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Abstract

Larger geographical areas contain more species—an observation raised to a law in ecology. 

Less explored is whether biodiversity changes are accompanied by a modification of interaction 

networks. We use data from 32 spatial interaction networks from different ecosystems to analyse 

how network structure changes with area. We find that basic community structure descriptors 

(number of species, links and links per species) increase with area following a power law. Yet, the 

distribution of links per species varies little with area, indicating that the fundamental organization 

of interactions within networks is conserved. Our null model analyses suggest that the spatial 

scaling of network structure is determined by factors beyond species richness and the number of 
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links. We demonstrate that biodiversity–area relationships can be extended from species counts 

to higher levels of network complexity. Therefore, the consequences of anthropogenic habitat 

destruction may extend from species loss to wider simplification of natural communities.

Research on the spatial scaling of biodiversity has historically focused on the increase of 

species richness with area1–3 and on other components of biodiversity, such as functional 

or phylogenetic diversity4–6. The species–area relationship (SAR) is essential to estimate 

species richness in a region and species loss following habitat destruction and range 

contraction7–9. Ecological communities are, however, more than disconnected collections of 

species. Instead, they can be represented as networks, with species as nodes and interactions 

among species as links10. Ecological interactions are fundamental to predict ecosystem 

responses to environmental changes11–13 and to sustain important ecosystem functions14–16. 

Understanding how the structure of interaction networks changes with area is, thus, crucial 

to fully characterize the spatial scaling of biodiversity and to predict ecosystem responses to 

human activities.

The influence of spatial processes on the organization of interaction networks has long 

interested ecologists17–19. However, research on the spatial scaling of network structure 

has been scarce20–22. This scaling concerns two hierarchical levels: the number of building 

blocks within communities (species and their interactions) and the relationships between 

them. The scaling of the number of links (biotic interactions) with area has been previously 

predicted20 by unifying the SAR with the well-established scaling of the number of links 

with species richness23–26. Similarly, recent theoretical research has shown that a number 

of network–area relationships (NARs) can emerge from different spatial mechanisms and 

assembly processes, such as different SARs across trophic levels or dispersal limitation21. 

Yet empirically documenting the specific shape of these relationships and assessing their 

potential universality across biomes, interaction types and spatial domains remains a major 

challenge.

The power function of the form S ≈ cAz, where c is the intercept and z is the slope in 

logarithmic space, has been found to describe the increase in species richness (S) with area 

(A) across all ecosystem types1,27, with parameter z varying substantially with the spatial 

extent studied27–29. Whether other aspects of network complexity can be captured by the 

same functional form, and how the parameters of such scaling vary with network properties 

and spatial extent, are questions of fundamental importance for characterizing the effects of 

area loss on biodiversity. Similarly, as many aspects of network structure can change with 

species diversity and network connectance (the proportion of realised interactions among 

all potential ones)30–33, it is important to determine whether the spatial scaling of network 

structure is a trivial consequence of the increase of species richness with area, or whether 

such scaling of network properties follow rules beyond those applying to species richness.

We compiled 32 datasets from different ecosystems across the globe describing interaction 

networks (including both mutualistic and antagonistic interactions) within two spatial 

domains: regional and biogeographical. The regional domain represents communities for 

which sampling was conducted locally in a replicated fashion within narrow spatial 

extents (maximum spatial extent of ~1,000 km2). The biogeographical spatial domain 
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includes datasets for which the sampling units span much broader areas, encompassing 

multiple biomes (Methods and Supplementary Text 1). Thus, biogeographical data comprise 

communities exposed to larger environmental heterogeneity, stronger dispersal barriers and 

historical contingencies, which combine to produce diversity patterns at large spatial scales. 

Hence, we expected a priori the scaling relationships for the biogeographical domain to be 

steeper than those for the regional domain, as within the biogeographical domain, species 

assemblages can be evolutionarily less related and exhibit greater turnover of species and 

links. Each dataset contained interaction data, using different methodologies to document 

pairwise interactions. To characterize changes in network properties with changes in area, 

we sequentially aggregated the sampling units available, scoring the structure of the network 

at each step of the aggregation procedure (Methods).

Results and discussion

The spatial scaling of network complexity

We found that network complexity increased with area at all levels: at the level of the 

number of building blocks (species and links) and at the level of their combinations (links 

per species; Fig. 1, Table 1 and Supplementary Table 1). For all datasets, the relationships 

followed a power-law function, regardless of the spatial extent of observation or interaction 

type. Within both the regional and biogeographical domain, we found that an extended 

power function best describes the scaling of network complexity with area (Methods and 

Supplementary Table 1). This function has the form N = cA(zA−d), where N is a given 

network property, A is area and c, z and d are fitted parameters, where z represents the slope 

of a given NAR in log–log space (the scaling exponent) and d controls the strength of the 

asymptotic flattening.

We found systematic differences in the shape of the scaling relationships between the 

regional and biogeographical domains. All measures of network complexity followed a 

linear-concave increase with area size in the regional domain (z » d > 0) while in the 

biogeographical domain, the increase was convex for most datasets (z > 0 > d) (but see 

Supplementary Figs. 7 and 8). The biogeographic domain also showed larger variability 

across datasets than the regional domain, suggesting lower predictability at larger spatial 

extents (Supplementary Table 3).

The number of links increased faster with area than did the number of species, within both 

the regional and biogeographical domains. Importantly, whether links increase faster than 

species with area will depend on how the number of links scales with species richness20,21. 

Previous empirical studies23–26 have used a power function to relate the increase of the 

number of links with species richness and found the value of the scaling exponents to lie 

between 1 and 2 (refs. 25,26)—coining the expressions of the ‘link–species scaling law’34 

versus ‘constant connectance hypothesis’24, respectively. Consistent with previous work, we 

found the increase in the number of links with an increase in species richness to follow a 

power law in all datasets (Fig. 2 and Supplementary Table 2). The exponents were larger for 

the biogeographical (mean ±s.d.: z = 1.78 ± 0.20) than for the regional domain (z = 1.60 ± 

0.20). For both spatial domains, the scaling exponents of the links-per-species relationship 

were thus clustered between 1.5 and 2, but with substantial variability in specific values 
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(Fig. 2 and Supplementary Table 2). The high variation observed suggests that the species 

richness of a community may carry little information on how the number of links will 

change with area. Instead, the scaling of the number of links with species richness may need 

to be established on a network-specific basis20.

The unpredictability of vertical diversity

Within a network, the links can be organized in multiple ways. In our dataset, the mean 

number of resources used by a consumer (mean indegree (L/Sc)) increased with area. The 

general shape of the relationship was similar to that of the other complexity measures 

analysed, that is, linear-concave in the regional domain and convex in the biogeographical 

domain (Fig. 3 and Supplementary Table 1). Still, compared with the relationships observed 

for other network properties, we observed greater variability in indegree–area relationships 

within spatial domains (Supplementary Table 3). This variability is driven partially by the 

variability in changes in consumer-to-resource ratios with area observed across datasets 

(Supplementary Table 1). Although previous studies have shown a consistent increase of 

the slope of SARs with trophic level35,36, we did not observe any consistent increase or 

decrease of the consumer/resource richness ratio with area at any of the spatial domains 

(Supplementary Table 1). These findings suggest that the spatial scaling of vertical diversity 

properties, such as the proportion of species per trophic level, might be system specific.

The scale invariance of degree distributions

Beyond the network properties considered in the preceding, other network properties were 

more consistent across scales. The degree distribution of ecological networks is typically 

highly skewed, with many specialist species and few generalists37,38. This skewness may 

influence the stability and robustness of communities38, and it is tightly linked to widely 

studied network properties, such as nestedness (the degree to which specialist species 

interact with subsets of the species interacting with generalists)39,40. Previous theoretical 

work has suggested that the skewness of ecological networks is preserved across spatial 

scales21, an expectation borne out in our data. Despite variability in the degree distribution 

across datasets, the same function provided a good fit to the degree distribution of 

most ecological networks across the full range of areas (Methods and Fig. 3). Although 

we observed variation in the parameters of the functions (Supplementary Fig. 4), the 

consistency in the fundamental shape suggests that community robustness to species loss 

(independently of whether it is high or low) may be maintained across spatial scales.

Disentangling the effect of species richness

Given the influence of species richness and network connectance on many aspects of 

network structure30–33, we aimed to investigate whether network structure changes with area 

beyond those changes associated with the increase in species richness and links with area. To 

do so, we generated random networks with two different null models, as reflecting the case 

where the spatial scaling of network structure emanates from the spatial scaling of species 

richness alone (with no change in links per species) or the spatial scaling of both species 

richness and links, respectively. In both models, we started from the metaweb (the overall 

network pooled across all original networks within each specific study) then randomly drew 

the same number of species as observed in the original local networks. In null model 1, 
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local random networks were drawn as random subsets of the metaweb, picked to have 

the same species richness as the observed local networks. In other words, after randomly 

selecting a given number of species from the metaweb, we kept only interactions among this 

subset of species, thereby determining the number of links of the network generated. Thus, 

this procedure mimics a scenario where random local networks have the same number of 

species as the observed local networks, but the number of links and the associated network 

properties may differ. In null model 2, we preserved both species richness and the number 

of interactions observed in the original networks but distributed the links randomly among 

the species (Methods). Accordingly, null model 2 mimics a scenario where a change in area 

causes a potential change in indegree and network degree distribution, while not affecting 

the number of either species or links. For each of the 100 randomizations under each 

scenario, we then scored each of the complexity metrics defined in the preceding: species, 

links, links per species, indegree and network degree distribution.

The observed spatial scaling of network structure in the original networks differed 

substantially from the results generated by the null models. The number of links in empirical 

networks increased more slowly with an increase in the number of species than expected 

from a random sample of species from the metaweb (null model 1) (Supplementary 

Fig. 5). This slower increase is driven by the fact that local original networks show 

greater complexity (more links per species) than random networks. This result suggests 

that the scaling of the number of links is shaped by factors beyond the species richness 

of a community, such as evolutionary constraints, phenological matching or competition. 

By contrast, other structural properties, such as mean indegree and degree distributions, 

are consistent with the pattern derived from null model 1 (Supplementary Figs. 5 and 

6 and Supplementary Tables 5 and 6). The consistency indicates that these network 

properties might be inherited from the metaweb and that the co-occurrence structure of 

species in the empirical data is not meaningfully impacting the degree distribution. This 

interpretation is supported by patterns observed under null model 2. When links are 

reshuffled randomly among selected species from the metaweb, the pattern is substantially 

different from the observed one: here, both the mean indegree and network degree 

distributions of the randomized networks strongly deviate from that of their original 

counterparts (Supplementary Figs. 5 and 6 and Supplementary Tables 5 and 6). Similarly, 

the observed spatial scaling of the consumer/resource ratio was poorly predicted by both null 

models.

Overall, our null model analyses suggest that the spatial scaling of network structure is 

determined by factors beyond species richness and the number of links. With a change 

in area, we see changes in important features of ecological networks—such as vertical 

diversity, consumer specialization and degree distribution—well beyond those expected if 

changes were driven by the number of species and/ or links alone.

The fragility of biotic interactions

In conclusion, our analyses of multiple interaction networks from different biomes, 

interaction types and spatial domains allowed us to explore the generality in the spatial 

scaling of several structural properties of ecological networks. Our results demonstrate 
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how previously established biodiversity–area relationships can be extended from species 

counts2,3,27 to higher levels of network complexity. The increase in the number of 

interactions in which each species is involved when area increases indicates that trophic 

interactions might be more vulnerable to habitat loss than to species richness41,42. Therefore, 

the consequences of anthropogenic habitat destruction may extend from species loss 

to wider simplification of natural communities43–45, with further consequences for the 

functioning of ecosystems14–16,46,47. The systematic scaling of network complexity with 

area suggests that trophic interactions will be lost with habitat destruction in a predictable 

manner, and describing the factors shaping this sequence allows us to better anticipate the 

effects for ecosystem functioning. Importantly, the scaling of the number of interactions 

with species richness proved variable across datasets, and our null model analysis indicated 

that other complexity metrics cannot be predicted from species richness alone. Both of 

these patterns suggest that we need network-specific knowledge on the relationship between 

links and species to accurately predict the effects of habitat loss on network complexity. To 

estimate the spatial scaling of the number of links, a general understanding of the SAR may 

still suffice if it is supplemented by informed assumptions regarding the scaling exponent of 

the links–species relationship. For such assumptions, our current results will form a useful 

point of departure, given their foundation in a wide set of scales and biomes.

Future studies should put effort towards unravelling the potential ecological mechanisms 

affecting the slopes of NARs, as well as disentangling the importance of the methodological 

aspects (Supplementary Figs. 7 and 8 and Supplementary Table 7), as has been widely done 

for SARs27. Explicitly investigating the effect of habitat heterogeneity, for example, would 

help elucidate the effect of area, not only on network size and the number of links, but 

also on its modular structure. Such insight is urgently needed, given that heterogeneous 

landscapes are likely to promote the emergence of compartments within networks48,49. 

Similarly, it is important to investigate how our observations could inform predictions about 

the effects of habitat loss caused, for example, by link extinction debt or changes in trophic 

regulation41,42. Yet it is also fundamental to understand how our predictions of the effects 

of habitat loss on network structure would resemble those obtained by direct experiments of 

habitat destruction. Gaining a deeper understanding of the mechanisms behind NARs will 

allow us not only to anticipate the potential consequences of habitat loss, but also to provide 

management recommendations with a solid foundation in the structure and functioning of 

natural ecosystems.

Methods

To measure NARs for ecological communities from different biomes across the world, 

we used 32 empirical datasets comprising species recorded in different localities and with 

different types of interactions. This is a comprehensive synthesis of spatial interaction 

network datasets. Depending on the study, local observations span either a regional or 

biogeographical spatial extent. Our analysis allowed us to identify universalities in the 

ways network properties change with area for datasets comprising different interaction 

types. To evaluate whether there are universalities in the ways that networks of ecological 

interactions scale across space, we quantified the exponents of the relationships between all 

network properties analysed with area when fitted to a power function. The spatial scaling 
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of network degree distributions was assessed by fitting four different distributions at each 

spatial domain and comparing the best fit across the entire range of areas. In addition, we 

used two different null models to disentangle the effects of the spatial scaling of species 

richness on the patterns observed in other complexity metrics.

Data classification

Thirty-two datasets comprising species distributions and their interactions were obtained 

from different sources and classified into two categories according to the geographical extent 

covered: regional or biogeographical spatial domain. The main features of the type of data 

considered in each category, including sampling method, location and interaction types, are 

briefly described in the following. Additional details about each dataset can be found in 

Supplementary Text 1

Regional spatial domain—Datasets in this category are distinguished from 

biogeographical networks by their geographical extent and sampling methods. Regional-

domain data were collected with locally replicated samples over relatively narrow spatial 

extents up to ~1,000 km2. Sample units are generally the same size or a series of localities of 

roughly equal size. A total of 19 datasets were considered in the regional domain, covering 

different ecosystems and geographical locations across the globe. The datasets are networks 

describing plant–pollinator interactions and host–parasitoid interactions from Mediterranean 

scrublands located in Garraf (three datasets50,51) and forests located in the natural parks of 

Montseny (1 dataset52) and Olot (1 dataset53) in Catalonia, Spain; host–parasite interactions 

networks describing insect herbivores (gallers and leaf miners) of the pedunculate oak 

(Quercus robur) and their parasites in a temperate forest in Finland (1 dataset54); plant–

pollinator interactions from a temperate forest in Argentinian Patagonia (1 dataset55); soil 

food webs from agroecosystems across the Netherlands (7 datasets56); terrestrial food webs 

within small islands of a temperate saltmarsh mudflat in southeastern England (1 dataset57); 

intertidal food webs from the northeastern Pacific in Alaska, USA (1 dataset22); networks 

of plant–pollinator interactions and host–parasitoid interactions in fragmented calcareous 

grasslands in central Germany (2 datasets58); and networks of plant–leaf miner–parasitoid 

interactions from forest fragments embedded in an agricultural matrix landscape in central 

Argentina (1 dataset59).

Biogeographical spatial domain—Datasets from this category span broad 

(biogeographical) spatial extents. There are two types of biogeographical datasets: (1) 

datasets where local communities are built on the basis of the information of the presence 

of all species found in each location and where the interactions between species have 

been inferred from literature review and expert knowledge and (2) datasets where local 

communities are built on the basis of direct observations of ecological interactions at 

each locality. The datasets of type (1) comprise the European terrestrial vertebrate trophic 

network (food web60) divided among 10 biogeographical regions that characterize each 

region according to its climatic conditions (local communities for this dataset are defined at 

the 10 km × 10 km grid level (10 datasets)) and the terrestrial vertebrate food web of the 

Catalan Pyrenees (1 dataset12), where local communities are also defined at the 10 km × 10 

km grid level. The datasets of type (2) comprise networks of plant–herbivore interactions 
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and herbivore–parasitoid interaction sampled from plants of the genus Salix and spanning a 

large latitudinal gradient from Italy to northern Norway (2 datasets61).

Building NARs

To analyse the spatial scaling of network structure, we built NARs for each dataset 

described. The procedure to generate NARs was slightly different between spatial domains.

Regional spatial domain—The spatial extent was rescaled for each dataset. The smallest 

spatial scale considered was a single sampling unit. The spatial scaling of network structure 

was defined by sequentially aggregating each of the sampling units available until all 

replicated samples were considered. The aggregated sampling units are not contiguous, 

given that the specific location of each was not considered. We analysed network structure 

at each step of the aggregation procedure. Given that the order in which sampling units 

(local communities) are aggregated might generate a bias in the aggregation procedure, 

we replicated the procedure 100 times for each dataset where the aggregation order was 

randomly generated without replacement.

Biogeographical spatial domain—The fundamental difference between the two spatial 

domains considered is that biogeographical data span large spatial extents, thus comprising 

communities exposed to large environmental gradients. This environmental heterogeneity 

suggests potential differences in scaling patterns compared with communities sampled 

regionally, which cover smaller geographical extents. Due to the large spatial extent 

covered by these datasets, an aggregation procedure where each aggregated sampling 

unit is randomly selected in space, independently of its location, would generate a fast 

accumulation of species and links at small areas due to the large heterogeneity among 

the sampling units (Supplementary Fig. 8 and Supplementary Table 7), generating a 

fast accumulation of species and links at small areas. For this reason, we employ an 

aggregation method based on neighbouring cells while still preserving the statistical power 

of randomizing across replicated aggregation instances (see Supplementary Fig. 8 and 

Supplementary Table 7 for results based on the random aggregation of sites). Two types 

of data comprise this category: those for which species presences and their interactions were 

recorded in the field from single georeferenced locations across the latitudinal gradient61 

and those where species presences were extracted from species distributions maps and 

interactions were inferred on the basis of the joint condition of species co-occurrence in 

space and an indication that the two species interact, as extracted from the literature60. 

The latter datasets, therefore, include all potential interactions between species, which are 

not necessarily realized locally. Local sampling units of these latter datasets were defined 

as the 10 × 10 km cells on a gridded map. The spatial scaling of network structure is 

thus simulated by merging adjacent cells of the map in an increasing manner. Starting 

from a randomly chosen cell, subsequent communities occupying larger areas were defined 

as collections of neighbouring cells forming increasingly larger clusters of cells, chosen 

in anticlockwise fashion from the starting cell (spiral fashion). Thus, the sampling units 

that are aggregated are contiguous. We measured network properties at each step of the 

aggregation procedure. We repeated the aggregation procedure 100 times. For datasets with 
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georeferenced locations, the spatial scaling of network structure was defined by sequentially 

aggregating the closest communities (in terms of Euclidean distance) to the starting point.

Network properties

We analysed the spatial scaling of network complexity at both spatial scales measuring 

the number of species (S), the total number of links (biotic interactions; L) present in the 

network and the number of links per species (L/S). We also quantified the relationship 

between species richness and the total number of links in the network (links–species 

scaling). Specialization was measured at the network level by computing the mean indegree 

(mean number of resources utilized by a consumer; L/Sc) of the community (also known as 

generality or diet breadth in food webs).

To further assess how the structure of ecological networks scales across space in different 

ecosystems, we examined their degree distribution. The degree distribution P(k) of a 

network is defined as the probability of finding a species that has k links to resources 

in the network. Degree distributions provide a notion of how links are structured 

across the network, and their shape has been related to different aspects of community 

stability37,38,46,62. In particular, scale-free degree distributions are considered the hallmark 

of network organization, conferring stability properties to ecological communities. We 

fitted four different functions that have been identified as typical of the shapes observed 

indegree distributions in ecological networks: power law, truncated power law, lognormal 

and exponential38,63. After fitting these distributions to the network of interactions built for 

each spatial scale analysed, for each dataset, the most parsimonious one as measured by 

Akaike information criterion (AIC) was recorded as the best representation of the data. We 

did that for each replicate of each dataset, selecting the distribution that was best ranked 

in most of the replicates. Looking at whether the top-ranked distribution (the lowest AIC) 

changes with area provides insights into the scale invariance of this network property. In 

addition, we looked at the changes of the parameters involved in each function with area 

(Supplementary Fig. 4).

NARs fitting

After constructing NARs on the basis of the 100 replicates for each dataset, we analysed 

the scaling relationships by fitting a suite of functions that have traditionally been used to 

quantify SARs64,65(see Supplementary Table 4 for the full set of functions tested). These 

scaling functions incorporate in different ways the network property as the response variable 

and area as the predictor variable, using a characteristic exponent, or a variation of it, 

to define the relationship of network properties to area size. For example, the power law 

(N = cAZ) relates N (a network property) to area (A) using a constant c and a scaling 

exponent (z). Similarity in the fitted parameters obtained for different datasets was then 

used to evaluate universalities in NARs. Scaling functions in Supplementary Table 4 were 

fitted to each dataset (after network properties were calculated at each spatial extent) using 

the sar package in R65. We used R2 and P values to assess goodness of fit. Comparison 

across models and selection of the best-supported model was done with AIC. Among all 

fitted functions, we focused on the top five models that were best supported and selected 

(if possible) the best-ranked model from the power family to facilitate comparisons among 
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datasets. We note that the functions were fitted to the original data in arithmetic space and 

that the rescaling of the properties to start at 0 was performed for visualization purposes 

alone.

Null models

To understand the contribution of species richness and the number of links for the spatial 

scaling of the associated network properties analysed, we used two null models. For null 

model 1, we checked for each dataset the number of species present in each spatial unit, 

and we randomly picked the same number of species from the corresponding metaweb. 

We then built the network for those species taking from the metaweb all the interactions 

present among the selected species. Thus, the resulting assemblages can differ from the 

original networks in the number of links between species and, in turn, in the associated 

network properties analysed. By contrast, for null model 2, we checked both the number of 

species and the number of links present in each spatial unit and randomly distributed those 

links between the selected species. While networks built with null model 1 can potentially 

preserve part of the structure from each metaweb given that the selected species preserve the 

links they have in the metaweb, networks built with null model 2 can be considered random 

networks given that there is no inherited structure from the metaweb. Thus, null model 1 

allows us to determine the contribution of the identity of the species (with their respective 

links) to the observed patterns, while null model 2 allows us to further test whether there is 

any contribution of area into network structure beyond species richness and the number of 

links. For both null models, we generated networks of different sizes by adding the number 

of species of the subsequent spatial units of each dataset. At each step of species addition, 

we calculated all network metrics. We replicated the procedure 100 times for each dataset. 

We evaluate the resulting NARs (where area is the number of spatial units from which we 

extracted the number of species) by fitting a power function, as we did for the original 

networks. We finally compared the spatial scaling of network properties with those obtained 

in the original networks (Supplementary Figs. 5 and 6 and Supplementary Tables 5 and 6).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

All datasets analysed during the current study are available online at https://doi.org/

10.5061/dryad.zcrjdfndg66, https://github.com/nuriagaliana/Ecological-network-complexity-

scales-with-area or https://github.com/mlurgi/global-network-area.

Code availability

Custom code used to perform the analyses are available online at https://doi.org/

10.5281/zenodo.5758580, https://github.com/nuriagaliana/Ecological-network-complexity-

scales-with-area or https://github.com/mlurgi/global-network-area.
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Fig. 1. Spatial scaling of network complexity.
a–f, The relationship of species (a,d), links (b,e) and links per species (c,f) with area 

for regional (a–c) versus biogeographical (d–f) networks. For each dataset, each point 

represents the mean value of the analysed network property across the total amount of 

replicates in the aggregation procedure for a given area. For all datasets, all network 

properties have been rescaled to start at 0 for visualization purposes. In the biogeographical 

domain, three datasets show a linear-concave increase of the number of species, network 

links and links per species with area, similar to those observed in the regional domain; these 

differences may be explained by differences in sampling methods among datasets (Methods 

and Supplementary Text 1).
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Fig. 2. Scaling of the number of links with species richness.
a,b, For networks spanning both regional (a) and biogeographical (b) spatial domains, the 

number of links scales with species following a power law (Supplementary Table 2). Each 

point represents the mean values across all replicates in the aggregation procedure. Note that 

for visualization purposes, all x and y values in all datasets have been rescaled to start at 

0. To allow convenient comparison with the constant connectance hypothesis and the link–

species scaling law, the slope of each log–log relationship is provided in Supplementary 

Table 2. Note that for constant connectance, the slope equals 2, as the number of links in a 

web increases approximately as the square of the number of trophic species: L≈S2. For the 

link-species scaling law, the slope equals 1, as the number of links per species in a web is 

constant and scale invariant at roughly two: L ≈ 2S).
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Fig. 3. Spatial scaling of mean indegree and network degree distribution.
a,b, The mean number of resources per consumer (mean indegree) increases with area 

within both regional (a) and biogeographical (b) spatial domains. Each point represents the 

mean value across every replicate in the aggregation procedure at a given area. Note that 

for visualization purposes, all x and y values in all datasets have been rescaled to start at 0. 

The shape of the network degree distributions is consistent across area at both regional and 

biogeographical domains. c,d, Two datasets are shown as illustration: Garraf-PP (c, regional) 

and Galpar, (d, biogeographical) (Supplementary Text 1). The cumulative probabilities of 
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finding a species in the network that has k links to resources in the network are normalized 

by the mean number of links per species in the network. One replicate for a subset of areas 

is shown for each dataset to facilitate visualization. Each colour represents network degree 

distribution for a given area, from dark blue, representing the smallest area (1 spatial unit), 

to yellow, representing the largest area for each dataset (40 spatial units for Garraf-PP and 

373 spatial units for Galpar). Notice that the starting point of each distribution changes with 

area, indicating that at smaller spatial scales, the most specialized species of the network 

have more interacting partners than at larger spatial scales. Yet the shape of the degree 

distribution is preserved. e,f, The top-ranked model describing the degree distribution of 

each ecological network across the area range for regional (e) and biogeographical (f) 
domains. Although the degree distribution of most ecological networks was characterized by 

the same function along the range of areas, the specific shape of each function changed with 

area (Supplementary Fig. 4). Area values were rescaled between 0 and 1.
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Table 1

Parameter estimates for the fit of the extended power model (N = cA(zA−d)) to the network properties analysed. 

Mean and standard deviation of d and z are shown for each network property analysed in both spatial domains

Network property Parameter Spatial domain

Regional Biogeographical

Species d 0.08 ± 0.03 −0.38 ± 0.78

z 0.48 ± 0.12  0.05 ± 0.41

Links d 0.07 ± 0.03 −0.19 ± 0.13

z 0.72 ± 0.10  0.41 ± 0.63

Links per species d 0.05 ± 0.11 −0.31 ± 0.57

z 0.26 ± 0.10  0.08 ± 0.11

Indegree d 0.04 ± 0.12 −0.27 ± 0.22

z  0.31 ± 0.13  0.07 ± 0.19

The model fit was performed on the original data in arithmetic space and not on the rescaled properties.
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