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The application of machine learning (ML) to address population health challenges has received much less attention than its
application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a
complex public health issue rooted in the social determinants of health, exacerbated by inequity, characterised by intergenerational
transmission, and which will continue unabated without novel approaches to address it. Early life, the period of optimal
neuroplasticity, presents a window of opportunity for early intervention to improve cognitive development. Unfortunately for
many, this window will be missed, and intervention may never occur or occur only when overt signs of cognitive delay manifest. In
this review, we explore the potential value of ML and big data analysis in the early identification of children at risk for poor
cognitive outcome, an area where there is an apparent dearth of research. We compare and contrast traditional statistical methods
with ML approaches, provide examples of how ML has been used to date in the field of neurodevelopmental disorders, and present
a discussion of the opportunities and risks associated with its use at a population level. The review concludes by highlighting
potential directions for future research in this area.
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IMPACT:

● To date, the application of machine learning to address population health challenges in paediatrics lags behind other clinical
applications. This review provides an overview of the public health challenge we face in addressing disparities in childhood
cognitive development and focuses on the cornerstone of early intervention.

● Recent advances in our ability to collect large volumes of data, and in analytic capabilities, provide a potential opportunity to
improve current practices in this field.

● This review explores the potential role of machine learning and big data analysis in the early identification of children at risk for
poor cognitive outcomes.

EARLY LIFE AND NEURODEVELOPMENTAL PLASTICITY
The phrase ‘the first 1000 days’, a period spanning conception to 3
years of age, is one increasingly seen in policy documents relating
to child health.1 The phrase has its origins in the work of Professor
David Barker, a physician and epidemiologist, whose trio of
seminal articles published in the Lancet between 1986 and 1993
prompted the development of the ‘foetal origins hypothesis’.2–5 A
fundamental concept in Barker’s work was developmental
plasticity, formally defined as ‘the ability of a single genotype to
produce more than one alternative form of structure, physiological
state, or behaviour in response to environmental conditions’.6

It is widely accepted that early life is a unique period, differing
from adulthood, during which the brain shows greater potential
towards plasticity.7 This is explained in part by the highly dynamic
dendritic spines, which are predominant during early develop-
ment, and display huge potential for adaptability but, which over
time and in adulthood are much more stable.8 Early life is the most
crucial period for shaping the developing brain and represents a
window of both vulnerability and opportunity.9 A failure to achieve

early foundational cognitive skills may result in a permanent loss of
opportunity to achieve full cognitive potential. Conversely, with
appropriate intervention, it is a period during which there is an
opportunity to disrupt the intergenerational transmission of
inequity, particularly with regard to the developing brain.9

COGNITIVE FUNCTION AND THE IMPORTANCE OF SOCIAL
DETERMINANTS
Cognitive function is a broad construct consisting of multiple
domains, which can differ across literature and disciplines. Most
definitions consistently refer to domains of learning, under-
standing, reasoning, problem solving, memory, language, atten-
tion, and decision making.10–12 There has been considerable
debate in the literature regarding the measurement of cognitive
functioning, but also regarding its representativeness of overall
human functioning.13 While a thorough discussion of this debate
is beyond the scope of this article, it is important to clearly
acknowledge that childhood cognitive function is only one
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domain of overall child development. Other domains, including
motor development, the development of positive social skills and
emotional intelligence, and the establishment of appropriate
behaviours are both intimately intertwined and of commensurate
importance.14

For many children, particularly those exposed to adverse
environmental conditions in early life, the true potential of their
cognitive ability will never be reached. This gap between potential
and actual ability brings with it significant implications for
outcomes across multiple domains throughout the life course,
including educational attainment,15 social mobility,16 financial
well-being,17 and survival.18 Birth and pregnancy cohort studies
have to date provided an evidence-base illustrating the important
early life determinants of cognitive development. Consistently,
socioenvironmental factors have been shown to be among the
strongest determinants of cognitive function in childhood.19–25

The effect of socioenvironmental disadvantage on cognitive
function can be seen as early as 2 years of age, but if unabated,
the adverse effect of disadvantage on cognitive function appears
to be amplified over time.22

EVIDENCE FOR EARLY INTERVENTION
Across epidemiological, animal, and human research there is
consensus agreement that early life is a period of fundamental
importance in cognitive development, and strategies for inter-
vention should ideally be targeting this unique period.26–33

One of the most widely cited examples supporting early
cognitive intervention is the Abecedarian Study, a small rando-
mised controlled trial that began in 1972, and involved infants at
risk of poor cognitive outcomes based on an individual risk index
that combined multiple factors including parental education,
family income, welfare payments and the school history of family
members.34 The trial involved 111 infants, of whom 57 were
randomly assigned to an intensive preschool programme, which
commenced at a mean age of 4.4 months. The intervention
consisted of high-quality early education delivered with high
teacher to pupil ratios, 5 days per week for 50 weeks of the year,
with free transportation and a focus on family involvement.34,35 At
age 3, significantly higher IQ scores were observed in the
intervention group, and these persisted into adulthood. At age
21, the intervention group still had significantly higher IQ scores
and academic achievement scores, as well as significantly more
years of education completed compared to the control group.36

This pre-emptive approach to early cognitive intervention may
also benefit other high-risk cohorts such as pre-term infants, who
on average have childhood IQ scores approximately 10 points
lower than their full-term peers.37,38 A Cochrane review examining
the effects of early intervention provided in the first 12 months of
life, for infants identified as at risk based on a gestational age
<37 weeks or a birth weight <2500 g, concluded that early
interventions can improve cognitive outcomes in infancy, with
benefits persisting into preschool age.39

Early pre-emptive approaches targeting high-risk individuals
have also been shown to alter neurodevelopmental trajectories for
other outcomes such as autism spectrum disorders (ASD).
Whitehouse et al. demonstrated, in a randomised clinical trial of
infants with very early signs of potential ASD, that pre-emptive
intervention commenced around the first year of life reduced the
odds of ASD classification at age 3.40

These studies illustrate the effectiveness of early pre-emptive
intervention, commenced prior to overt signs of cognitive difficulty
and at the time of optimal neuroplasticity. Outside of the controlled
trial setting, real-world programmes, such as the federally sponsored
Early Head Start programme in the United States, demonstrate that
at a population level such interventions are both feasible,
achievable, and effective with appropriate resourcing.41,42 However,
achieving optimal individual outcomes from early intervention is

dependent on the accurate identification and involvement of infants
and families who are likely to benefit most.

CURRENT POPULATION-BASED DEVELOPMENTAL SCREENING
Internationally, many countries rely on universal developmental
screening programmes to identify children who may benefit from
early intervention programmes, with the majority of develop-
mental screening assessments being based on the presence of a
delay in reaching developmental milestones.43 Population-based
screening programmes based on the principle of universalism
apply structured developmental screening, independent of pre-
existing risk factors, to all children. While this approach has many
merits, there are significant limitations. Firstly, the opportunity for
pre-emptive intervention is lost as these infants are already
behind their typically developing counterparts at the time of
detection, with valuable opportunities in the period of optimal
neuroplasticity being lost. Secondly, population-based screening
programmes depend on the voluntary presentation of parents
and children and tend to exemplify the inverse care law in
practice, whereby the most vulnerable and most at risk of
developmental delay, are least likely to attend.44–46 Thirdly, such
screening programmes do not provide a systematic, robust
assessment of the environmental, social, and demographic factors,
to which the infant will be exposed in early life which are the
strongest and most consistent predictors of cognitive outcomes in
childhood.47,48

The birth of a child is unique in many ways, not least because
there is an almost universal interaction between a mother and a
healthcare professional. Therefore, the identification of high-risk
mother–infant dyads in the perinatal period could provide a
unique opportunity to engage families with early intervention
programmes. Machine learning and artificial intelligence (AI),
which have shown great promise in prediction across other fields
of medicine, may have the potential to improve population-based
strategies for the early identification of children at risk of poor
cognitive outcomes, and this deserves further exploration.

MACHINE LEARNING AND PREDICTING RISK
Adverse cognitive outcomes in childhood are complex, hetero-
geneous, and result from highly interactive relationships between
biological, environmental, and social factors, the mechanisms of
which are often poorly understood. This real-world complexity,
which may be difficult to model, particularly with more traditional
statistical methods, may have to date acted as a deterrent for
researchers investigating risk prediction tools for this purpose.
However, there is now increasing potential to statistically model
such complex interactions with machine learning. With the huge
recent advances in both the quantity and quality of data available
through large birth cohorts, electronic health records, imaging
data, genomics, video, medical imaging, and electronic devices,
the application of AI and machine learning may assist in finding
the optimal predictive patterns to enable early interventions.49

The ‘exposome’ is a term used for the totality of life-course
environmental exposures from the prenatal period onwards.50

Adopting this lens in evaluating the role of environmental factors
may enable a more complete understanding of the exposures
involved in childhood cognitive development.51,52 Prospective
birth cohorts and linked electronic medical records provide a
unique opportunity for evaluating such exposures as they can
capture a wealth of valuable information on prenatal, perinatal,
and early childhood exposures. Following an individual from the
intrauterine period or from birth enables a longitudinal assess-
ment of early life exposures and later life outcomes.53 There has
been an increase in both the number and the size of birth cohort
studies in recent years, and in Europe alone, more than 110 birth
cohorts representing 27 different countries have been formed.54
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In addition, the capacity to collect large volumes of data, biobank
serum samples, perform genomics, and use technology such as
wearable devices has resulted in an explosion in the quantity,
complexity, and depth of data now collected in such cohorts,
providing a huge opportunity to utilise such data to advance both
our understanding of the aetiology of disease, and our ability to
predict outcomes. To truly harness the value of these cohorts and
data sources, methods of data linkage and harmonisation require
further research. Through amalgamating data sources, large data
repositories could be created that would be particularly valuable
for all fields of research, but especially for AI. Further work is
needed in this area to address the issues around data protection,
consent, and data sharing.
Generally, two classes of the statistical model are recognised—

those where the aim is to understand the causal pathways leading
to a certain outcome, and those where the aim is to predict as
accurately as possible a certain outcome.55 These two classes have
much in common, and a tangled, but often constructive relation-
ship.56 Statistical models such as those intending to investigate
the causal pathways between early life determinants and
cognitive function in childhood estimate the effect size between
a preceding factor and the outcome, adjusted for the confounding
factors in this relationship, based on a formal modelling process.57

The inclusion of additional variables in the model is based on
previous evidence, changes in the size of the effect between the
causative factor and the outcome, and goodness of fit.56,57

Prediction models however combine multiple predictors based
on their ability to predict the occurrence of a particular event in
the future (prognostic model) or their ability to predict the
presence of a particular health state (diagnostic model).58

Prediction model studies aim to develop and validate multi-
variable prediction models that combine individual predictors to
predict an individual’s probability of either having or developing a
particular outcome.59

Published prediction models examining the prediction of
cognitive outcomes among general paediatric populations are
scarce compared to the published literature on prediction models
for high-risk groups such as pre-term infants.57 A summary of
three recently published multivariable models predicting cogni-
tive outcomes in general paediatric populations is shown in
Table 1.20–22

A major limitation in the traditional statistical regression
methods used in these models is their reliance on strong
assumptions, many of which are unrealistic in complex real-
world data. Traditional regression methods are often used in ways
that assume that the effect of a predictor on the outcome
increases or decreases uniformly throughout the range of the
prediction (assumption of linearity); however, in truth, many
relationships are non-linear. It is often assumed that the residuals
(the difference between the observed value of the dependent
variable and the model predicted value of the dependent variable)
have a constant variance at each level of the predictor
(assumption of homoscedasticity) and that the residuals have a
normal distribution.60 Methods exist to deal with all of these
issues, but may not be properly or commonly used. Further
limitations are the constraints around interaction terms in
traditional statistical models. Traditional models assume predictors
affect the outcome in an additive manner unless otherwise
specified. Interaction terms must be determined a priori and
entered into the model, a process not commonly performed
despite a wealth of evidence demonstrating strong interactions
between many of the predictors in the models, such as that
between prematurity and maternal education, or between pre-
term brain injury and socioeconomic status.61–63

There is considerable debate regarding the true differences
between traditional statistical approaches and machine learning,
often compounded by the fact that many machine learning
techniques, such as linear and logistic regression, are drawn from

traditional statistical methods.64 While traditional statistical
models and machine learning models may use similar means to
reach their goal, the key difference tends to lie between the
objectives of the models. Traditional statistical methods, while
they can be used for prediction, tend to focus on inferring
relationships between variables, while following a defined set of
assumptions and rules based on the data to which the model is
fitted.65–67 The purpose of ML is to make a repeatable prediction
by learning from patterns within the data, without prior
assumptions or rules governing the process.66,67 ML does not
make inferences regarding the causal relationship between
features and outcomes. Using designated training data, with a
defined set of potential predictors and a defined outcome, an ML
algorithm can learn a set of rules from the data which can then be
applied to the novel, unseen data to make a prediction on the
outcome.68 ML approaches can handle enormous quantities of
data, and also can combine multiple different forms of data from
multiple different sources including epidemiological data, imaging
data, environmental and genomic data. ML techniques can
efficiently deal with missing data, and driven by the data
and generalisation performance, are adept at handling feature
redundancy (collinearity) and feature selection.68

A major advantage of machine learning is the ability to handle
large numbers of highly interactive predictors and to combine
them in non-linear relationships. With both the quantity and
diversity of data growing, non-linear and interactive relationships
within data are increasingly important and may be the key to
improving predictive accuracy. ML techniques can, to a point,
automatically uncover such interactive relationships in the data
without the need for a priori specification of interactions.69,70 For
the purposes of predicting cognitive development, this is likely to
be important. It is often the case that the effect of one predictor
will change given the value of another predictor. For example, the
combined effect of adverse socioenvironmental factors and pre-
term brain injury results in significantly lower childhood IQ than
either alone.63

It should not be assumed, however, that ML techniques will
always result in improved predictive performance compared to
traditional methods.71 This is likely to depend on the outcome
being predicted, the number of features involved in training
the prediction, the type and variability of the features, and the
presence of interactions between features. The optimal predictive
algorithm will depend on the predictive problem, and prior to
moving to more complex predictive models, traditional methods
with logistic and linear regression modelling should always be
trialled and reported for comparison.71

APPLICATIONS OF MACHINE LEARNING IN
NEURODEVELOPMENTAL PAEDIATRICS
The past decade has seen a rapid expansion in the application of
ML and AI, for the purposes of diagnosis and prognosis, in clinical
medicine.68 Significant progress has been made specifically in the
areas of radiology and imaging, pathology, and cancer.72 There is
growing interest in the application of machine learning in the field
of paediatric neurodevelopmental disorders (NDDs), a hetero-
geneous group of disorders impacting different domains of
function including cognition, language, social, motor and beha-
vioural, but progress has been slower.73 The term NDD includes
conditions such as intellectual disability, ASD, and attention deficit
hyperactivity disorder (ADHD).73

Diverse data, ranging from MRI data to motor skills data
collected via drag-and-drop gaming devices, have been combined
with machine learning techniques for both diagnostic and
prognostic purposes in the area of NDDs. Examples are provided
in Table 2. Accurate, objective, diagnostic tools could be a
particularly valuable aid to clinicians in this field, where many of
the conditions currently rely on subjective, labour intensive, expert
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clinical assessments. In many countries, this results in long waiting
lists for assessment in developmental paediatric clinics and delays
in diagnosis for those affected.
One example is ADHD, the diagnosis of which relies upon a

detailed clinical assessment based upon observed behaviour and

reported symptoms.74 Pupillometric data (data based on dilation
of the pupil) from 50 participants aged 10–12 years used in a
support vector machine (SVM) algorithm achieved a sensitivity of
0.773 and a specificity of 0.753 in the detection of ADHD, based on
the results of nested 10-fold cross-validation.75 This study however

Table 1. Study characteristics of multivariable prediction models for cognitive outcomes in childhood.

Authors Camargo-Figuera et al.20 Camacho et al.21 Eriksen et al.22

Journal BMC Pediatrics Paediatric Perinatal Epidemiology PLoS One

Continent South America Europe Europe

Sample Pelotas Birth Cohort Millennium Cohort Study Lifestyle During Pregnancy Study
(sampled from the Danish National
Birth Cohort)

Design Prospective cohort Prospective cohort Prospective cohort

Sample size 3312 9487 1782

Year of recruitment 2004 2000–2002 1997–2003a

Exclusion criteria Conditions associated with very low
IQ, e.g., severe mental retardation

Nil Multiple pregnancies, language
barrier, impaired hearing or vision,
congenital disabilities implying
mental retardation

Age at cognitive
assessment

6 3 5

Cognitive assessment Wechsler Primary and Preschool
Scales of Intelligence -III

Bracken School Readiness
Assessment

Wechsler Primary and Preschool
Scales of Intelligence – Revised

Cognitive outcome
variable

Binary Binary Continuous

Low IQ defined by a z-score <−1 Not school ready defined by score
<1 standard deviation below mean

Number of risk factors
at outset

32 29 27

Rationale given for
candidate variables

Yes—selected based on previous
literature and availability

Yes—selected based on previous
literature and availability

No–but broad range (>20) selected

Statistical model Multivariable logistic regression Multivariable logistic regression Multivariable linear regression

Method of initial
screening of candidate
variables

Forward and backward stepwise
selection

Forward and backward stepwise
selection

Univariable association p ≥ 0.10

Interaction terms fitted No No No

Multicollinearity
addressed/discussed

No Yes Yes

No. predictors in
final model

13 13 9

Validation performed Yes Yes No

Internal and external validation
performed

Internal validation only

Predictive value
measured

External validation Internal validation R squared 0.29

Area under receiver operating curve
(AUROC) 0.75

AUROC 0.80

Sensitivity 70.3% Sensitivity 72%

Specificity 68% Specificity 74%

Predictors in
final model

Child—gender, height-for-age
deficit; head circumference-for-age
deficit

Child—gender, ethnicity,
developmental milestones

Child—gender, birth weight,
height, head circumference

Parental—breastfeeding, parental
smoking, maternal perception of
child’s health, skin colour

Parental—maternal age, maternal
mental health, breastfeeding

Parental—maternal BMI,
breastfeeding

Socioenvironmental—parental
employment status, maternal
education, income, number of
siblings, number of persons
per room

Socioenvironmental—
socioeconomic class, maternal
education, income, number of
children, employment status,
housing type

Socioenvironmental—maternal IQ,
parental education

aIn 2003, a prospective follow-up of 1750 mother–child pairs was initiated, sampled on the basis of maternal alcohol drinking patterns from The Danish
National Birth Cohort (DNBC).
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is limited by the small sample size of 50, and the absence of model
evaluation on an independent test set raises questions over the
generalisability of their model to wider populations. This is a
limitation seen in many of the studies in this field.
MRI data has also been used in ML algorithms for the purpose

of diagnosing ADHD. Sen et al. trained an SVM using structural
and functional MRI data from 558 participants. The final model,
which produced an accuracy of 0.673, sensitivity of 0.454, and
specificity of 0.851 on an independent test set of 171 participants,
is unlikely to be clinically useful in its current form but suggests
there may be signals within such data that could assist in the
diagnosis of ADHD.76

For ASD, another NDD that benefits from early intervention but
for which diagnosis is often delayed, ML has been increasingly
studied as a potential tool for early detection.77 A 2019 systematic
review and meta-analysis examining the accuracy of ML
algorithms based on brain MRI data for detecting ASD reported
a pooled area under the receiver operating curve (AUROC) of 0.90,
a sensitivity of 0.83, and a specificity of 0.84 for ML models trained
with structural MRI data. The results should however be
interpreted with caution, as the majority of included studies
performed internal validation only, and did not externally validate
their models in independent test sets.78

While the examples outlined thus far have largely focussed on
ML for diagnostic purposes, ML methods have also been deployed
for the prediction of later NDDs.79,80 A deep learning model,
trained on white matter connectomes from brain MRI data
obtained at the time of birth, and tested on an independent test
set, correctly classified 84% of infants as having below or above
the median level of cognitive ability at 2 years of age.80 The
results, which are based on a relatively small sample size of 37 in
the independent test set, are promising but the clinical utility at a
population level is likely limited.
Novel methods of neurodevelopmental assessment, outside of

traditional medical investigations, are also being analysed using
ML algorithms. For example, a deep learning model trained on
data from a touch-based computer game aimed to harness this
measure of motor skill to detect developmental disabilities in
children. An AUROC of 0.817 based on internal cross-validation
provides a basis for further research in this area.81

MOVING FROM CLINICAL TO POPULATION-BASED
PREDICTION
Acknowledging the limitations of these studies, overall the results
indicate that AI and machine learning may have an important role
in the early prediction of certain NDDs. However, many of the
prediction studies in this field to date are based on data, such as
MRI and EEG, which is not routinely collected at birth at a
population level. Therefore, in clinical practice, these studies may
provide methods of prediction for higher risk populations who
undergo these investigations, but are likely to be largely
unsuitable for implementation at a population-based level due
to resource constraints and cost. At a population level, machine
learning would appear to be more advantageous when used with
data that is readily available, cost effective to collect, and available
early in life. This however may come at the cost of reduced
predictive ability compared with models based on direct
physiological and anatomical measures.
In the context of population health, the application of machine

learning to address population health issues and mitigate health
disparities has received much less attention than its clinical
applications. Prediction models at a population level tend to use
existing electronic medical records, large cohort studies, environ-
mental databases, government databases, and internet-based
data.82 Population-based data sources have the potential to
incorporate social, environmental, and other structural determi-
nants in prediction models, potentially improving accuracy.83Ta
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Social determinants of health have long been studied in
epidemiological research, but the findings of these studies
emphasise the need for methods that are better able to capture
the complex, interactive, and flexible relationships between these
predictors and health outcomes.83

The majority of well-established predictors of cognitive function
in childhood, including poverty, gestational age, drug, alcohol and
tobacco use during pregnancy, birth weight, admission to the
neonatal intensive care unit, parental education and socio-
economic status, are predictors that are readily available in the
perinatal period. To date, the accuracy of algorithms applying
traditional statistical methods to such data for the purpose of
identifying children at risk of low cognitive function in childhood
has shown mixed results with regard to their accuracy (Table 1).
The question of how we can best harness this information for
identifying high-risk children remains. Application of machine
learning methods to large population-based datasets, using
readily available, routinely collected information may assist in this
objective but remains relatively unexplored in the literature.

RISKS OF INDIVIDUAL RISK PREDICTIONS AND MACHINE
LEARNING ALGORITHMS
There are undoubtedly benefits to the early identification of
children at risk of poor cognitive outcomes, namely providing
early interventions during the period of optimal neuroplasticity
and potentially altering the cognitive trajectory of the individual
child. However, this approach is not without risk.
Early identification of those at risk is not synonymous with

labelling, yet even the use of terms such as ‘at risk’ or ‘higher risk’
could have detrimental effects on both the child and their family.
Labelling a child at a very early stage of life, as being at risk of a
poor cognitive outcome, can perpetuate a self-fulfilling prophecy
due to well-documented effects on parent and teacher expecta-
tions, as well as the potentially detrimental effect on a child’s own
self-concept.84–86 Furthermore, using a label based largely on
social factors, which are transmitted through generations and
rooted in inequities generated by social and political policy, may
shift the blame of societal failures onto the individual child or
family. These risks are especially pertinent for children and families
who may be incorrectly identified as at risk on a screening or risk
prediction tool and who are unlikely to benefit from early
intervention. For those correctly identified, the question is
whether these risks are outweighed by the risk of overlooking a
child until their cognitive difficulties manifest in overt signs such
as academic failures, a point at which intervention may be too
late.87

There are also broader ethical considerations with the use of
machine learning algorithms in healthcare in general.88–90 There is
a growing body of literature examining algorithmic fairness, a
topic warranting urgent attention following examples of ML
algorithms exacerbating health inequities, raising serious ethical
concerns.91 Each step of development of an ML algorithm is
fraught with potential for bias—from the initial decision to use ML
for the specific problem, to how it is deployed in practice.92 A
major threat to algorithmic fairness is the inherent bias in the data
on which many of these models are built. For example, healthcare
utilisation data represents those who attend for healthcare, but
not necessarily those who need it; cohort data tend not to
represent marginalised populations such as the homeless who
may be unable to participate in longitudinal follow-up. A further
threat is the use of ‘black box’ models that lack transparency,
cannot be interpreted by the user, and therefore have inherent
risks for producing bias. There are opportunities to harness the
power of ML in addressing population health challenges, but
stringent assessment of potential for bias, quality, and applicability
are required prior to dissemination in practice.93

CONCLUSIONS AND FUTURE RESEARCH
There is an optimal window in early life during which the
trajectory of cognitive development is more amenable to
change.94 Infants at risk of poor cognitive outcomes due to
prenatal, birth-related, or socioenvironmental risk factors, whom
we fail to identify and provide with appropriate interventions, may
never meet their true cognitive potential. For children who begin
their educational journey lacking basic cognitive skills, a down-
ward spiral of repeated failure, grade retention, and behavioural
difficulties may culminate in school dropout, and its associated
future implications that include unemployment and substance
abuse.95 Equally, it is the case that these children at higher risk are
likely to live in poorer households, in more deprived areas, and be
members of marginalised groups, so population-level interven-
tions including educational policy, planning policy, and economic
policy, also have a central role to play.
It is estimated that less than half of children with developmental

delay are detected prior to the school entrance, with the vast
majority of those detected receiving no intervention in the very
early years.96,97 It is abundantly clear that the current practice
of waiting for delays to present prior to the intervention is
inadequate and goes against the large body of evidence
highlighting the optimal period of neuroplasticity in early life.98

The risk factors for poor cognitive outcomes in childhood are well
established in the literature, are amenable to identification in the
perinatal period, and are often routinely collected. Yet, to date,
we have been largely unable to harness this information in a
personalised and meaningful way to identify the high-risk
mother–infant dyads and provide appropriate interventions.
Our improved capacity to collect large volumes of rich data and

to apply novel statistical methods particularly suited to prediction
provides an opportunity for researchers and clinicians to
investigate alternative methods of identifying, at an earlier stage,
children at risk of developmental and cognitive delay. Utilising, to
the best of their predictive ability, currently available data in the
form of birth cohorts, electronic health records, and population
registries should be the first step.
Addressing health and social inequity is an age-old problem

crying out for novel solutions. In this review, we have focussed
primarily on the domain of cognitive development. This is not to
put undue emphasis on cognitive ability as a measure of success,
nor to endorse a meritocratic society where a child’s emotional,
social, or creative skills are viewed as less important. The purpose
is to strive towards creating a society whereby every child is given
the opportunity to meet their cognitive potential, irrespective of
the circumstances into which they are born. To achieve this, high-
risk infants and their families should be supported with
appropriate, evidence-based interventions at the earliest possible
stage, prior to the onset of cognitive delay. This requires early,
accurate identification of those who will benefit. Combining the
strengths of machine learning, big data analysis, and paediatric
public health for a potential solution deserves thorough explora-
tion for the individual, community, economic, and societal
benefits that could result.
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