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Abstract

This paper presents a bio-inspired event-driven neuromorphic sensing system (NSS) capable of 

performing on-chip feature extraction and “send-on-delta” pulse-based transmission, targeting 

peripheral-nerve neural recording applications. The proposed NSS employs event-based sampling 

which, by leveraging the sparse nature of electroneurogram (ENG) signals, achieves a data 

compression ratio of >125×, while maintaining a low normalized RMS error of 4% after 

reconstruction. The proposed NSS consists of three sub-circuits. A clockless level-crossing (LC) 

ADC with background offset calibration has been employed to reduce the data rate, while 

maintaining a high signal to quantization noise ratio. A fully synthesized spiking neural network 

(SNN) extracts temporal features of compound action potential signals consumes only 13 μW. An 

event-driven pulse-based body channel communication (Pulse-BCC) with serialized address-event 

representation encoding (AER) schemes minimizes transmission energy and form factor. The 

prototype is fabricated in 40-nm CMOS occupying a 0.32-mm2 active area and consumes in 

total 28.2 μW and 50 μW power in feature extraction and full diagnosis mode, respectively. The 

presented NSS also extracts temporal features of compound action potential signals with 10-μs 

precision.
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I Introduction

THE peripheral nervous system (PNS) can be seen as a “highway” for propagating neuron 

firings, i.e., action potentials (AP), for the bidirectional communication between the central 

nervous system (CNS) and various organs. The electroneurogram (ENG) can be measured 

with a nerve cuff or a neural probe surrounding or penetrating the peripheral nerves, 

respectively. Nerve ENG provides rich clinical information for diagnosis and can be the 

source of modulating human health as electroceuticals [1][2]. Decoding of the firing pattern 

of afferent compound action potentials (CAPs), the result of summation of many APs from 

the individual axons in a nerve trunk, holds the promise for indirect sensing of clinically 

relevant information, e.g., inflammation status or glucose levels, which can be employed in 

future electroceutical closed-loop applications [3]. Next, the CAP peak-to-trough duration 

and nerve conduction velocity (NCV) [4] are widely used diagnostic tools for various 

neuropathies. The requirement on temporal precision for such measurements is strict since 

the CAPs typically last for approximately one millisecond. This precision is especially 

challenging for NCV studies [5], which measures the time difference between peaks of 

two CAPs recorded from two locations on the same nerve, as shown in Fig. 1. To achieve 

high accuracy of NCV with a miniature nerve implant, temporal precision of the recording 

should be in the order of 10’s of μs, since NCV of a myelinated nerve can be up to 

120 meter/s. Better temporal precision of the recording allows the volume of the nerve 

implant (e.g., nerve cuff) to be further miniaturized. To achieve such temporal precision, 

the analog-to-digital converters (ADCs) in a conventional neural recording system need to 

have a sampling rate of 10’s of kSample/s (kSps), which is 10-100× higher compared to the 

sampling of other electrocardiogram (ECG) signals. This increases the energy consumption 

not only in wireless transmission, but also in local processing, storage, and transportation of 

the data.

In order to have high spatial selectivity, neural implants for peripheral nerves should be 

placed very close to the surface (or inside) of the nerve, as illustrated in Fig. 1. To avoid 

nerve tissue damages, such nerve implants should have strict volume and energy constraints. 

A nerve implant with a volume in the millimeter-scale is highly preferred. Since there is no 

sufficient volume for a battery, the electronic system should consume low energy well below 

100 μW, to enable wireless power transfer.

Fig. 2 shows two conventional architectures of implantable sensing systems, which typically 

consist of one or multiple channels of analog front-end (AFE), ADC, digital signal 

processing (DSP), memory, and a wireless transmitter (TX). These architectures are based 

on Nyquist sampling, but one replies on remote computation (Fig. 2(a)) and another one 

has embedded local computation (Fig. 2(b)). The first architecture is suitable for diagnosis 

purposes. The high-precision raw sensor data sampled by the Nyquist ADCs are sent 

wirelessly to a remote hub to perform further data processing. However, such “frame-based” 

sampling produces a large amount of data from neural recording, which will consume high 

wireless transmission energy [6][7]. In addition, performing the computation remotely may 

introduce potential privacy concerns.

He et al. Page 2

IEEE J Solid-State Circuits. Author manuscript; available in PMC 2023 February 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 2(b) shows an alternative approach based on near-sensor local computation, e.g., 

feature extraction or classification, to reduce the burden on data transmission. However, 

this approach requires power- and volume-hungry computation and storage hardware, which 

is not affordable with a millimeter-scale nerve implant. In addition, such architecture may 

not be suitable in practice, if raw data are not available in case personalization or detailed 

diagnosis is needed. Reference [7] uses a local processor to extract ECG signal features, but 

it requires a relatively large memory (46 kByte) and high-power consumption (~60 μW) for 

detecting only the peak of the ECG signal, i.e., the R wave. Nevertheless, full ECG features 

(P, QRS and T waves) are still crucial for accurately detecting many cardiac abnormalities, 

e.g., arrhythmias.

ENG signals have very sparse activity (typically <10 CAPs per second), but a high 

temporal resolution is still required. High redundancy will be generated, if these signals 

are sampled with conventional high sampling rate Nyquist ADCs, thus leading to a poor 

system efficiency. Inspired from biology [8] [9], the energy consumption of information 

processing and transportation can be significantly reduced if only the changes (i.e., delta) 

of the signal are processed, while information can still be recovered on the reception side 

with high resolution. One example of such a sensing system is our retina, whose neurons 

only fire when detecting temporal changes from photoreceptors. The action potentials fired 

from retina neurons are transmitted through an optic nerve with quite limited data capacity 

and energy budget, but our brain (the receiver of information) has no problem reconstructing 

high-quality images. This concept is also suitable for implantable neural sensing systems 

with very limited energy sources.

Fig. 3(a) illustrates one example waveform of a CAP. Instead of processing signals with a 

constant clock in every frame, the system is active only if there are CAPs. This significantly 

reduces the data rate, and thus the requirements of the hardware as well as the energy 

consumption. Furthermore, the temporal feature can be well preserved, without being 

limited by the sampling grid of Nyquist ADCs. To implement such bio-inspired sampling 

mentioned above, an analog to spike converter (ASC) based on level-crossing ADCs (LC 

ADC) can be employed to perform “delta encoding” [10], which reports (up or down) events 

when changes larger than a certain threshold are detected. As shown in Fig. 3(a), the ASC 

generates UP or DN pulses when the CAP signal crosses one quantization (or threshold) step 

with a positive or negative slope. This greatly reduces the temporal redundancy.

Different implementations of such delta modulation have also been presented in other low-

power neural recording systems. In [11], a Δ-ΔΣ analog front-end architecture is proposed, 

but a higher over-sampling ratio (for noise-shaping) significantly increases the data rate. 

In [12], an analog-based delta modulator is implemented prior to a Nyquist SAR-ADC but 

requires a large capacitor area for implementing analog differentiators and a programmable 

threshold for optimum spike detection. Furthermore, both approaches in [11] and [12] 

require a precise external clock based on an off-chip crystal, increasing both form factor and 

power consumption.

Fig. 3(b) shows this proposed neuromorphic sensing system (NSS) concept [13]. It includes 

an ASC for delta encoding, a spiking neural network (SNN) for local computation, and a 
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pulse-based transmitter tailored for low-energy event-driven transmission. The event-based 

nature of the NSS not only improves the energy efficiency by exploiting the sparse nature of 

CAP signals, but also avoids a power-hungry system clock generation and synchronization 

circuits. Most importantly, the temporal precision is no longer limited by the fixed sampling 

grid of the clock.

The proposed NSS is designed to support dual-mode operation: full diagnosis and feature 

extraction mode. The capability of dual-mode operation is crucial for implantable sensing 

devices since detailed diagnosis is required in case of urgent situations, e.g., implant failure. 

When the NSS is in the feature extraction mode, only the extracted temporal features (i.e., 

labels) are transmitted out for energy saving, or they can be decoded and fedback to the 

implant stimulator to perform closed-loop neuromodulations. Fig. 3(a) shows that three 

temporal features can be extracted from CAPs, i.e., depolarization (D), repolarization (R) 

and hyperpolarization (H). They can be detected from the polarity and density of the spike 

trains [14]. When a full diagnosis is required, the NSS programs the ASC to have higher 

precision and the pulse-based TX to operate at a higher event transmission rate, so that raw 

CAP signals can be transmitted in full detail.

The rest of this article is organized as follows. Section II discusses the proposed architecture 

of NSS and its design trade-off. Section III describes the implementation of the circuits. 

The measurement results will be shown in Section IV. Finally, Section V presents the 

conclusions.

II Proposed Architecture and Design Trade-Offs

This section discusses in detail the proposed NSS architecture. The design trade-off between 

quantization error and event transmission rate will also be provided.

A Architecture Overview

Fig. 4 shows more detail of the presented NSS, including two ASCs, an SNN and a 

pulse-based body channel communication (BCC) PA. This work focuses on the sampling, 

processing and transmission of the event-driven neural sensing, and the AFE front-end (i.e., 

low-noise amplifier and band-pass filter) of the neural interface is not included. This work 

demonstrates two channels, which is the minimum channel number required for performing 

a conductive velocity study. The number of sensing channels can be easily scaled in the 

proposed NSS, based on the requirements and constraints of different clinical use cases. 

Two ASCs are implemented as level-crossing ADCs (LC-ADCs). LC-ADCs perform delta 

encoding, so they also have better immunity to low-frequency noise and are able to reject the 

input DC offset, compared to other ADCs.

Conventional neural network (NN) architectures either cannot support event-driven 

operation [15], or use analog-intensive neurons and synapses which are sensitive to PVT 

variations [16], and both still consume relatively high power (100’s of μW). Asynchronous 

event-driven processing allows the NN to be active only if events occur. Therefore, a 

low-power and fully synthesizable SNN has been chosen as the local data processor in 

this work (details to be discussed in Section III-B). Inspired by natural computing in the 
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brain, neuroscientists modeled synaptic interactions between neurons, considering the time 

of spike firing [17]. Compared to a conventional neural network, the input of SNNs is in the 

rate of events instead of a digitized amplitude and the output of SNNs is also represented by 

asynchronous events. Four outputs of two ASCs (UP1, DN1, UP2, and DN2) are connected 

to the SNN which is only active when there are CAPs. Thanks to the reduced temporal 

redundancy, the memory needed for the SNN to extract the signal features and generate 

corresponding labels is reduced by 2-10×. Note that this memory is distributed in SNN 

neurons, which also reduces the energy required for memory access.

Since the SNN mimics biological neural network and processes information in an 

asynchronous spike format, it can directly use the outputs from LC-ADCs, i.e., up or down 

spikes. If conventional clocked ADCs are adopted, an extra digital translation circuit and 

an clock generation are required, which increases hardware complexity, power consumption 

and potentially degrades the temporal resolution.

In feature extraction mode, the SNN inference core can generate three temporal labels 

(D-R-H), which are then encoded with a serialized form of address-event representation 

(AER) [18]. In full diagnosis mode, four outputs from two ASCs are directly encoded. 

The AER output is further encoded with Manchester code before the BCC transmission, 

minimizing the residue charge in the tissue (to be detailed in Section III-C).

B System Analysis and Design Trade-offs

To achieve the targeted temporal and amplitude resolution in neural recording, conventional 

Nyquist ADCs are typically designed with a high dynamic range up to 10-bit resolution 

and sampled with high frequency up to 30 kSps [19]. A large amount of data needs to be 

transferred to an external device wirelessly, resulting in a high data rate of up to 300 kbps 

each channel in full diagnosis mode. As reported in [20], the data transmission consumes 

more than 90% of the total system energy. The proposed NSS reduces the data rate by 

leveraging the sparse nature of CAP signals.

For a Nyquist sampling system, the ADC’s clock defines the time stamps and thus the 

precise timing of the rest of the system (including wireless link) is not critical because 

the time stamps are already defined together with the data. However, in this clock-less 

event-based sampling system, the time stamps are set based on the timing of the received 

wireless data, i.e., time itself represents the time stamps, and thus timing variation in the 

entire chain affects temporal precision. The system timing resolution also determines the 

signal quality after reconstruction. The timing resolution can be limited by many parts of 

the NSS. One dominant limitation is the maximum event transmission rate the NSS can 

achieve, or equivalently how fast two events can be transmitted consecutively. If one event 

packet, i.e., an event with serial address-event representation, has a long length in time, 

the transmission of the following event must be delayed, which equivalently introduces a 

time-domain quantization error.

To minimize the length of event packets (or maximize the event transmission rate), the bit 

period must be reduced. However, this requires a higher speed of the Pulse-BCC PA, which 

also consumes more power. To understand the relation between the maximum required event 
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transmission rate and the signal quality after reconstruction, analysis based on a numerical 

simulation are performed and validated. In this analysis, a synthetic action is converted to 

UP/DOWN events by the ASC. Note the event rate is coupled to the number of bits (or the 

quantization steps) of the ASC, i.e., finer quantization steps produce more events.

Since the SNR of recorded APs in-vivo is typically limited to 20 dB [21] due to biological 

noise and wide signal bandwidth, the target of the maximum signal-to-quantization-noise-

ratio SQNR is set to 25 dB in this work. Based on the analysis provided in [22],

SQNR = − 20log10 δ * fSIG − 14 . 2, (1)

where δ is the timing uncertainty of the event-based system; fSIG is the signal bandwidth, 

which is ~1 kHz for the nerve’s CAP signal. To achieve an SQNR of 25 dB, the system 

timing uncertainty should be less than 10 μs. To meet this timing uncertainty requirement, 

the speed of the LC ADC, the latency of the SNN and the length of the event packet need to 

be optimized (to be detailed in Section III) to ensure the NSS does not miss events when the 

input signal slope is large.

Fig. 5 shows the relation between the required timing resolution and the simulated 

SQNR, which matches well with the theoretical results from Eq. (1). Fig. 5 also shows 

a simulated data rate reduction compared to conventional Nyquist sampling and frame-based 

transmission. The firing rate of CAP is 10 Hz, and the AER overhead has been included for 

the event transmission. It shows that the proposed NSS can achieve higher than 200× of data 

reduction, while keeping SQNR above 25 dB.

III Circuit Implementation

Three circuit innovations will be discussed in this section: (1) a background offset mitigation 

technique is proposed to enhance the offset tolerance of ASCs; (2) a fully synthesized 

low-power SNN is introduced, which is capable of on-chip temporal feature extraction; (3) a 

power amplifier (PA) with charge balancing and AER encoder for event-driven Pulse-based 

Body Channel Communication (Pulse-BCC) is introduced.

A LC ADC with the Offset Calibration

Several area- and energy-efficient LC ADCs have been presented in [23–25]. An adaptive 

sampling scheme has been presented in [23] and achieves low power consumption (61 nW 

in [23]). However, its SNDR (35 dB) is limited due to the comparator offset. Ref. [24] 

implements an offset calibration and improves its SNDR, but also at the same time increases 

chip area. In [25], a two-tier approach has been proposed to achieve high SNDR (up to 57 

dB) by applying more than ten comparators to track the analog signal with fine steps, at 

the expense of high power and large chip area. To mitigate the comparator offset without 

significantly increasing area, a new background comparator offset calibration is explored in 

this work.

The block diagram of the LC ADC is shown in Fig. 6. The ADC continuously monitors 

the input signal and generates an UP or DN event when the input change crosses a +1 
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LSB or -1 LSB threshold, respectively. To do so, the analog input signal is diminished by 

a voltage generated by a digital-to-analog converter (DAC), VDAC. After the subtraction, 

a pre-amplifier amplifies the signal and two charge adders add and deduct 1 LSB from 

the signal, respectively. Two continuous-time comparators are employed to detect when the 

zero-crossings occur. If it happens, a digital control block (Dig. Ctrl.) will update VDAC and 

wait for the next zero-crossing.

The LC-ADC employs two comparators to actively detect rising and falling zero-crossings. 

However, the offset difference between these two comparators, degrades SNDR of the LC 

ADC. Therefore, a background offset mitigation technique is proposed and shown in Fig. 

7. Instead of using two separate comparators, the first stage (pre-amp) is shared between 

them so that the offset errors of the second stage are divided by the pre-amp gain A. Then, 

a double-sampling switched-capacitor circuit removes the offset error e of the pre-amp and 

stores the two threshold levels (VH and VL) in three steps.

First, the reference levels ±VLSB and the offset e are amplified by A and stored on 

capacitor C1. Second, only the amplified offset error e is stored on another capacitor C2 

whose capacitance is the same as C1. Third, as the normal operation, C1 and C2 are 

connected, the offset error e is cancelled, and the input-referred voltage is shifted by means 

of the capacitors is ±VLSB for the threshold voltages VH and VL. These operations are 

controlled by three non-overlapping signals φ1-3, which only toggle in the presence of UP 

or DN pulses. To support dual-mode operation, the pre-amp and the comparators can be 

programmed with different power and bandwidth.

From the discussion in Section II.B, the maximum timing uncertainty (i.e., delay) should 

be less than 10 μs, which sets the maximum delay of the ASC. The delay of the ASC is 

determined by the bandwidth of the pre-amplifier and the comparator, the delay of the digital 

control and the settling time of the DAC and the charge adder. Among them, according to 

the simulations, the settling time of the charge adder is the dominant delay.

Fig. 8(a) shows the implementation of the pre-amplifier which is a differential pair with an 

NMOS load, and the input range is from 0 to 1 V. This amplifier is designed to have a 

gain of 10 dB, which is large enough to relax the offset requirement of the comparator but 

is still linear enough with an input amplitude range of ±1 LSB. The input-referred noise is 

designed to be 223 μVRMS and the bandwidth is 9.5 MHz, in order to achieve the target 

SNR requirement. The implementation of the comparator is shown in Fig. 8(b) and this 

comparator achieves a gain of 85 dB, a bandwidth of 6.7 MHz, and an input-referred noise 

less than 30 μVRMS. A 6-bit DAC is implemented with a unit capacitance of 1.6 fF to meet 

the matching requirement. The capacitance of C1 and C2 in the charge adder is chosen to 

be 50 fF to have sufficient charge hold time. With this capacitance value, the settling time of 

the charge adder is less than 1 μs, which is approximately one order shorter than the timing 

uncertainty requirement.

The implementation of the control signal generator is shown in Fig. 8(c). A ring oscillator 

starts oscillating when there is a flag of either an PulseUP or PulseDN pulse. An 

asynchronous counter counts the number of edges of the oscillator, which is then used 
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to generate four non-overlapping pulses (φ1-3 and φR). Afterwards, the oscillator is disabled 

again to reduce power consumption.

LC-ADCs may not be able to track the analog input if self-locking [26] happens, which 

requires an anti-self-locking mechanism to increase the robustness of LC-ADCs, as shown in 

Fig. 8(c). The timing diagrams of the relevant signals are shown in Fig. 8(d). For instance, in 

case self-locking happens, the comparator output UP will remain high. The reset phase, φR, 

will be generated and then the signal PulseUP will be set to low. Hence, PulseUP pulses will 

occur until the comparator output returns to zero.

B Fully Synthesized Low-power SNN

An SNN includes a massively parallel implementation of digital asynchronous spiking 

neurons whose membrane potential integrates inputs (i.e, spikes) from neighboring neurons. 

Once the membrane potential reaches the threshold, the neuron fires and generates a spike. 

The spatiotemporal spike patterns are used in an SNN to perform communication and 

computation. A low power fully synthesized SNN has been introduced in [27]. In this work, 

the SNN has been further adapted for the implantable neural sensing application. Using a 

synthetic dataset of neural signals in the simulation, we have explored parameters for the 

most suited network size, the number of bits for the synaptic resolution, membrane potential 

accumulator size, and the number of neurons per layer as well as the number of layers.

The implementation of the SNN is shown in Fig. 9. To exploit the sparse activity of the ENG 

signals, the network is made self-timed, resulting in near-zero dynamic power dissipation 

in the absence of any input activity. By a trade-off between the complexity of the neural 

network and the cost of the hardware, the SNN consists of two consecutive pools of fully 

recurrently connected spiking neurons and each pool contains 46 neurons.

These pools are followed by a fully-connected layer with 8 neurons. A stream of spikes 

(digital pulses) represents the network inputs and outputs, whereas the synaptic weights are 

stored with 8-b digital numbers. Note that digital spiking neurons provide more flexibility, 

lower power consumption and low sensitivity to PVT variations, compared to charge-based 

analog spiking neurons in [16].

Additionally, Fig. 9 shows that a digital spiking neuron consisting of three parts: an arbiter, 

a weight selector and an integration-and-fire module. Input spikes arriving at arbitrary 

times select a corresponding weight, which gets added to an accumulator. When the digital 

accumulator overflows, it produces an output spike similar to biological neurons’ integrate-

and-fire operation. To solve timing collisions, each neuron has an arbiter that adds a small 

time offset (100’s of ns) to set the priority using a “Round-Robin” polling algorithm. The 

simplified block diagram of the proposed arbiter and its waveform are shown in Fig. 10(a). 

The arbiter is implemented before each layer of neurons. It detects the presence of input 

spikes and dispatches them to the recipient neurons. Based on the spike input address, 

the weight selector sends the corresponding weight to the integration-and-fire module. 

Fig. 10(b) shows the implementation of the integration-and-fire module. An accumulator 

sums the selected weights, and a Rectified Linear Unit (ReLU) is implemented after the 

accumulator to ensure that outputs are always positive. When the accumulator overflows 
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(i.e., a neuron passes the threshold), an output spike is generated and sent to the arbiter 

of the next layer. This SNN is fully synthesized by the standard digital design flow. More 

details on the circuit implementation can be found in [27].

Since the temporal pattern of the CAP signals is important, the SNN needs to have a 

fast response time when extracting features. The spike arbiters determine the speed of the 

SNN. Every neuron layer contains such an arbiter. The largest one is at the second layer 

and has N=46 spike inputs. The delay Tcycle of the arbiter to process one spike is mainly 

determined by its embedded priority encoder. With Tgate being a typical logic gate delay in 

this technology, we found:

Tcycle = 3 * log2 N * Tgate . (2)

Then, the number of spikes per second that can be processed by the arbiter is 1/Tcycle. For 

example, in 40nm CMOS, Tgate=40 ps. If N=46, then Tcycle = 3*8*40 ps =1 ns. This delay 

has a negligible impact on temporal uncertainty.

An offline supervised training strategy presented in our prior work [28] can be adopted 

for the presented SNN, which exploits a surrogate gradient approach and Backpropagation-

Through-Time (BPTT). Due to the lack of labeled ENG datasets, and the training of the 

SNN is also beyond the scope of this work, the weights of the presented SNN are chosen 

based on the simulation, to demonstrate its capability of temporal feature extraction.

Fig. 11 shows the simulated SNN activities. The hardware model of integrate-and-fire 

neurons is adopted, taking into consideration its fixed-point operations. The events coming 

from the LC-ADC are shown in Fig. 11(b). The two layers of neuron pools implemented in 

the SNN are visible in Fig. 11(c) and Fig. 11(d), where black lines represent internal neuron 

firings. In Fig. 11(e), the last layer of the network shows the activity of output neurons 

responsible for extracting temporal features of the ENG signal (D, R, H).

C Pulse-BCC PA and Address-Event Representation (AER)

Instead of adopting high-frequency EM radiation [7][29][30], galvanic-coupled body-

channel communication (BCC) is adopted in this work for the following reasons. First, 

it does not require an antenna, so the NSS volume can be miniaturized. Second, it has lower 

propagation loss inside the human body. And third, it also provides better privacy since the 

signals do not radiate [31].

The body channel is modeled with a finite element method using COMSOL Multiphysics, 

based on the dielectric properties provided in literature [32]. Based on this channel model, 

the PA design specifications are determined, including driving strength, settling time, charge 

balance, etc. The baseband data is encoded with Manchester encoding scheme, and the bit 

period can be programmed from 0.5 to 2 μs, which corresponds to a frequency band of 

100’s of kHz to a few MHz. As the body channel has a bandpass characteristic, the high 

pass corner frequency is determined by the value of the AC-coupling capacitance and the 

double-layer capacitance of the electrode-tissue interface. The simulated high-pass corner 

frequency in this work is below 1 MHz, and the simulated path loss approximately 35 dB.
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The differential PA, as shown in Fig. 12, generates a positive output when OH is high and a 

negative signal when OL is high. The PMOS and NMOS need to be properly sized to have 

similar on resistance to minimize current imbalance, such that the charge accumulation on 

the tissue-electrode interface can be minimized. And the sizing of the transistors is shown in 

Fig. 12. When both OH and OL are low, the PA outputs are reset to half VDD, and it only 

dissipates 1.2μW. The on resistance of the reset switches, SW1 and SW2, needs to be small 

enough as it impacts the required reset time.

In feature extraction mode, three temporal labels generated by the SNN will be coded with 

a serialized 3-bit AER, as illustrated in Fig. 13. The corresponding “address” of each label 

will be attached to the polarity of the event (either up or down), using a serialized 2-bit 

Tenary code (with “+”, “-”, and “0”). The AER output is further coded with Manchester 

coding, to ensure the number of “+” and “-” are always equal, which is important to ensure 

the charge balance. To transmit these AER coded labels, the differential Pulse-BCC PA 

either charges or discharges the tissue if the AER output is “+” or “-”. When the AER output 

is “0”, the reset circuit of the PA will short two ends of the BCC coupler and connect to half 

VDD, to further remove any residue charge in the tissue.

According to the discussion in Section II-B, the event packet length should be less than 10 

μs to ensure that the timing resolution of the event-based transmission is fine enough not to 

degrade signal quality. The event packet length can be calculated by

Tpacket = n * Tbit + Treset, (3)

where n represents the number of bits for the AER and Manchester code (in this case is 6), 

Tbit is the period of each bit, and Treset is the time required for the reset circuit to remove 

the residue charge in the tissue. Note that Treset heavily depends on the strength of the reset 

circuit and the BCC coupler geometry, and it is ~4 μs in this work. The Pulse-BCC PA has a 

programmable bit period in the range of 0.5-2 μs.

IV Measurement Results

As shown in Fig. 14, the proposed NSS is fabricated in 40-nm CMOS technology and its 

active area is only 0.32 mm2, thanks to a reduced memory demand and the area-efficient 

Pulse-BCC.

To evaluate the performance of the LC-ADC, a sinusoidal wave is set as the input. In 

feature extraction mode, the LC-ADC is configured in low power-consumption mode and 

it achieves 30-dB SNDR with 7-μW. In full diagnosis mode, at a higher power of 17-μW, 

it achieves 72-dB SFDR and 59.5-dB SNDR which is shown in Fig. 15(a). Fig. 15(b) 

shows the simulated and measured SNDR with different induced comparator offsets and the 

improvement could be observed after employing a pre-amplifier.

The NSS is characterized with a synthetic CAP waveform according to our neural recordings 

from intact earthworm’s medial giant nerve fiber, as shown in Fig. 16(a), which is widely 

used approach for studying neurophysiology [33]. It is provided as the input signal generated 

by a waveform generator, with an amplitude matched to the ASC’s full scale and a 
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frequency of ~10 Hz (i.e., 10 CAPs per second). Fig. 16(b) and 16(c) show the outputs 

of the ASC and the Pulse-BCC TX outputs in full diagnosis mode. Fig. 16(c) shows 

the time domain waveform from the Pulse-BCC output with Manchester coded AER. 

The event packet length is measured to be ~6 μs. The reconstructed waveform from the 

Pulse-BCC TX output is shown in Fig. 17, where the reconstruction is implemented with a 

simple accumulation without any filtering. The measured Normalized RMS error (NRMSE) 

between the input and reconstructed signals is 4%, and the SQNR is estimated to be 27.9 dB, 

which is close to the analysis in Section II-B.

The measured power consumption of the SNN during the feature extraction is 2 μW and 

11 μW for dynamic and leakage power, respectively. The SNN is only active when the 

input signals change substantially, leading to very low dynamic power. The leakage power is 

limited by the nanoscale transistors in the implemented process and can be further improved 

with advanced techniques or process [34].

The temporal resolution is typically limited by the sampling period (e.g., ~33 μs in [6][35]) 

in conventional frame-based sampling systems [36]. The temporal resolution in feature 

extraction mode is measured by overlaying multiple of extracted R labels of the CAP and 

measuring the timing uncertainty, as shown in Fig. 18. The SNN is pre-trained to recognize 

the R feature of the synthetic CAP. The measurement result shows that a temporal precision 

of 10 μs can be achieved with the proposed event-based NSS.

Fig. 19(a) shows the setup for the evaluation of the Pulse-BCC link. The electronic module 

area of the NSS, including the coupler of the BCC TX, is only 72 mm2. A PCB for the BCC 

receiver (RX) has been developed using commercially available components. A porcine 

tissue with 2.5-cm thickness has been used as the communication channel for the BCC link. 

Fig. 19(b) shows the TX input data and the received output from the RX.

The NSS consumes only 28.2 μW and 50.5 μW system power in the feature extraction 

and full diagnosis mode, respectively. Currently the system power consumption is limited 

by the leakage performance of the selected process. The comparison with state-of-the-art 

electrophysiology (ECG, ENG) sensing and data transmission systems is shown in Table 

I. Thanks to the bio-inspired event-based sampling, the data rate can be reduced by 125×, 

while achieving 10 μs temporal resolution. Note this compression ratio is with respect to a 

30 kSps 10-b Nyquist ADC, and a CAP firing rate of 10 Hz. Although adaptive sampling 

techniques can also achieve a compression ratio of 7× [7], it requires complicated and 

power-hungry digital processing for mode control. Although finer temporal resolution can 

be achieved with a higher sampling frequency as in [28], this also leads to a higher system 

power consumption.

The presented NSS also has smallest system module area, thanks to the crystal-less event-

based operation and the antenna-less body-channel communication. All these features make 

this NSS a very promising architecture for neural sensing of peripheral nerves.
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V Conclusion

This work presents a bio-inspired neuromorphic sensing system, including compressed 

sampling with delta encoding, event-based spiking neural network for local 

feature extraction, and an event-driven pulse-based body channel communication for 

miniaturization. This work targets the application of neural recording in peripheral nerve 

implants, which requires fine temporal resolution. The analysis in Section II shows that 

there is a trade-off between event transmission rate, data compression ratio and the signal 

quality after reconstruction. The proposed NSS demonstrates the capability of supporting 

two recording modes: the full diagnosis mode which transmits raw sensing data with low 

power consumption, and the feature extraction mode which transmits only the extracted 

temporal feature with fine precision. The presented NSS architecture features high energy 

efficiency, miniature form factor, and high temporal resolution, making it a promising 

architecture for neural recording of peripheral nerves implants.
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Fig. 1. Concept illustration of neural recording of peripheral nerves, and the conceptual 
illustration of nerve conduction velocity measurement.
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Fig. 2. Conventional architectures of sensing system.
(a) Nyquist sampling with remote computation; (b) Nyquist sampling with local 

computation.
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Fig. 3. 
(a) Delta encoding of ENG CAPs, and its temporal features D, R, and H; (b) The conceptual 

block diagram of the proposed Neuromorphic Sensing Systems.
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Fig. 4. The detailed block diagram of the presented NSS, including ASC, SNN and BCC PA.
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Fig. 5. Simulated SQNR versus minimum time interval between two events and the simulated 
data rate compression ratio.
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Fig. 6. Architecture of the LC ADC.

He et al. Page 25

IEEE J Solid-State Circuits. Author manuscript; available in PMC 2023 February 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 7. Background ASC offset cancellation at different phases
(a) reference store; (b) offset error store; (c) normal operation.
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Fig. 8. 
(a) Schematic of pre-amplifier; (b) schematic of comparator; (c) schematic of control signal 

generator with anti-self-locking scheme; (d) timing diagrams of anti-self-locking scheme.
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Fig. 9. Block diagram of the fully synthesizable SNN core.
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Fig. 10. 
(a) Simplified block diagram of arbiter and its waveform; (b) simplified block diagram of 

integration and fire module.
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Fig. 11. 
SNN simulated activity. Input patterns are ENG signals from the measurement, and the 

classification task is labeling the different parts of the ENG, as in [13] and [28].
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Fig. 12. Schematic of BCC differential PA.
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Fig. 13. 
(a) Output waveforms from AER and BCC-TX; (b) AER and Manchester coding tables from 

two operation modes

He et al. Page 32

IEEE J Solid-State Circuits. Author manuscript; available in PMC 2023 February 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 14. Chip photo in 40nm CMOS.
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Fig. 15. 
(a) Measured SNDR from ASC outputs. (b) Simulated and measured SNDR with different 

ASC comparator offset.
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Fig. 16. 
(a) Nerve CAPs recorded from intact earthworms, and the measured NSS input, ASC and 

BCC-TX outputs in full diagnosis mode with (b) 2 ms span, (c) 0.1 ms span.
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Fig. 17. Measured normalized RMS error between the reconstructed CAP waveform based on 
the TX output, and the ASC input signal.
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Fig. 18. Measured temporal precision of the extracted temporal feature R, i.e., peak of the CAP, 
by overlaying multiple measurements.

He et al. Page 37

IEEE J Solid-State Circuits. Author manuscript; available in PMC 2023 February 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 19. 
(a) Measurement setup and the photo of the NSS module. The Pulse-BCC measurement is 

performed with a 2.5-cm porcine tissue. (b) Measured Pulse-BCC TX input and RX output 

signals.
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Table I
Comparison with state-of-the-art implantable sensing system.

This work [7] Kim 
TBIOCAS’14

[24] Shon 
Sensors’17

[25] Azin 
JSSC’11

[37] Tochou 
JSSC’22

[38] Jeon 

VLSI’19
E

Tech. (nm) 40 180 N.A. 350 28 FDSOI 180

Supply (V) 0.9/1.1/1 1.2 N.A. 1.5 0.5 1

System ADC+SNN+TX AFE+ADC+ 
DSP+TX

AFE+ADC +TX AFE+ADC+ 
DSP+TX

TX TRX

Applications

Implantable ENG 
(PNS)

Wearable ECG

Implantable 
ENG (PNS)

Implantable 
ENG (Brain) Wearable Implantable

Feat. 
Extr.

Full 
diag.

Feat. 
Extr.

Full 
diag.

ADC 
architecture

LC (event-based) SAR (Nyquist) NA (Nyquist) SAR(Nyquist) N.A. N.A.

Data rate/ch= 
ADC sample 
rate nr. of bits 

(bps)

<100 
event/s

~2.4k 
event/s

512/64 (Adaptive) 
× 12b =877 10k×10b=100k 35.7k × 10b 

=357k N.A. N.A.

Data 
compression >125×

A 7 × 1 1 N.A. N.A.

Temporal 
precision (μs)

10
>2000

B -
>28

B N.A. N.A.

ADC ENOB 5 9.5 10.3 N.A. 9.1 N.A. N.A.

TX freq./mod. 0.5-μs Pulse based 
galvanic BCC

2.4GHz BLE 400MHz FSK 433MHz FSK 350-550MHz 
OOK 

capacitive 
BCC

100Mbps 
galvanic 

BCC

Nr. of chan. 2 3 2 8 - -

Power cons. 
(μW)

TX 1.2 1.5 1000 13300 15510 200
17/76

D 475

DSP/NN 13 15 42 0 N.A. 26 N.A. N.A.

ADC/ASC 14 34 18 38 N.A. 47 N.A. N.A.

Total
C 28.2 50.6 1060 13340 N.A. 274

17/76
D N.A.

Total power 

cons./Ch (μW)
C

14.1 25.3 330 4430 N.A. 34
17/76

D 475

Active area 

(mm2)
C

0.32 8.46 N.A 2.43 0.0418 0.6

System module 
area (mm2)

72 ~500 924 N.A. N.A. N.A.

On-chip labeling D/R/H - Peak (R) only No Peak(R) only N.A. N.A.

A
Compared to 300 kbps

B
Limited by ADC sampling rate.

C
Estimated by excluding AFE.

D
Data rate: 0.1/27Mbps.
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E
The number is only for TX.
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