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Abstract

The drug discovery process involves designing compounds to selectively interact with their 

targets. The majority of therapeutic targets for low molecular weight (small molecule) drugs 

are proteins. The outstanding accuracy with which recent artificial intelligence methods compile 

the three dimensional structure of proteins has made protein targets more accessible to the drug 

design process. Here we present our perspective of the significance of accurate protein structure 

prediction on various stages of the small molecule drug discovery life cycle focusing on current 

capabilities and assessing how further evolution of such predictive procedures can have a more 

decisive impact in the discovery of new medicines.
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Graphical Abstract. 

Introduction

Drug discovery is a costly [1] process of research concerning the identification of new 

chemicals that have the potential to modulate disease [2]. The principal strategies utilised 

to identify potential new medicines in preclinical research are modification of natural 

substances, phenotype screening, biologic based methodologies and target -based selection 

[3]. Over the last few decades genomic, proteomic, and structural studies and access to 

their associated databases [4–6] have provided hundreds of new targets and opportunities 

for the drug discovery pipeline. Additionally, with the extensive use of combinatorial 

chemistry (CC), high-throughput screening (HTS) and virtual screening (VS) [7] together 

with the emergence of Artificial Intelligence (AI) and Machine Learning (ML) [8], the 

focus of drug discovery has shifted towards identifying specific molecular targets and 

structure based drug discovery (SBDD). An analysis of crystallographic data on drug-target 

complexes (See Figure 1) shows that 2401 X-ray complexes are available from 299 

registered drugs (19% of total) bound to 501 unique proteins.The average resolution of 
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these data is around 2.0 Å, suggesting that this resolution is sufficient for the purpose of 

SBDD. The recent advent of protein structure prediction with near experimental accuracy 

[9–11] has introduced a new paradigm for SBDD. The AlphaFold database, hosted at 

EMBL-EBI (https://alphafold.ebi.ac.uk/), provides free access for everyone to more than 

200million protein structure predictions. In this review, we describe how such advances in 

protein structure prediction eg Alphafold2 [12], RoseTTA[13] are likely to impact research 

approaches in the various stages of the drug discovery process (See Graphical Abstract).

Target Identification and Validation

The first step of the drug discovery process is to identify a target and validate that it has an 

impact on the disease under study. Selection of targets for therapeutic intervention (protein, 

DNA, RNA) has traditionally been based on data from the scientific literature for insights 

into molecular pathways and biology of disease. Recently AI/ML, genomics and functional 

genomics [14–16] methods have employed to identify new molecular and cellular targets 

that have a role in pathogenicity or disease progression. In order to be viable, the target must 

have a confirmed role (via target validation) in the pathophysiology of a disease.

If the putative target has a known structure, then this can be used to assess whether the 

target is likely to be druggable, that is accessible to small molecules or biologicals which 

interact with it in order to modulate its activity. Given the accuracy of protein structure 

prediction by Alphafold2 [9], all protein targets identified on the basis of biology are now 

effectively complemented by three dimensional data for assessment of target tractability. 

We should note that almost all targets for approved drugs to date (especially in humans) 

have an experimental structure (either in native or in complex form) or a good model 

built by standard homology modelling methods. Therefore the new models, although 

sometimes more accurate than old predictions, will mainly find usage for completely new 

targets, especially in pathogens, which have not been widely studied to date and for which 

experimental data are not available.

To illustrate an application, the use of Alphafold2 (AF2) to model the replicase encoded 

by the 1708 amino acid polyprotein of the human-infecting Hepatitis E virus (HEV-3) has 

predicted five non-structural proteins [17]. The models have different levels of confidence/

accuracy, provided by AF2, and this is critical to consider when using for SBDD (See Figure 

2). These models provide a basis for ranking the suitability of the individual proteins as 

potential drug targets through ranking them according to

(a) the confidence level (predicted local distance difference test or pLDDT score) of 

the structure predicted by Alphafold2 [9,12,18]

(b) details of the size and accessibility of binding pockets [19]

(c) access, through public [20–22] or private databases, to experimentally observed 

data on substrate- or ligand-binding sites on proteins with structures similar to 

that of the predicted target (Figure 2) or

(d) if drug selectivity is the objective, the uniqueness of the predicted protein fold 

[18].
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These principles for prioritising protein targets using accurate models are also relevant for 

selecting targets for drug repurposing [23] or drug repositioning for diseases that share 

common genes or pathways [24].

As a rule-of-thumb, in order to be comparable to experimental data and useful for in 
silico modelling and VS purposes, AF2 predicted structures require values of pLDDT 

>80 (confident to very high, see Figure 2(A), Figure 3) [9,12]. The efficient use of AF2 

generated models to decipher maps derived from both X-ray [25] and cryo-EM [26,27] 

data underscores the value of such reliable starting models in accelerating the delivery 

of the final refined structure. The technique of using AF2 models for obtaining phases 

and/or fitting electron density derived from experimental data will be the gold standard 

for providing observed structures of proteins and their ligand bound complexes for the 

Structure Based Drug Design stage of the drug discovery process. On the other hand, there 

are other uses where high accuracy is less important. Low pLDDT scoring linker regions 

with poor three-dimensional definition emphasise possible domain boundaries (See Figure 

2(A)) which can provide vital information for expression constructs. These data can help 

produce stable and active proteins recombinantly, thus providing a platform for the initiation 

of structural (crystallisation) and functional (assay) studies.

Hit Identification, Lead Generation and Lead Optimization

The next and crucial stage in preclinical drug discovery is to identify molecules (“hits”) that 

favourably interact with the target(s). The predictions of protein structures made by AF2 and 

RoseTTA do not include any ligands, so additional work is necessary for hit identification. 

In an ideal case, a drug, which could be a small molecule or an engineered macromolecule, 

would be selective and have its effect on disease by interacting solely with its selected 

target. Understanding the topography of the target (protein) is critical in the discovery 

of drugs, since chemical and shape complementarity between protein and ligand are the 

key drivers of drug affinity.AF2 based structure predictions can provide accurate templates 

for targets so that Structure Based Virtual screening (SBVS or VS) in silico explorations 

(using docking and molecular modelling [19,28]) of large libraries of low molecular weight 

compounds can be conducted for finding candidates that bind to the selected target. Access 

to the three-dimensional structure of the target enables the search for pockets [29] and 

functional relevant regions [30,31] on the protein. The success of these processes with 

experimental data holds promise for effective use of similar protocols on AF2 generated 

models.Computational methods [19,28] exploit these features of the target to define the path 

(hit-to-lead) for making carefully chosen chemical changes to the “hit” molecule, taking into 

account toxicological or selectivity liabilities, to a “lead” candidate with enhanced drug-like 

properties. The advances in energy perturbation (FEP) and AB-FEP (absolute binding free 

energy perturbation) methods [32,33] in predicting the energy of binding of molecules to 

target biomacromolecules can be used to provide a suitable filter for the judicious choice of 

candidate molecules. For a series of similar molecules, energy predictions of binding affinity 

to a given target are reasonable estimates and useful for developing the lead. However 

binding energies and models predicted for small molecules without exemplars are much less 

reliable.
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Data on ligand(s) bound to proteins similar to the target can be used to kick-start hit 

discovery projects (See Figure 2(B)), without the use of computational screening protocols. 

Results from screening molecules using a panel of proteins with similar predicted structures 

[21] (implying an evolutionary relationship) can be used to identify potential off-target 

burdens. Conversely, characterising ligands that bind to proteins of different architecture 

(CATH annotations) [34,35] offers the promise of a drug repositioning programme [24].

Although most drugs are designed to modulate a specific target, in fact many bind to more 

than one protein. In most cases off-target binding lead to deleterious side effects which need 

to be resolved. However non-specific binding can be successfully exploited by optimising 

the compound scaffold to create a multitarget drug (MTD) that can simultaneously recognise 

more than one pertinent target in a specific disease pathway. Such MTD molecules are of 

particular relevance in treating multifactorial diseases such as Alzheimer’s disease, diabetes 

and cancer [36].

The easy access to accurate starting models of potential targets is likely to impact the output, 

efficiency and expenditure of the hit to lead process. Proficiency in designing molecules in 
vitro and cellular studies will lead to increased number of New Chemical Entities (NCEs) 

proposed for preclinical testing in animal models.

Preclinical trials

The rationale for advancing a NCE or potential drug into the clinic relies on it having 

demonstrated a safe and positive biological effect in animals. Preclinical development 

involves the testing of lead compounds for efficacy in animal models, to evaluate the 

therapeutic potential of the NCEs in terms of its pharmacological profile, biodistribution 

and safety/toxicology. Apart from the favoured murine [39] and canine species, porcine and 

primate preclinical animal models are also accessible [40]. Among other considerations, the 

choice of animal and model depends on the existing body of knowledge on the disease 

under consideration and features of the animal which have the best correlation to human 

traits. The availability of Alphafold 2 predicted structure of proteins known for all species 

[10] opens up the possibility of selecting preclinical models on the basis of the protein 

similarity of different species compared to humans Whether an AF2 predicted models would 

offer any advantage over standard homology modelling techniques which have, to date, been 

reliably used to predict the suitability of animal species for pharmacological testing remains 

to be established. The lack of public domain three dimensional data on membrane proteins 

could, as more data become available, necessitate modifying the current deep learning-based 

algorithms for more accurate AF2 predictions on members of the structurally less well 

represented families of the proteome.It may be possible to derive more predictive animals 

models by factoring in the comparison of target proteins and proteins that are associated 

with the metabolic pathway of the intended drug in the choice of species for preclinical 

studies.
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Perspective

As explained in the previous sections, data from the Alphafold2 Database will be a valuable 

resource for structure biology and is likely to have the most impact on the hit and lead 

generation stage of preclinical stages of drug discovery. Discovery projects dealing with 

small molecule ligands are the most likely to benefit from these data.Although AF2 models 

have no information on solvent, ions or ligands, substrate- or ligand-binding sites on proteins 

with structures similar to that of the predicted target can be used to locate details about 

binding sites and protein ligand interactions [22] (see section above and Figure2). A major 

shortfall however is that AF2 cannot account for the structural plasticity of proteins and has 

been designed to predict only one conformational state of the protein. The predicted model 

may or may not be the form which binds its ligand (See Figures 3 and 4). A recent study of 

enzyme ligand interactions [41] provides evidence that almost two-thirds of enzymes show 

conformational changes on binding their ligands – which is sometimes local to the binding 

site or may involve large domain shifts.

As shown in the example in Figure 3, although the AF2 prediction for the protein is 

‘confidently predicted’ (as per pLDDT scores) and resembles its unliganded form, data 

on drug/ligand bound forms of the protein show that the protein alters conformation in 

order to accommodate ligands at its binding pocket. Therefore, in the absence of observed 

data, prediction of ligand-induced changes to the protein conformation need to be inferred 

using other tools such as molecular modelling or protein dynamics [42]. Similarly, the 

conformational diversity of proteins due to mutations and post translational changes [43] are 

not reflected in the current AF2 database, While efforts are being made to address this issue 

[44,45], the ability to identify conformationally variable residues at the ligand binding site or 

to predict the effect of mutations on the structure of the protein remains difficult.

The success of AF2 [26,46] in various structural biology applications has been mainly 

due to the local accuracy of the predicted models (pLTTD score). Individual domains are 

predicted accurately but the connection between these domains is often not determined 

precisely (Figure 2, Figure 4). This means that for targets which comprise more than one 

protein domain, AF2 models have to be used with caution. Multi domain proteins often 

have their ligand binding sites located at domain interfaces and global domain movement 

occurs on ligand binding (Figure 4). In such a scenario, the single conformer suggested 

by AF2 is clearly not fit for purpose. The problem is further highlighted when protein-

protein interactions (PPIs) [47,48] are targeted, due to “cryptic” binding sites, which, when 

unoccupied by a ligand, are featureless and the protein pocket is only induced by ligand 

binding. Current algorithms [13,49,50] are much less accurate in modelling such protein-

protein, protein-DNA or protein-RNA models.This poses problems for employing AF2 in 

antibody discovery, where the low success rate (11% success) of AF2 algorithms predicting 

correct antigen-antibody complexes precludes the ability of distinguishing across multiple 

antibodies to identify those that could bind a target in question,[51].

In conclusion, it is worth noting that 90% of clinical drug development fails due to lack of 

clinical efficacy (40%–50%), toxicity (30%), poor drug-like properties (10%–15%), and/or 

lack of commercial needs (10%) [52]. While it is true that AF2 predictions will straighten 
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the road for part of the drug discovery process, the projected impact of accurate structure 

predictions needs to be augmented by the introduction of similar competencies in areas of 

drug delivery and clinical research in order for more disease modifying drugs to get to the 

market. Even so, with the further evolution of current machine learning processes in drug 

discovery and development, the potential of AI techniques to influence medical practices is 

enormous.

This research was funded in whole by European Molecular Biology Laboratory, which 

operates a fully open access policy. For the purpose of open access, the author has applied 

a CC BY public copyright licence to any Author Accepted Manuscript version arising from 

this submission.
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Figure 1. X-ray Crystallographic data on Drug-protein complexes
An analysis X-ray data of marketed drugs in complex with their protein targets shows that 

the average resolution of these structures is around 2 Å.. A total of 2401 protein-ligand 

complexes contain 299 registered drug molecules and 501 unique proteins We note that the 

average resolution for drug targets has remained constant (between 2.0 and 2.15 Å) over 

time. Data from DrugPort[37] and DrugBank[38].
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Figure 2. Alphafold structure prediction and comparison with experimental data
(A) Alphafold2 prediction [18] of a segment of a viral polyprotein (Gen-Bank accession, 

HQ389543, amino acids 480-1253) shown in ribbon representation. Predictions are coloured 

from red (worst) to blue (best) according to pLDDT values. Three (mainly blue) clearly 

defined domains of secondary structure (Zinc binding domain, Macro domain and Helicase) 

are separated by linkers with low-confidence scores. The terminii are marked with their 

corresponding amino acid numbers.

(B) Middle domain of AF prediction for the viral polyprotein (amino acids 802-945) used as 

a query to find a similar structure in the PDB, giving the high scoring hit (green, PDB ID 

3GPQ, TM-score 0.78 [21]), including the ligand__A-__A.

(C) An overlay of the structure of PDB ID 3GPQ with the Alphafold2 prediction (blue) of 

the second domain shown in Figure 2A. The similar three dimensional structures imply that 

ligand binding details available from experimental data can provide molecular modelling 

template(s) for ligand/drug design on the predicted protein. Foldseek [21] was for the 

database search of crystal structures. Maestro[53] and Pymol[54] were used for creating the 

figures.
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Figure 3. Structural plasticity at protein binding site
(A) Alphafold2 predicted model (pLDDT score colours) of the structure of cysteine protease 

3CL Mpro from SARS-CoV-2. The model is predicted with high pLDDT scores and is 

similar to the ligand-free form of the protein (PDB ID 6WQF, rmsd 2.0 Å2).

(B) A superposition, shown in ribbon representations, of the ligand-free of the protein 3CL 

Mpro (cyan, PDB ID 6WQF) with the structure of 3CL Mpro in complex with a drug (orange, 

PDB ID 6XQS). The bound compound Telaprevir (shown as light green surface) changes 

the protein conformation around the active site (rmsd 3.0 Å2 for all atoms, rmsd 8.8 Å2 for 

atoms within 8 Å of bound ligand) of the structure.

(C) Closeup of Panel B, illustrating ligand induced structural changes around the compound 

binding region of the protein.The ligand is shown in green ball and stick representation 

and light green surface. Protein residues of the ligand free structure (cyan ribbon) that 

present unfavourable interactions with the bound compound, influencing protein movement 

on ligand binding, are identified in black.
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Figure 4. Ligand binding at domain interfaces
(A) Alphafold2 predicted model (left, pLDDTscore colours) of the multidomain protein 

ProX from archeoglobus fulgidus. A superposition of this model (blue) with the crystal 

structure of the ligand free form of the protein (PDB ID 1SW5) shown in ribbon 

representation (two domains coloured magenta and green) is given on the right. The close 

match (rmsd 3.8 Å2) between the two structures indicates that the AF2 predicted model 

corresponds to the open ie ligand free form of the protein.

(B) Superposition of the ligand free open (PDB ID 1SW5, left) and ligand bound closed 

(PDB ID 1SW1, right) forms of ProX (rmsd 5.1 Å2). The two domains are identified in 
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different colours.The ligand (PDB ID PBE) bound in the closed form of the protein is 

shown in cyan. Ligand binding causes a hinge-like rotation of Domain B towards Domain A, 

restricting access to the active site.
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