrated that the variation in attack rates 

was genetically determined, while gene flow was restricted among populations (Sanford et 
al., 2003).

Importantly, because fragmentation can result in local patches that differ in the relative 

abundances of dominant consumers, disparate consumer−resource interactions across the 

metacommunity become possible, resulting in local patches that differ significantly in 

the strength of biotic selective pressures. For instance, Urban (2008) examined a meta-

community containing the salamander Ambystoma maculatum and several of its important 

larval consumers, including Ambystoma opacum and beetles of the genus Dytiscus. While 

A. opacum is a gape-limited predator that feeds primarily on small larval individuals 

of A. maculatum, larger larval individuals are instead more vulnerable to Dytiscus 
predators. These two predators exert opposing selection gradients upon A. maculatum larval 

growth rate. Densities of both predators are negatively correlated across ponds within the 

metacommunity, indicating that A. maculatum larvae can experience antagonistic selection 

regimes across the metacommunity depending on the abundance of the two predators in 

Faillace et al. Page 10

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2023 January 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



local habitat patches. This scales down the food web because the foraging rate of A. 
maculatum on its zooplankton prey is under selection as a result, in part, of predation 

pressure from A. opacum (Urban, 2008).

Theory shows that, in general, metacommunity dynamics favour the persistence of otherwise 

extinction-prone food webs, by decreasing local population fluctuations that can eventually 

lead to species extinctions (Bonsall, French & Hassell, 2002; Ryall & Fahrig, 2006; 

Cooper, Li & Montagnes, 2012). For example, experimental metacommunities containing 

populations of the host beetle, Callosobruchus chinensis, and its pteromalid parasitoid, 

Anisopteromalus calanfdrae, exhibit significantly prolonged persistence times compared to 

isolated communities (Bonsall et al., 2002). By improving survival of both consumers and 

resources, metacommunities therefore increase the time available for evolution potentially to 

occur.

(3) Responses to simultaneous warming and fragmentation

Research in the literature exploring the interaction between habitat fragmentation and 

warming for consumer−resource interactions remains scarce. Nonetheless, several studies, 

including some using latitudinal gradients, allow us to examine some interactive effects.

Habitat warming and dispersal can interact, with the effects of warming on dispersal 

rates likely to be context dependent, modulated by resource availability and interspecific 

interactions. For instance, Grainger & Gilbert (2017) showed that when host plants are 

abundant, warming does not affect dispersal of herbivorous insects and increases their 

population size. By contrast, when host plants are limiting, warming increases dispersal 

rates and herbivore populations decline. When dispersal and warming both occur, the 

results for the community can be quite important. As an example, Perdomo, Sunnucks & 

Thompson (2012) examined the combined effects of a high-temperature event and habitat 

isolation on the assembly of natural moss micro-arthropod communities. In communities 

that had experienced warming, they found that two large springtail taxa (Collembola) 

became numerically dominant following community assembly, resulting in community size 

structures (i.e. body mass distributions at the community level) unlike those of unwarmed 

communities.

Variation in attack rates driven by genetic differences among predator populations can also 

interact in a complex way with environmental temperature (De Block et al., 2013; Tran et 
al., 2016). For example, De Block et al. (2013) paired populations of the cladoceran Daphnia 
magna and their damselfly predator, Ischnura elegans from different latitudes in Europe in 

all possible combinations. Individuals of I. elegans differed in their genetically determined 

attack rates across latitudinal populations. The survival advantage experienced by southern 

D. magna at 24°C and northern D. magna at 20°C disappeared when they were paired 

respectively with southern I. elegans and northern I. elegans. These results show that local 

adaptation in both predators and prey can be important in eco-evolutionary dynamics. The 

degree of climate phenotype-matching in interacting species in more complex communities 

is therefore likely to play a role in determining when eco-evolutionary dynamics result 

in cryptic outcomes (i.e. a ‘moving target’ scenario such that ecological outcomes can 

mask the underlying evolutionary change) compared to more dramatic or visible outcomes 
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(Fig. 2, outcome C). We may then expect that dramatic eco-evolutionary outcomes will be 

particularly likely in complex communities in which interacting species have mismatched 

climate phenotypes (e.g. as might occur in no-analogue communities) (Fig. 2, outcome D).

Overall, this suggests that, when temperature differs among habitat patches (e.g. Skelly & 

Freidenburg, 2000), attack rates are also expected to vary among patches [e.g. resulting from 

temperature-dependent attack rates, as in De Block et al. (2013) and Tran et al. (2016)]. This 

leads to the prediction that fragmentation results in varying consumer−resource interactions 

among local habitat patches and that differences in these interactions then result in variable 

selection pressures at local scales within the metacommunity. Additionally, given the 

likelihood of evolutionary mismatches across trophic levels and the observed changes in 

trophic interaction strengths, we argue that the importance of eco-evolutionary dynamics 

for consumer−resource interactions during habitat warming and fragmentation is certainly 

underestimated.

IV The Importance Of Fitness Tradeoffs In Eco-Evolutionary Dynamics

In Sections II and III we reviewed the effects of warming and fragmentation on isolated 

species and their interactions. These effects are likely to be non-additive and can have 

important ecological and evolutionary consequences at the population, community, and 

landscape levels. In particular, the effects of warming and fragmentation on dispersal 

rates are likely to (i) be context dependent, modulated by resource availability, predator 

presence, and competitive interactions, and (ii) influence the distribution of phenotypes 

within populations by favouring those that are heat-resistant and maximise the cost−benefit 

balance of dispersal. This highlights the importance of intraspecific trait variation, fitness 

tradeoffs, and interspecific interactions to understand better the influence of warming and 

fragmentation on eco-evolutionary dynamics. In this section, we focus on the role of fitness 

tradeoffs for eco-evolutionary dynamics and how these trade-offs can be used to anticipate 

the impact of warming and fragmentation on communities.

Eco-evolutionary dynamics are especially important when populations experience selection 

upon traits for which important correlations exist (Fig. 3), such that selection on one trait is 

expected to alter performance in another trait or fitness attribute. In other words, ecological 

trade-offs occur when higher performance in one fitness attribute comes at the expense 

of performance in a second (Fig. 3). Some examples of key fitness trade-offs include 

competition−colonization trade-offs (Cadotte et al., 2006) and resource acquisition−defence 

trade-offs (Branco et al., 2018). When interacting species have trade-offs relating to their 

interactions, a shift in the trade-off for one species thus has the potential to propagate 

within the food web as an evolutionary cascade, by rippling through the system as 

shifts in species abundances, resulting in altered community and ecosystem properties 

(Palkovacs, Wasserman & Kinnison, 2011). Eco-evolutionary feedbacks can thus lead to 

unexpected ecological or evolutionary dynamics that cannot be adequately modelled or 

predicted without considering these feedbacks (Govaert et al., 2019; Kaitala et al., 2020). 

For example, in the case of experimental work by Hiltunen et al. (2018) examining the 

evolution of Pseudomonas fluorescens and its consumer Tetrahymena thermophila as a 

result of multistressor selection, a subsequent analysis by Kaitala et al. (2020) demonstrated 
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that models including coevolution between the two species best explained the observed 

dynamics.

Importantly, abiotic stressors (e.g. exposure to extreme temperatures) are predicted to 

alter trade-offs in a variety of ways that can result in eco-evolutionary dynamics that 

are environmentally dependent (Theodosiou, Hiltunen & Becks, 2019), which could be 

particularly important for communities in fragmented landscapes. Trade-offs are most 

likely to have eco-evolutionary consequences for habitat warming in fragmented landscapes 

when at least one of the fitness attributes in the trade-off has documented effects from 

warming and/or fragmentation. For instance, warming can influence competitive outcomes 

(Bestion et al., 2018) and resource acquisition and defence (De Block et al., 2013), 

while fragmentation can influence dispersal and colonization (Cote et al., 2017). Another 

documented trade-off is survival versus growth rate in relation to thermal performance. 

Examples include variable survival at different temperatures after laboratory selection for 

increased performance at high temperatures in Escherichia coli (Cooper et al., 2001), growth 

rate versus heat-shock tolerance in pea aphids (Acyrthosiphon pisum) (Harmon, Moran 

& Ives, 2009a), and survival at extreme temperatures of Tigriopus californicus copepods 

versus their competitive ability (Willett, 2010). Changes in these trade-offs can then lead to 

altered consumer−resource dynamics (an ecological effect) (Gardner et al., 2011; Sheridan 

& Bickford, 2011; Yvon-Durocher et al., 2011; Ohlberger, 2013; Sentis et al., 2017) and, in 

turn, alter selection for traits that trade off with defence against a consumer (an evolutionary 

effect), ultimately resulting in additional ecological changes within the community (and an 

eco-evolutionary feedback).

Based upon these trends, we argue that investigation of fitness trade-offs and the 

consequences of eco-evolutionary dynamics on interspecific interactions in concurrently 

fragmented and warmed landscapes will provide a more complete understanding of 

the simultaneous long-term effects of these stressors. Using fitness trade-offs, our goal 

is therefore to highlight how eco-evolutionary responses linked to consumer−resource 

interactions may yield novel consequences in these systems.

V Scenarios For Eco-Evolutionary Dynamics In Warmed And Fragmented 

Communities

We now provide several illustrative scenarios to demonstrate the ways in which eco-

evolutionary dynamics may influence outcomes of consumer−resource interactions in 

communities experiencing simultaneous warming and fragmentation. We indicate whether 

each step in the dynamic is ecological (eco) or evolutionary (evo) to enable the reader to 

trace the feedbacks in the scenario. Acknowledging that eco-evolutionary dynamics have the 

potential to yield multiple outcomes, we do not aim to provide an exhaustive exploration of 

these possibilities. We do not argue that these scenarios are the only ones we should expect, 

or that they are likely to be the most common of all possible outcomes, but rather that 

they are likely to occur given the current theoretical and empirical evidence of the impacts 

of warming or fragmentation on species traits and responses to selection. These scenarios 

provide examples of how eco-evolutionary dynamics can affect communities under warming 
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and fragmentation, potentially yielding unexpected results compared to predictions based 

solely upon ecology or evolution.

(1) Scenarios for single consumer−resource interactions

A number of eco-evolutionary dynamics, including feedbacks, can arise in 

consumer−resource interactions occurring in warmed and fragmented habitats. We focus on 

three that meet our criteria. Firstly, if consumer-free habitat patches enable the resource 

species to evolve increased thermal tolerance (e.g. if the predator was physiologically 

excluded from warm patches) (evo), its abundance could increase (eco). A potential example 

of this phenomenon is with Daphnia magna, in which isolated populations evolved an 

increased growth rate in response to warming (Van Doorslaer et al., 2010). This will result 

in increased dispersal among patches as density increases (Fronhofer et al., 2018), and thus 

higher abundance in cool patches due to the influx of immigrants (eco) (Fig. 4A). One 

result of the increased availability of the resource in cool patches could be an increased 

attack rate by the consumer. Increased attack by the consumer could result as either a 

density-dependent (i.e. of the resource) ecological response (eco) (e.g. Eggleston, Lipcius & 

Hines, 1992; Hossie & Murray, 2010) or due to evolution to increase resource acquisition 

[e.g. populations differing in genetically determined attack rates (evo)] (Sanford et al., 2003; 

De Block et al., 2013; Dinh Van et al., 2013, 2014) (Fig. 4B). Increased consumer pressure 

can then decrease the number of successfully dispersing individuals of the resource (e.g. 

Yoder, Marschall & Swanson, 2004), increasing the degree of isolation among patches for 

the resource (eco). In so doing, it could increase opportunities for additional local adaptation 

of the resource (Loeuille & Leibold, 2008), for instance, to increase defence against the 

consumer (evo) (Fig. 4C).

Secondly, an eco-evolutionary dynamic might occur if consumers are present in warm 

patches, but have reduced attack rates due to, e.g. physiological constraints (Tran et al., 
2016), a change in period of activity, or prey switching (eco). In this scenario, warm patches 

would again function as prey refugia, leading to larger population sizes of prey (eco) and 

increased opportunities for local adaptation to the thermal environment without trade-offs 

(evo) (Fig. S2). In fact, if trade-offs between thermal performance traits and defence traits 

do occur (e.g. Janssens, Verberk & Stoks, 2018; Tran et al., 2019), evolution of increased 

thermal performance may prove to be more likely with spatial segregation associated with 

fragmentation than in an unfragmented community.

And thirdly, because the evidence with regard to the effects of warming on attack rate 

remains inconclusive, especially at evolutionary timescales, we consider the possibility that 

attack rates also increase due to warming (De Meester et al., 2011). For example, over 

time, consumers may evolve in response to their thermal environment (evo). If a consumer 

evolves increased attack rates in warm habitats and its abundance increases, the higher attack 

rates may decrease the absolute number of successful dispersers of the resource among 

habitat patches (i.e. possibly as a result of reduced abundance of the resource, even though 

dispersal rate itself could increase; Dixon & Agarwala, 1999) (eco), resulting in increased 

opportunities for local adaptation of the resource as a result of increased effective patch 

isolation (evo) (Fig. S3). Even if the consumer reduces the abundance of the resource, it may 
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facilitate local adaptation in the resource by maximizing its growth rate, thereby increasing 

the number of selective events per unit time, and by consuming maladapted individuals 

(Osmond et al., 2017) (Fig. S3).

(2) Scenarios for food chains

When expanding consumer−resource interactions to a tri-trophic food chain, the potential 

consequences of eco-evolutionary dynamics become more variable and difficult to predict 

(terHorst et al., 2018). Evolutionary cascades become possible, with the potential for a shift 

in the trade-offs for one species to propagate through the food web as eco-evolutionary 

feedbacks. For example, landlocked populations of alewives (Alosa pseudiharengus) in lakes 

increase predation pressure (eco) on Daphnia. In response, the Daphnia have evolved faster 

growth, earlier maturation, and higher fecundity (evo) (Walsh & Post, 2011), an effect 

that cascades through the food chain in the form of altered phytoplankton dynamics and 

ecosystem functioning (eco) (Walsh et al., 2012). We thus focus on two scenarios with two 

different starting points that take into account the possibility of cascading effects in simple 

food webs.

In our first scenario, a resource species evolves increased thermal tolerance (evo) (e.g. 

Schaum et al., 2017). This could involve a trade-off with a trait important to defence against 

consumption or simply make it a more abundant, and thus readily available, resource (eco). 

In either case, the intermediate consumer has an opportunity to evolve to increase investment 

in its own defence against a top consumer (evo). This is most likely to occur in fragmented 

habitats, where the top consumers have smaller population sizes than in continuous habitats 

(Crooks & Soulé, 1999). In warm patches especially, top consumers that are physiologically 

sensitive to warming may be less abundant or absent entirely (Petchey et al., 1999; Binzer et 
al., 2012), providing partial refuge to the intermediate consumer. Specifically, as it becomes 

less costly for the intermediate consumer to acquire the now more abundant resource, it 

is free to evolve decreased investment in expensive traits favourable to attack rate and 

increased investment in defence. Once this occurs, the top consumer, where present, would 

encounter less edible prey. For top predators, warming occurring in a fragmented landscape 

could thus lead to an increased likelihood of extinction (eco) (Fig. S4).

The second scenario requires that the top and intermediate consumers experience the 

landscape at different scales. A top consumer, for which individuals move regularly among 

patches, may have a plastic reduction in body size due to metabolic constraints with 

increasing mean temperature across the landscape (eco) (Teplitsky & Millien, 2014). This 

can trigger prey-switching (Truemper & Lauer, 2005), such that smaller predators are likely 

to target younger, smaller size classes of the intermediate consumer, potentially due to 

increasing gape limitation (Arim et al., 2010) (Fig. 5A). This, in turn, increases selection 

on the intermediate consumer to evolve faster growth rates and escape vulnerable size 

classes sooner (evo). This agrees with early findings of faster growth rates of intermediate 

consumers in the presence of a top predator, although the possibility of evolutionary 

mechanisms acting in this lake system was not evaluated (Persson et al., 1996). Faster 

growth rates can cause increased attack rates by the intermediate consumer on the resource 

(eco). Similarly, if the intermediate consumer escapes some degree of predation by the top 
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consumer, it can evolve to increase investment in traits related to its attack on the resource at 

the expense of its own predator defence (Fig. 5B). With increased attack by the intermediate 

consumer, the resource might then evolve an increase in defence traits at the expense of 

its own resource acquisition (evo) (Lind et al., 2013) (Fig. 5C). This, however, may vary 

among patches when individuals of the intermediate consumer only disperse infrequently 

and when its physiological constraints depend on thermal environments within patches. For 

instance, attack rates may be especially high in cool patches if the intermediate consumer is 

physiologically constrained in warm patches. In this situation, the evolution of the resource 

species’ traits for defence or its own resource acquisition could occur unevenly across the 

landscape.

The two scenarios presented above can act simultaneously. If the resource abundance 

increases while the top consumer body size decreases in warm patches, habitat 

fragmentation will couple changes in both populations. Changes at the two trophic levels 

could thus reinforce one another, possibly resulting in markedly increased abundance of the 

intermediate consumer not predicted without both habitat warming and fragmentation.

VI Future Research Directions

To date, a prevailing underlying assumption of many studies of climate change or 

fragmentation is that observed differences in interspecific interactions are explained 

by purely ecological effects. Eco-evolutionary dynamics, however, can be cryptic and 

mostly undetectable. For example, eco-evolutionary dynamics can be apparent through 

consequential ecological changes in species abundances, increasing stability or dampening 

of ecological patterns in space (Kinnison, Hairston & Hendry, 2015; Hendry, 2019; Urban 

et al., 2020). Until we begin to study them directly in the context of warming and 

fragmentation, their importance is likely to remain mostly unknown. We argue that the 

degree of climate−phenotype matching, population properties related to fragmentation, and 

community complexity are important for determining the importance of eco-evolutionary 

dynamics in warmed and fragmented communities (Fig. 2), and that acknowledging their 

role opens up a new area of research.

Here, we present some experimental avenues and provide a roadmap to show how eco-

evolutionary dynamics can be integrated into experiments to determine in what manner 

they govern responses to habitat warming and fragmentation across levels of biological 

organization, from single species studies to food webs. We present five key questions for 

future work.

(1) What hidden role do cryptic eco-evolutionary dynamics play in enabling 
populations and communities to respond to warming and fragmentation such 
that apparently no evolutionary response has occurred? To disentangle cryptic 

eco-evolutionary dynamics from purely ecological responses will require further 

acknowledgment among ecologists of the importance of intraspecific diversity 

within and among populations (Raffard et al., 2018; Therry et al., 2018). 

Genomic and transcriptomic analyses increasingly offer us opportunities to 

understand the targets of selection within genomes, providing novel information 
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about how populations can evolve in response to local environmental conditions 

(Kenkel & Matz, 2017; Bay et al., 2018; Li et al., 2018a,b). For example, 

by comparing genetic diversity before, during and after environmental stress, 

we can observe the outcomes of natural selection in response to novel 

environmental change, even within a single generation, through shifts in allelic 

frequencies within a population (Pespeni et al., 2012, 2013).

(2) To what extent does fragmentation allow eco-evolutionary dynamics in response 
to warming to vary at local scales across a metacommunity, and does this enable 
populations to retain higher levels of intraspecific diversity? Uneven effects of 

warming are possible at local scales, and local habitats that differ in selective 

forces can result in variable selection across a metacommunity. Taken together, 

fragmentation may have the ability to modulate eco-evolutionary dynamics 

in response to warming, but we currently do not have sufficient information 

to determine the extent to which it does. Careful experimentation should 

evaluate the scales at which fragmentation and warming can interact such that 

local populations differ in their exposure to warming. Just as metacommunity 

dynamics potentially enable communities to retain higher interspecific beta-

diversity, they may allow populations to retain higher intraspecific beta-diversity. 

This may be especially true when habitats vary in environmental conditions at 

local scales, favouring some genotypes more than others depending upon local 

conditions. Intraspecific diversity is likely an important component contributing 

to a population’s resilience in the face of anthropogenic habitat change and is 

simultaneously expected to be an aspect of biodiversity that is diminished by 

anthropogenic habitat change, making this question particularly relevant in the 

face on ongoing warming and fragmentation.

(3) How frequently does fragmentation modulate the eco-evolutionary responses of 
populations and communities in response to warming and what combination 
of population and community-level factors will most frequently yield strong 
eco-evolutionary dynamics in this context? Here we will benefit from using 

controlled experiments to isolate the role of warming and fragmentation in 

driving evolutionary change and to understand the effects for interspecific 

interactions and community dynamics. Manipulative experiments using 

microcosms and mesocosms provide the necessary level of control to attribute 

unambiguously any observed evolutionary change to each factor and to evaluate 

initially the potential consequences of eco-evolutionary dynamics (Yoshida et 
al., 2003; Harmon et al., 2009b; Pantel, Duvivier & Meester, 2015; Scheinin 

et al., 2015; Frickel, Sieber & Becks, 2016; Schaum et al., 2017). We 

have generated predictions for how combinations of population traits and 

fragmentation will influence the likelihood of strong eco-evolutionary dynamics 

in Fig. 2, but these expectations remain untested. Careful experimental design 

will also ensure that we can test specific hypotheses regarding the circumstances 

most likely to result in eco-evolutionary dynamics, as well as the conditions 

under which such dynamics have significant effects. Field-based experiments 

with local populations that differ in connectivity and temperature will then 
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validate results from experimental populations (Hendry, 2019; see for example, 

Johansson, Quintela & Laurila, 2016b). In this way we can begin to detect 

heritable differences in thermal performance (Kenkel & Matz, 2017) and 

outcomes of interspecific interactions with implications for functioning in 

natural populations at longer timescales (Schaum et al., 2018).

(4) How does the inclusion of trophic complexity alter predicted evolutionary 
outcomes in warmed and fragmented habitats? In other words, how important 
are trade-offs between thermal traits and traits related to resource acquisition 
and/or predator defence in governing eco-evolutionary dynamics that emerge in 
response to warming? Although logic suggests a role for trade-offs in driving 

eco-evolutionary dynamics, and perhaps especially feedbacks, their importance 

is nonetheless far from certain between sets of interacting species. We argue 

that strong fitness trade-offs may be particularly instrumental in driving the 

evolutionary cascades that enable eco-evolutionary feedbacks and loops to arise, 

as demonstrated in the scenarios presented in Section V. Careful hypothesis 

testing using organisms for which traits and their trade-offs have been described 

will allow us to determine how eco-evolutionary dynamics and feedbacks in 

response to warming and fragmentation are affected by the presence or absence 

of trait trade-offs.

(5) What fitness trade-offs are important for eco-evolutionary dynamics in warmed 
and fragmented communities and how does the shape of the trade-off curve, 
especially those related to thermal traits, affect emerging eco-evolutionary 
dynamics in response to warming? Traits have the potential to respond and 

interact non-linearly. In fact, thermal traits described by thermal performance 

curves are frequently non-linear. Examples include resource growth rates, 

attack rates, and handling times ultimately determining interaction strength 

(Amarasekare, 2015; Uszko et al., 2017; Zhang et al., 2017; Dee et al., 2020; 

Uiterwaal & DeLong, 2020; Zhao et al., 2020). This non-linearity implies that 

extrapolating performance over a temperature range from average performance 

at a constant temperature can be inaccurate for organisms experiencing variable 

temperatures (Denny, 2017). Similarly, ecological responses may be non-linearly 

density dependent at the metacommunity scale (e.g. the response to predation 

depends upon both the risks and rewards to movement). Such non-linear 

responses have the potential to complicate inferences, especially when trade-offs 

among traits are considered. For this reason, it will be essential to consider 

the importance of non-linear trade-offs for eco-evolutionary dynamics involving 

responses to climate warming and fragmentation. Initially, experiments must 

quantify the types of trade-off curves involved in eco-evolutionary responses. 

Eventually, this information will allow a broader classification of how the shapes 

of the curves describing trait responses and trade-offs influence eco-evolutionary 

dynamics.
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VII Conclusions

(1) In this review, we demonstrated how warming and fragmentation can 

individually alter selective pressures, as well as the size, structure, 

and connectivity of populations, interacting species, and more complex 

communities. We then examined the limited research available studying 

interactive effects of habitat warming and fragmentation. We used the available 

evidence to argue that ecological responses to concurrent habitat warming and 

fragmentation are likely to be mediated and complicated by eco-evolutionary 

dynamics.

(2) We generated four predicted broad outcomes for how combinations of 

population traits and fragmentation will influence the likelihood of eco-

evolutionary dynamics compared to ecological responses, calling for greater 

attention to warming−phenotype matching, fragmentation-induced population 

structure, and community complexity.

(3) We suggest that a new perspective is needed to understand the simultaneous 

eco-evolutionary consequences of habitat fragmentation and warming for the 

dynamics of ecological communities. Such a perspective should be based 

on trade-offs among traits that emerge in response to warming and habitat 

fragmentation. Thermal environment affects traits related to metabolism, which 

are also likely to have trade-offs with other energetically costly ecological traits, 

such as antipredator defence or propensity to migrate. Traits additionally can be 

influenced by the spatial environment experienced by individuals.

(4) We illustrated this perspective with several example scenarios to generate 

novel, sometimes counter-intuitive predictions. For example, we predict that 

eco-evolutionary dynamics in tri-trophic chains could result in increases 

in abundance of intermediate consumers and even possibly unanticipated 

extinctions of top consumers, in marked contrast to expectations solely based 

on ecological dynamics.

(5) New research questions emerge that explicitly consider the consequences of 

eco-evolutionary dynamics in communities responding to fragmentation and 

habitat warming. Key questions to address include, but are not limited to: when 

does fragmentation allow for eco-evolutionary dynamics in response to warming 

to vary among patches across a metacommunity? How do we disentangle cryptic 

eco-evolutionary dynamics from purely ecological responses? How does the 

inclusion of trophic complexity alter predicted evolutionary outcomes from 

single species studies in warmed and fragmented habitats? These and other 

questions require urgent investigation to yield more robust predictions for the 

long-term effects of multiple global change components.
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Fig. 1. 
Conceptual diagram showing eco-evolutionary dynamics, where changes in the ecology 

of populations or communities that result in evolutionary changes (A), or vice versa (B), 

can occur when ecology and evolution occur at contemporary timescales. Such dynamics 

are considered eco-evolutionary feedbacks when the secondary evolutionary (as in A) or 

ecological (as in B) response then results in an additional reciprocal ecological (A) or 

evolutionary (B) response. As our focus is on environmental change, we assume that the 

dynamics are initiated in response to a change in the environment of a population.
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Fig. 2. 
Likelihood of eco-evolutionary dynamics in response to warming and fragmentation 

as a function of species’ traits, habitat connectivity, and community complexity. For 

simplicity, two potential eco-evolutionary scenarios are presented and separated by the 

dotted grey line, corresponding to weak and strong eco-evolutionary potential. Grey-

scale shading indicates the relative level from low to high of each of the factors: 

‘warming phenotype matching’, ‘habitat connectivity/population size/genetic diversity’, and 

‘community complexity’. Warming phenotype matching refers to the degree to which an 

organism’s thermal phenotype matches the thermal environment in which it is found. We 

consider habitat connectivity, population size, and genetic diversity as a single factor in our 

figure because they are frequently positively correlated. Community complexity refers to the 

number of organisms and trophic levels, and consequently interspecific interactions, present 

in the community. We evaluate the role of each factor for weak (factor bars 1−3) and strong 

(factor bars 4−6) eco-evolutionary dynamics. Colours on the bars show the expected range 

of each factor for a given eco-evolutionary outcome (A−D). When an outcome is predicted 

for the entire range of a factor, for example, as in outcomes A and B that we predict across 

the full range of community complexity (3), the coloured bar spans the vertical range of the 

grey-scale factor bar. We identified four potential outcomes. Under weak eco-evolutionary 

potential, local extinctions without evolutionary responses (A) are predicted with high 
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warming phenotype matching (1), low habitat connectivity/ population size/genetic diversity 

(2), and across a range of community complexity (3). Plastic responses and migration 

(B) are predicted under weak eco-evolutionary potential with high warming phenotype 

matching (1), high habitat connectivity/population size/genetic diversity (2), and across a 

range of community complexity (3). For responses with strong eco-evolutionary potential, 

we predict that cryptic eco-evolutionary dynamics (C) will be likely to occur with high 

warming phenotype matching (4), intermediate habitat connectivity/population size/genetic 

diversity (5), and a range of community complexity (6). The final outcome with strong 

eco-evolutionary potential, dramatic eco-evolutionary dynamics (D), is predicted to occur 

with low warming phenotype matching (4), intermediate habitat connectivity/population 

size/genetic diversity (5), and, high community complexity (6).
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Fig. 3. 
(A) Conceptual diagram of an ecological trade-off with two fitness components 

(conceptualized as a linear relationship for simplicity). (B) Evolution that improves 

performance in one fitness component results in a concomitant reduction in performance 

in a second fitness component. Here a starting population (pink fish) evolves increased 

performance in Fitness component 1 (x-axis trait), at the expense of performance in Fitness 

component 2 (y-axis trait), resulting in an overall shift along the trade-off curve (red arrow) 

for the evolved population (blue fish).
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Fig. 4. 
Conceptual diagram (top panels) illustrating a hypothetical scenario for an eco-evolutionary 

feedback (evoàeco àevo) between a consumer species and its resource with evolutionary 

trade-offs visualized below each conceptual panel. Fragmentation in a habitat experiencing a 

thermal gradient results in patches that differ in thermal environment (colour of background, 

with blue as cold and pink as warm). In the conceptual panels, for each species the colour 

of the illustration represents different genotypes (or phenotypes) within each population, 

while the size of the illustration represents the relative contribution of each phenotype to 

the population make-up. In the trade-off diagrams, the curve for the trade-off relationship 

is indicated with a grey dashed line, while evolutionary movement along the trade-off 

curve is indicated with a solid red arrow. Dashed black arrows show the positive (+) or 

negative (−) direction of the movement for each fitness attribute. (A) The presence of habitat 

patches differing in their thermal environment results in evolution of the resource (alga) 

for increased heat-shock tolerance leading to an increase in its abundance in warm patches 

due to lower mortality under heat shock. (B) Increased abundance of the resource results in 

increased attack by the consumer (daphnid) as an ecological (dashed red line departing from 

the trade-off curve) or evolutionary response, a trait whose performance is not necessarily 

tied to thermal environment. (C) Decreased dispersal of the resource occurs as a result of 

higher predation pressure, increasing the opportunity for local adaptation to increase defence 

against the predator.
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Fig. 5. 
Conceptual diagram (top panels) illustrating a hypothetical scenario for an eco-evolutionary 

feedback (eco→evo→eco) for a tri-trophic food chain with evolutionary trade-offs 

visualized below each conceptual panel. See legend to Fig. 4 for further explanation. For 

the fish, size of the illustration corresponds to body mass rather than the relative contribution 

of a phenotype to the population make-up. (A) The presence of habitat patches differing 

in their thermal environment results in a plastic reduction of top consumer (fish) body 

size (dashed red line on the trade-off curve). (B) Decreased predation pressure linked to 

reduced fish body mass then allows the intermediate consumer (daphnid) to evolve increased 

resource acquisition. (C) The resource (alga) evolves increased defence in response to higher 

predation pressure from the intermediate consumer.
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