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protein and two distinct pegRNAs, the authors were able to replace an endogenous DNA sequence, situated between two PAM 
recognition sites, by a DNA sequence of choice.
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In this study, a multi-omics quantitative integrative analysis of lignin biosynthesis is performed. The authors perturbed 21 lignin 
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concentrations and a variety of wood properties, including lignin content and composition, tree growth, wood density and strength, and 
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* Walton et al., Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 368:290-296 (2020)
The paper describes two newly engineered Streptococcus pyogenes Cas9 variants (SpCas9), with altered or nearly abolished PAM 
requirements. The first reported variant, namely SpG, recognizes an expanded set of NGN PAMs whereas the further evolved second 
variant, called SpRY, has nearly abolished PAM requirements, by recognizing NRN and to a lesser extent NYN PAMs. The authors not 
only tested the nuclease activities in human cells, but furthermore demonstrated the applicability of their variants in base editing.
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Abstract

The high economic value of wood requires intensive breeding towards multipurpose biomass. 

However, long breeding cycles hamper the fast development of novel tree varieties that have 

improved biomass properties, are tolerant to biotic and abiotic stresses, and resilient to climate 

change. To speed up domestication, the integration of conventional breeding and new breeding 

techniques is needed. In this review, we discuss recent advances in genome editing and Cas-DNA-

free genome engineering of forest trees, and briefly discuss how multiplex editing combined with 

multi-omics approaches can accelerate the genetic improvement of forest trees, with a focus on 

wood.
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Introduction

Wood has been used for centuries as construction material, a source of energy, and 

for the production of pulp and paper. More recently, woody biomass is also considered 

as a promising resource for biorefineries that convert the polysaccharide fraction into 

fermentable sugars and the lignin fraction into aromatic building blocks for the chemical 

industries [1, 2]. The continuous demand for wood from plantation forestry requires the 

development of highly productive tree varieties at industrial scale. Ideally, such trees have 

optimized wood quality, are resilient to climate change, have an excellent nitrogen and water 

use efficiency (allowing them to grow on marginal soils), and are armed to resist abiotic 

and biotic stresses. Because tree breeding cycles are slow, due to the long generation times 

typical for trees, and because wood quality traits can often be tested only after a decade of 

growth in the field - the genetic improvement of trees needs to be accelerated by combining 

conventional breeding with new breeding techniques (NBTs).

The large genetic and phenotypic diversity that is naturally present within populations forms 

the basis for targeted breeding strategies. For example, a study of 1,100 undomesticated 

Populus trichocarpa trees revealed a wide variability in lignin content and composition, 

resulting in large differences in the total yield of fermentable sugars upon saccharification 
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[3], opening up possibilities for breeding tree varieties tailored for the biorefinery. When 

the genes causal to a trait are known, specific alleles can be sought in natural populations 

and integrated into the breeding program [4, 5]. In the past decades, biomass traits have 

also been improved using genetic engineering strategies, which typically rely on the 

overexpression or silencing of one or a few genes. Although transgenic lines that stably 

express a transgene can be identified [6], it is more difficult to identify stable lines 

with intermediate levels of RNA interference (RNAi)-mediated gene downregulation, as 

RNAi depends on the expression levels of both the endogenous gene and the transgene. 

For example, intermediate levels of RNAi-mediated downregulation of CINNAMYL 
ALCOHOL DEHYDROGENASE (CAD), CAFFEIC ACID-O-METHYLTRANSFRASE 
(COMT) and CINNAMOYL-CoA-REDUCTASE (CCR), all genes involved in lignin 

biosynthesis, resulted in unequal reduction in the expression of these genes throughout 

the xylem in poplar, as witnessed by the patchy red xylem coloration that is caused by 

the downregulation of these genes [7–10]. Recently, the use of the clustered regularly 

interspaced palindromic repeats (CRISPR)/Cas systems has overcome this limitation and 

has become the method of choice for precise, stable and heritable genome engineering in 

plants. In addition, multiplex CRISPR strategies allow to precisely engineer individual or 

multiple gene family members in a single effort, a goal which was previously cumbersome 

to achieve via classical technologies [11]. In this review, we focus on recent advances in 

gene editing and Cas-DNA-free transformation approaches, and briefly discuss the potential 

of integrating CRISPR systems and multi-omics approaches to accelerate research and 

breeding in the forestry landscape, as visually represented in Figure 1.

Focus point 1: Adapted and advanced gene editing tools

Use of Cas9 for allele-specific editing

To date, the predominantly used CRISPR/Cas system in plants is the CRISPR/Cas9 system. 

By employing one single effector endonuclease (e.g., Cas9), this CRISPR system introduces 

blunt double-strand breaks (DSBs) in the DNA [12], often resulting in either identical 

(homozygous) or distinct (heterozygous) mutations in both targeted alleles. Biallelic 

knockout mutations are often desired in reverse genetic studies to discover the function 

of genes, but frequently provoke dramatic phenotypes that interfere with downstream 

applications [13, 14]. In this context, the creation of mono-allelic variants or leaky alleles 

can be advantageous. Forest trees, having highly heterozygous genomes, make good targets 

for such editing approaches, by offering plenty of options for allele-specific guide RNA 

(gRNA) design. De Meester et al. illustrated the potential of differential editing of the two 

alleles by targeting the lignin-biosynthesis gene CCR2 in P. tremula x P. alba [14]. In their 

study, a strong yield penalty was observed in all biallelic knockout lines. However, one 

transgenic line harbored one null allele and one weak (or leaky) allele containing a 3-base 

pair deletion that led to the expression of a CCR2 protein with reduced activity, resulting 

in normal tree growth, along with a reduced lignin content and an associated increase in 

saccharification efficiency. Lines that were heterozygous knockout for either of the two 

CCR2 alleles had wild-type lignin levels, indicating that the wild-type CCR2 alleles were 

haplosufficient and that it was the specific combination of one knockout allele with the 

particular weak allele that resulted in the beneficial phenotype [14].
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Working with highly heterozygous species also holds the possibility of either finding or 

even aiming for monoallelic knockout mutants in haploinsufficient genes. In comparison 

to dosage effects achieved by RNA interference (RNAi), those achieved by CRISPR are 

stable. Monoallelic gene knockouts in a haploinsufficient gene were already demonstrated 

in one of the first CRISPR studies in poplar, in which the PHYTOENE DESATURASE 8 
(PDS8) gene of P. tomentosa was targeted [15]. The authors identified a monoallelic mutated 

line, which, unlike the biallelic knockout mutants that were white, exhibited a pale green 

phenotype, implying a gene dosage effect.

Taken together, allele-specific editing can easily be achieved in heterozygous species, 

including forest trees, and can be exploited to achieve favorable phenotypes.

Use of different Cas systems in trees

Since the development of CRISPR/Cas9 as a genome engineering tool, the original 

Streptococcus pyogenes-derived SpCas9, which utilizes a simple 5’-NGG-3’ protospacer 

adjacent motif (PAM), is widely used in plant genome engineering. Whilst SpCas9 is 

certainly useful for standard applications, other Cas systems have been investigated in 

plants as well, to overcome vector size limitations or PAM restraints. One example is 

Cas12a (formerly known as Cpf1), which creates staggered cuts and utilizes T-rich PAM 

sequences, such as 5’-TTTV-3’ [16, 17]. Recently, three variants of Cas12a [AsCas12a 

(Acidaminococcus sp. BV3L6), LbCas12a (Lachnospiraceae bacterium ND2006), and 

FnCas12a (Francisella tularensis subsp. novicidain U112)] were employed to edit the PDS8 
gene of P. alba × P. glandulosa [18]. Using a multi-gRNA approach, editing efficiencies of 

up to 70% were achieved by employing the AsCas12a editor, which is comparable to the 

editing efficiencies observed for SpCas9 [19]. The use of these different Cas12a variants 

broadens the possibilities for gene editing in trees by offering a wider target search window 

due to the distinct PAM requirements as compared to SpCas9. By further relaxing or even 

eliminating PAM requirements of the genome editor, as achieved by the SpG and SpRY Cas 

systems [20, 21], even more gene editing opportunities can be created. These advantages 

come notably into play when precise gene editing systems such as base editing are applied, 

which require exact positioning of the gRNA on the target DNA.

Base editing in trees

Introduced in 2016, base editing allows the targeted mutagenesis of specific base pairs at 

often higher efficiencies than achieved by homology-directed repair [22]. Whilst the first 

base editors allowed the conversion of cytosine to thymine (C–T), nowadays, A–G base 

transitions [23], C– A transversions [24], and C–G transversions [25] can be achieved, with 

various target windows. Furthermore, subvariants of base editors, such as dual-base editors 

– which are capable of simultaneously generating C–T and A–G conversions [26] –, RNA 

base editors [27], or organelle DNA editors such as mtDdCBE which is based on zinc 

finger technology [28], were added to the base editing toolbox. From this wide collection, 

only C–T and A–G conversions, achieved by cytosine base editors (CBE) and adenine 

base editors (ABE), respectively, as well as C–G transversions, achieved by C–G base 

editors (CGBEs) have been tested in woody plants. Li et al. demonstrated the applicability 

of ABE and CBE in P. tremula x P. alba, by targeting 4-COUMARATE: CoA LIGASE1 
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(4CL1), a gene involved in lignin biosynthesis, and PII, involved in coordinating nitrogen 

and carbon assimilation [29]. In agreement with expectations, the monoallelic 4cl1 mutant 

lines did not display any altered phenotype, whereas the biallelic mutants showed the 

red-xylem phenotype previously reported in 4cl1 mutants [30], reflecting the altered lignin 

composition. In the same year, C–G base editors (CGBEs) were successfully used to edit 

PDS1 and PDS2 in the same poplar hybrid [31].

Prime editing

Besides base editing, another precise CRISPR-based editing method is prime editing (PE). 

A prime editor is a fusion between a Cas9 nickase and a reverse transcriptase [32]. Different 

to base editors, PE enables generating all 12 possible base-to-base conversions, as well 

as (small) specific insertions and deletions. This allows not only to generate knockout 

alleles, but also to intentionally engineer weak alleles, which can prove to be advantageous 

for certain traits as described above for CCR2. Furthermore, PE enables the intentional 

introduction of cis-regulatory elements in the promoters of genes of interest. The intrinsic 

heterozygosity, naturally encompassed within trees, allows the design of prime editing 

gRNAs (pegRNAs) that would specifically redirect the expression of a single allele, yielding 

ectopic gene expression, while maintaining the endogenous gene functionality via the other, 

non-edited allele.

In plants, PE was first demonstrated in rice and wheat protoplasts, but with low efficiency 

[33]. By using two pegRNAs that encode the same edit in trans (paired pegRNA approach), 

the editing efficiency could be increased up to 17-fold in rice protoplasts as compared to 

classical PE [34]. Furthermore, the low editing efficiency was also addressed by Anzalone 

et al. in their recent advancement of the PE system, the so-called twin-PE, which they 

developed in mammalian cells [35]. By utilizing the prime editor protein, together with two 

distinct pegRNAs, the twin-PE system can replace an endogenous DNA sequence, situated 

between two PAM recognition sites at the opposing strands of genomic DNA, by a DNA 

sequence of choice.

Furthermore, the twin-PE system, used together with the site-specific recombinase Bxb1, 

allows integrating large DNA cargos of up to 5.6 kb into the genome, and targeting 

chromosomal rearrangements, as illustrated by a 40-kb inversion in human cells [35]. In 

trees, the twin-PE system could be used to reallocate the promoter of a gene to the coding 

sequence of another gene by a targeted heterozygous reciprocal translocation, yielding 

potentially favorable ectopic gene expression of a single allele of the targeted gene. Once 

established in trees the (twin-)PE system will enable the tuning of enzyme activities, the 

incorporation of novel genes and the introduction of targeted chromosomal rearrangements 

to enhance the genetic improvement of forest trees.

The combo system

Next to genome editing applications, CRISPR systems have been repurposed for regulating 

gene expression in plants [36, 37]. Recently, the CRISPR-Combo system, a tool that allows 

the simultaneous editing and activation of genes, was developed [38]. This system relies 

on a single Cas9 protein and an engineered gRNA that recruits transcriptional regulators. 
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Interestingly, the authors correlated gRNA length with the ability for DNA cleavage 

(i.e. mutagenesis), and demonstrated that 17- to 20-nucleotide (nt) gRNAs enable DSB 

formation, while 14- to 16-nt gRNAs bind the target DNA but prohibit cleavage of the target 

strand [39]. Using the CRISPR-Combo system, Pan and co-authors successfully edited 

the P. trichocarpa 4CL1 gene and simultaneously activated the morphogenic regulator-

encoding gene WUSCHEL (WUS), to accelerate root and shoot initiation [38]. Given 

that transformation and regeneration of many tree species or elite clones have not yet 

been optimized, the application of such a Combo system could be particularly important 

to improve specific traits, while simultaneously enhancing the regeneration capacity of 

recalcitrant tree species or elite varieties.

Focus point 2: Cas-DNA-free genome engineering

Classical gene editing strategies often rely on the stable integration of Cas-encoding DNA 

together with a selectable marker gene into the plant genome. Although these methods allow 

the swift selection of transformants on selective medium, together with highly efficient gene 

editing, the continuous presence of the gene editing toolbox (Cas nuclease and gRNA) in 

the genome of the plant is not desired, as it might generate off-target mutations leading 

to mosaicism when sequences are present in the plant that are highly similar to the target 

sequence [40, 41]. In addition, the field-testing and commercialization of gene-edited trees 

containing Cas-encoding DNA may not be allowed because the presence of the Cas gene 

combined with the ability of the gene to spread to wild relatives may be seen as a risk factor 

for potential environmental harm [42–44]. After all, the potential introduction of DNA, 

encoding the Cas nuclease and gRNA, into natural populations could alter the frequency of 

the edited allele in these populations, as the Cas nuclease may dominantly edit both alleles 

in each successive generation. Although engineering sterility is a promising way to avoid 

the spread of Cas-encoding DNA [45, 46] the removal of these sequences from the genome 

of the plant will facilitate gaining regulatory approval for the unconfined field release and 

commercialization of gene-edited trees [44, 47].

Transient delivery of CRISPR DNA

The elimination of transgenes from the plant genome is readily achieved via Mendelian 

segregation in sexually propagated crops with short generation times [48, 49]. Unless 

strategies to promote early flowering are utilized, this method is hardly applicable for 

clonally propagated plants and/or perennials that require years to reach sexual maturity. 

Moreover, many commercially relevant tree species are highly heterozygous, and the sexual 

reproduction of these plants would break up their genetic constitution, leading to the loss of 

the desired characteristics in the progenies [50].

To overcome these issues, transient delivery methods gained interest [51]. These methods 

include Agrobacterium-mediated transformation followed by regeneration on non-selective 

medium, polyethylene glycol (PEG)-mediated transfection of protoplasts, and the delivery 

of transgenes via particle bombardment [52–55]. These methods have been successfully 

used in trees but often suffer from low editing efficiencies. Moreover, the regeneration of 

plants from protoplasts can induce genome instability resulting in aneuploidy, while the 
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delivery via particle bombardment is known to cause genomic rearrangements [56, 57]. 

Recently, DNA has also been delivered into plant cells via a variety of nanostructures that 

passively traverse through the plant’s membrane [58–61]. Even though this technique is still 

in its infancy and the delivery is currently limited to ~12-kb plasmids, efficient delivery 

and expression of fluorescent markers was already achieved in tobacco, arugula, wheat and 

cotton cells, without transgene integration [61, 62].

Although the transient expression of Cas-encoding DNA is a promising strategy to develop 

Cas-free gene-edited plants, an important drawback inherent to all DNA delivery methods 

comes from the potential incorporation of DNA fragments into the genomic DNA. After all, 

endogenous plant nucleases degrade the delivered DNA, resulting in fragments that might 

integrate into on- or off-target DSBs [63]. Vector DNA integration has been reported for 

both PEG-mediated transfection of protoplasts and the biolistic delivery of transgenes [53, 

56, 64, 65].

DNA-independent genome editing

Several strategies have been developed to overcome the integration of vector DNA by 

switching to delivery methods that are completely free of foreign DNA [51, 66, 67]. 

One of the most popular methods is the delivery of Cas proteins together with their 

gRNA as in vitro assembled ribonucleoprotein (RNP) complexes. Typically, RNPs can be 

transfected into plant protoplasts via PEG-mediated transfection or electroporation, or into 

calli via biolistic delivery. The use of RNPs to achieve DNA-free genome editing has been 

demonstrated in a variety of plant species [51, 66, 67], including a limited number of woody 

species, such as grapevine, rubber tree, apple, chestnut and pine [68–72]. However, no 

regeneration from gene-edited cells has been reported yet. The regeneration of protoplasts 

is technically challenging and underdeveloped for most plant species, although regeneration 

from protoplasts of the model tree P. tremula x P. alba has been described [73].

One alternative to achieve Cas DNA-free genome editing in woody species exploits the 

delivery of RNA templates by plant viruses. Typically, the use of virus-mediated gene 

editing in plants is limited due to restrictions in cargo size, as large foreign sequences 

make the viral genome unstable, resulting in deletions during replication [74, 75]. Recently, 

this technical barrier has been overcome by taking advantage of the flexible filamentous 

structure of potato virus X (PVX) to simultaneously deliver Cas nucleases and gRNAs [76]. 

In addition, efforts are made to completely alleviate cargo size restrictions by exploiting 

negative strand RNA viruses, which generally have large cargo capacities and high genomic 

stability. Two studies report the successful delivery of Cas nucleases and gRNAs, along 

with highly efficient gene editing, via the sonchus yellow net rhabdovirus (SYNV) and the 

barley yellow striate mosaic virus (BYSMV) [77, 78]. Interestingly, RNA viruses, like PVX, 

SYNV and BYSMV, lack a DNA-replication phase, and therefore do not integrate into the 

host genome. Regenerated plants from infected tissues can thus be considered free of foreign 

DNA. Although this method promises to be extremely powerful, it is currently limited by 

the restricted host range of these engineered viruses. Future efforts should therefore be 

focused on the engineering of viruses with a naturally wide host range, together with the 
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development of hypercompact nucleases, such as the recently discovered CasΦ [79], which 

could overcome the cargo size limitations.

Focus point 3: Integration of CRISPR systems and multi-omics approaches

Today, multiplex editing approaches allow the simultaneous and stable engineering of 

multiple genes [18, 80–83]. To accelerate wood domestication in forest trees, efforts must be 

centered around elucidating the most promising combination of targets. One way to achieve 

this builds on the wealth of reverse genetic studies that have investigated the function 

of individual genes [84–86]. Alternatively, promising genes can be derived from multi-

omics approaches. For example, Wang and co-authors combined transcriptomic, metabolic, 

proteomic, and phenomic data of various lignin biosynthesis mutants in P. trichocarpa into a 

mathematical model to predict the wood properties of poplar upon the engineering of one or 

multiple lignin pathway genes [87]. The creation of multiple allelic variants in combinations 

of these genes by multiplex genome editing enables the iterative testing of this mathematical 

model and has the potential of engineering wood quality traits in poplar beyond what is 

achievable using single gene modification. Field evaluations will be essential given that most 

of the reverse genetics studies have been performed in greenhouses, and given the large 

differences in phenotypes between greenhouse- and field-grown trees [88].

An alternative source of target genes for (multiplex) genome engineering comes from the 

identification of quantitative traits loci (QTLs) through genome-wide association studies 

(GWAS) [89]. QTL effects are often caused by single nucleotide polymorphisms (SNPs) that 

affect gene expression levels or protein activities within a wild population. However, the 

contribution of individual SNPs to the overall phenotype is often limited, and highly depends 

on the genotype and the environment [90]. Regardless of their small effects, a GWAS does 

identify genes that play a causal role in establishing the trait [91–94]. Through the use of 

multiplex genome editing in elite germplasm, a large number of novel allelic variants at 

multiple QTLs can be generated, as exemplified in a model maize variety for yield genes 

[95]. The subsequent phenotypic screening of the obtained gene-edited population in the 

field will allow identifying trees with novel allelic combinations that might outperform 

the parental clone (Figure 1). As such, multiplex editing might become a powerful tool to 

accelerate future tree breeding programs.

Concluding remarks and future perspectives

In this review we highlighted three focus points that could stimulate the integration of 

gene editing with conventional breeding to accelerate the domestication of wood quality. 

Reverse genetic studies and GWAS will aid in selecting suitable targets for (multiplex) 

engineering. As forest trees are characterized by high levels of heterozygosity, sequence 

information of both haplotypes will be required to design effective gRNAs. Nowadays this 

can be achieved via whole-genome sequencing or RNA-seq of tissues known to express 

the gene(s) of interest. Once sequence information is at hand, the development of advanced 

gene-editing tools in trees, such as base and PE, with potentially alleviated PAM restrictions, 

will facilitate the editing of one or both alleles in these highly heterozygous genotypes. 

In addition, efforts should focus on the development of protocols that allow the efficient 
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transformation and regeneration of elite genotypes. Transformation technologies which 

avoid the integration of Cas-encoding DNA into the host genome might alleviate regulatory 

concerns on the unconfined field release of CRISPR-engineered trees. In the European 

Union, gene-edited plants are still considered as genetically modified organisms (GMO) and 

must comply with the GMO directive 2001/18/EC. From a scientific point of view, there are 

no arguments to distinguish gene-edited plants containing small deletions or insertions from 

plants obtained via conventional breeding or classical mutagenesis. Biosafety regulations 

should therefore be focused on the product and evaluate its risks/benefits, irrespective of 

the breeding method used [96, 97]. In the face of climate emergency and the exploitation 

pressure on our native forests, the integration of gene-editing and conventional breeding 

to speed up wood domestication should not further be delayed, and biosafety regulations 

should be based on science, not politics.
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Figure 1. Accelerating the genetic improvement of forest trees through genome editing
The genetic variability that is naturally present within forest trees represents an important 

resource for conventional breeding. Using selective crossings and phenotypic selection of 

progenies, breeders combine existing allelic variation to generate elite germplasm with 

favorable biomass traits and tolerance to biotic and abiotic stress. The use of new breeding 

techniques (i.e., base editing, prime editing, or editing using Cas variants with relaxed 

PAM requirements), in combination with multiplexed editing approaches, will allow to 

create combinations of novel alleles at multiple target loci that were prioritized based 

on prior reverse genetics or GWAS research. To anticipate unconfined field release and 

commercialization, gene editing methods that avoid the integration of Cas-encoding DNA 

into the host genome are needed. Phenotyping and genotyping of the obtained gene-edited 

population in the field allow the identification of genetically improved trees that outperform 

their parental clone. Figure 1 was created with BioRender.com.

Anders et al. Page 15

Curr Opin Plant Biol. Author manuscript; available in PMC 2023 January 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Focus point 1: Adapted and advanced gene editing tools
	Use of Cas9 for allele-specific editing
	Use of different Cas systems in trees
	Base editing in trees
	Prime editing
	The combo system

	Focus point 2: Cas-DNA-free genome engineering
	Transient delivery of CRISPR DNA
	DNA-independent genome editing

	Focus point 3: Integration of CRISPR systems and multi-omics approaches
	Concluding remarks and future perspectives
	References
	Figure 1

