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Abstract

We present a meta-learning framework for interactive medical image registration. Our proposed 

framework comprises three components: a learning-based medical image registration algorithm, 

a form of user interaction that refines registration at inference, and a meta-learning protocol 

that learns a rapidly adaptable network initialization. This paper describes a specific algorithm 

that implements the registration, interaction and meta-learning protocol for our exemplar clinical 

application: registration of magnetic resonance (MR) imaging to interactively acquired, sparsely-

sampled transrectal ultrasound (TRUS) images. Our approach obtains comparable registration 

error (4.26 mm) to the best-performing non-interactive learning-based 3D-to-3D method (3.97 

mm) while requiring only a fraction of the data, and occurring in real-time during acquisition. 

Applying sparsely sampled data to non-interactive methods yields higher registration errors (6.26 

mm), demonstrating the effectiveness of interactive MR-TRUS registration, which may be applied 

intraoperatively given the real-time nature of the adaptation process.

Index Terms

Medical image registration; meta-learning; interactive machine learning; prostate cancer

I Introduction

A Medical Image Registration

IMAGE registration is a fundamental task in medical imaging research whereby 

correspondence is established between anatomical structures in paired images. Using 

methodologies from “classical” iterative registration algorithms, learning-based methods 

have been proposed. Learning-based methods have used different architectures, such as 

convolutional neural networks [1–2] and vision transformers [3], different training strategies, 

such as generative adversarial networks [4, 5], supervised [1, 4], unsupervised [2, 6–8] or 

reinforcement learning [9–11], or different transformation constraints, based on parametric 

splines [6], diffeomorphism [12] and biomechanics [13]. Semi-supervised learning [14], 
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few-shot- and meta-learning [15–16], unsupervised contrastive learning [17], inference-time 

augmentation [16, 18], and amortized hyperparameter learning [19] methodologies have 

also been used to improve data efficiency and generalizability. For further discussion on 

these learning-based registration methods, readers are referred to recent systematic surveys 

[20–22].

B Interactive Machine Learning

For many clinical applications, registration errors may be identified or corrected by users, 

and integration of interactions into machine learning frameworks may assist in predicting 

more accurate solutions [23–26]. This integration is referred to as interactive machine 

learning (IML) [27]. Recently, IML-based methods for medical image analysis have focused 

on error correction in image segmentation. Most existing methods use simple interactions, 

such as user-defined bounding boxes as a guide for initial predictions [24] or ‘scribbles’ 

to indicate areas that should or should not be considered during refinement [23–24, 26]. 

Other methods may train multiple networks in tandem; one for segmentation and another for 

refinement [25].

Though the authors were unable to find existing IML-based methods for medical image 

registration in the literature, interaction has been utilized in classical methods. To improve 

the alignment of patient images, anatomical landmarks may be interactively selected [28] or 

acquired with spatially tracked intra-operative surgical instruments [29]. These methods are 

widely used and considered among the gold standard for medical image analysis methods.

C Gradient-Based Meta-Learning

Meta-learning [30–31] formalizes the commonly-applied fine-tuning intuition by iteratively 

learning to improve future performance on related tasks over multiple learning episodes. In 

particular, ‘gradient-based’ meta-learning approaches, such as model agnostic meta-learning 

(MAML) [32] and Reptile [33], learn adaptable initializations from gradients observed 

during learning episodes. Such algorithms are simple, learn quickly, and generalize well 

at test time with limited examples, as evidenced by their application in the medical 

imaging domain [15–16, 34–37]. Gradient-based methods have been used for domain-

agnostic generalization and subsequent rapid-adaptation in image registration [15–16] and 

segmentation [34–37] on datasets of limited size from new domains.

Unlike most aforementioned examples, this work focuses on improving performance 

for individual tasks, formed by data that are varied by interactions. The simplicity in 

incorporating new data, efficiency in adaptation, and effectiveness in various computer 

vision and medical imaging applications are particularly desirable and motivate the use 

of meta-learning in formulating interactive registration. Other meta-learning methodologies 

[30] should be tested in future development.

D Contributions

We define a framework to meta-learn network initializations for interactive image 

registration. This framework consists of three components: a learning-based medical image 

registration algorithm, a form of user interaction, which is easily simulated in training, to 
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refine predictions at inference, and a gradient-based meta-learning protocol that learns a 

rapidly adaptable network initialization, by considering data variability due to interaction in 

individual patients as separate tasks.

To investigate the application of such a framework to clinical data, we register 3D magnetic 

resonance (MR) imaging volumes to a series of interactively-acquired sparse 2D transrectal 

ultrasound (TRUS) images for use in targeted prostate biopsy guidance. This exemplar 

application illustrates a clinical scenario in which real-time, interventional imaging, such 

as TRUS, is acquired interactively to iteratively refine the registration throughout a single 

acquisition of interventional imaging modality as it traverses the target anatomy. This work 

compares the accuracy of our proposed interactive registration method with alternative 

learning-based methods. We outline the key contributions in this work as follows:

• We provide a detailed description of our interactive meta-learning framework for 

medical image registration and describe how it may enable a range of useful 

applications.

• We introduce and describe the registration, interaction, and meta-learning 

strategy for our exemplar clinical application; volume-to-sparse registration of 

prostate MR to TRUS.

• We present rigorous validation experiments, comparing our method to various 

learning-based methods for prostate MR-TRUS registration, including variations 

to meta-learning parameters to assess their effects on the registration process.

II Learning-Based Interactive Image Registration

A Learning-based Image Registration

Learning-based registration may be categorized from an application perspective; network 

inputs may be unimodal, multimodal, inter-patient, or intra-patient – with each image 

bearing its own dimensionality [20], requiring different loss functions based on image 

similarity [6], label similarity [1], or some combination of the two [2]. Each image pair 

may encompass any number of anatomical sites of clinical interest, requiring a registration 

method to utilize different deformation models, commonly, rigid, affine, or deformable [20].

Given N pairs of training source and target images, xn
source  and xn

target , and accompanying 

source and target labels, ln
source  and ln

target , respectively, where n = l,…,N, existing 

approaches predict the voxel correspondence or transformation un
ϕ = fϕ xn

source , xn
target  using 

a registration network fϕ with network parameters or weights ϕ The training goal thus is 

minimizing an image and/or label loss function Lsim over N training pairs, to obtain the 

optimal ϕ:

ϕ = arg min
ϕ

∑n = 1
N ℒsim ϕ) + αdefℒdef(ϕ) , (1)

where ℒdef ϕ ∣ xn
source , xn

target ) = ℒdef (fϕ(xn
source , xn

target )  provides regularization on the deformation 

smoothness un
ϕ, weighted by αdef. In general, the similarity-based loss can further combine 

a negative unsupervised image similarity function ℒsim
image xn

source (un
ϕ), xn

target ), between the 
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transformation-warped images xn
source (un

ϕ  and the target images xn
target , and a negative weak-

supervision loss based on label similarity ℒsim
label (ln

source (un
ϕ), ln

target ), between the warped source 

labels ln
source un

ϕ) and the target labels ln
target :

ℒsim (ϕ ∣ xn
source , xn

target , ln
source, ln

target ) =
αimage ℒsim

image (xn
source (un

ϕ), xn
target ) +

αlabel ℒsim
label (ln

source (un
ϕ), ln

target ),
(2)

where the general form contains hyperparameters αimage and αlabel which may be set to zero 

to represent weakly supervised and unsupervised algorithms, respectively.

B Interaction for Image Registration

In general, the performance improvement seen in other interactive applications, such as 

the above-discussed interactive segmentation [34–37], may be expected from interactive 

registration. Other benefits, such as those related to expandability, and owing to the human-

in-the-loop of machine learning models for registration applications are also important, but 

are considered out of the scope for this work.

To adapt existing learning-based registration methods to accept interactions, we must first 

define interactions that may be learned in training, and are feasible at test-time. We consider 

interaction to be any action taken by the user. Depending on application-specific needs, a 

combination of sequential interactions may best improve the registration.

This user-to-computer interaction may entail image reacquisition or annotation of poorly 

aligned areas. Image reacquisition may be local (i.e. one, or a few images) or global (i.e. 

entire image volume) when, for example, image quality is poor, or there has been patient 

motion. Local re-acquisition is pertinent when using real-time imaging modalities, such as 

ultrasound, that can be rapidly acquired.

We propose formulating image reacquisition and annotation additional labelled data, where 

the quantity and availability of labels or images may vary per application. In practice, 

interactions may be application-specific. The determination of use-cases for each interaction 

is considered out of scope for this work, though we provide a description and evaluation of 

the additional data interaction for ultrasound-guided prostate biopsy to illustrate a possible 

use of the proposed framework.

C Meta-Learning Interactive Initializations

In this work, we train registration networks in the inner loop of a meta-learning optimization 

to accept newly labelled data provided by interaction, while the network adaptability across 

subjects is optimized in an outer loop. For a given test subject, this enables the interactively-

acquired data to adapt the trained registration network efficiently, before being used in 

inference.
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III Methods

A Images and Annotations as Interaction

We denote possible pairs of interactions sampled from the source and target images as 

imn
source  and imn

target , from n training data. Each nth pair is also associated with Mn interactions 

that are possible on image pair n, m = 1,…,Mn. These time-agnostic interactions are 

represented as sets of interactively obtained images xmn
source  and xmn

target  and annotations, 

in the form of segmentation labels, ( ℓmn
source  and ℓmn

target ), i.e. imn
source = xmn

source T, ℓmn
source T T

 and 

imn
target = [(xmn

target )T, (ℓmn
target )T]T

. For notational brevity, both images and annotations can include 

the previously available annotated data, for individual subject, therefore the interactions 

imn
source  and imn

target  are interchangeably used with interaction-updated source and target, 

respectively. A sequence of interactions may benefit from explicit sequential modelling; 

however this is considered out of scope of this work, where only a few steps of interaction is 

considered feasible in the application of interest.

This formulation does not distinguish between registrations which may have different 

initial image and annotation data from one without such initial registration, as they can 

be consistently represented by both the non-interactive registration formulation, described in 

Section II.A, and the interactive adaptation, described in Section III.B.

We note that not all the interactive image or annotation data need to be available or varying 

for a given interaction. We describe a sample of scenarios which demonstrate the versatility 

of interactive registration. Additionally, active learning methodologies [38] may appear 

similar in nature, and may be able to utilize similar scenarios for interactive learning in 

practice. Our application is developed and validated with respect to Scenario 4, a special 

case of Scenario 3. Though not tested, other scenarios are included for discussion purposes.

1. Successive user-defined image annotations improve the registration over multiple 

interactions, i.e. variable labels ℓm = a, n
source ≠ ℓm = b, n

source  and ℓm = a, n
target ≠ ℓm = b, n

target  but fixed images 

xm = a, n
source = xm = b, n

source  and xm = a, n
target = xm = b, n

target , when a ≠ b.

2. An unsupervised learning algorithm, without initial labels ℓm = 0, n
source  and ℓm = 0, n

target , 

receives successive user-defined annotations to improve alignment, which 

requires the simulation of ℓm > 0, n
source  and ℓm > 0, n

target  during training.

3. An image-guidance application may have a fixed pre-operative image xmn
source , but 

adds new intra-operative images, i.e. xm = a, n
source ≠ xm = b, n

source  and xm = a, n
target = xm = b, n

target , when a 

≠ b. This application may use user-defined annotations on the pre- and intra-

operative images, as in Scenario 1.

4. An ultrasound-guided prostate cancer application, such as that used in this 

work; similar to Scenario 3, but does not require new annotations on the 

source images, however, additional annotations on the target images may 

be acquired automatically using a segmentation network, i.e. using the 

generation of labelled intra-operative ultrasound images as the interaction, 

xm = a, n
source = xm = b, n

source , ℓm = a, n
source = ℓm = b, n

source , xm = a, n
target ≠ xm = b, n

target  and ℓm = a, n
target ≠ ℓm = b, n

target , when a ≠ b.
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B Meta-Learning for Interactive Registration

As the interaction data imn
source  and imn

target  are defined as images and annotations – in 

Section III.A – xmn
source , xmn

target , ℓmn
source  and ℓmn

target , they are consistent with the data used 

in the non-interactive registration formulation – in Section II.A – xn
source , xn

target , ln
source  and 

ln
target . We propose to formulate the training of an interactive registration network fϕ by 

adapting the optimization in Eq. (1) to a bi-level optimization [30, 38], therefore learning the 

interactive image registration becomes a meta-learning problem:

ϕ = arg min
ϕ

∑n = 1
N ∑m = 1

Mn ℒsim
* ϕ* ϕ +

αdefℒdef
* ϕ* ϕ

(3)

s . t . ϕ* = arg min
ϕ

∑n = 1
N ∑m = 1

Mn ℒsim
* ϕ + αdefℒdef

* ϕ , (4)

where ℒsim
*  is obtained by substituting interaction in Eq. (2):

ℒsim
∗ (ϕ) = ℒsim ϕ ∣ xmn

source , xmn
target , ℓmn

source , ℓmn
target

(5)

similarly, ℒdef
∗ (ϕ) = ℒdef ϕ ∣ xmn

source , xmn
target . ℒsim

∗ ϕ∗(ϕ)  and ℒdef
∗ ϕ∗(ϕ)  denote the optimized 

functions of ϕ, by optimized ϕ* at the inner-level. ϕ* hereinafter used for brevity.

It is noteworthy that, unlike the training defined in Eq. (1) which minimizes the expected 

loss over the N pairs of training images, the task-specific inner-level Eq. (4) aims to 

minimize the expected loss over the Mn samples of interactions. At the outer-level, Eq. 

(3), different N pairs of images and annotation are usually sampled to learn the optimal 

network parameters, such that, at inference, the network fϕ can be adapted to new pairs of 

interactions im, test
source  and im, test

target , where m = 1, …, Mtest and be generalized to this new test 

task, i.e. we define the training meta-tasks be N different cases that need registration, rather 

than Mn steps of interactions.

Such a meta-learning framework learns an initialization of network parameters ϕ which 

enables data-efficient adaptation to a new task at inference. The efficient adaptation means 

that registering a new pair of images xtest
source and xtest

target may only require a few Mtest steps of 

interaction, often constrained by human effort and time-critical applications.

C Gradient-Based Meta-Learning Algorithms for Network Initialization

Gradient-based meta-learning algorithms are applicable for training the proposed interactive 

registration and are comprised of the meta-learning and the meta-test phases. To start 

meta-training, the registration model is initialized with random weights. During each 

iteration of the outer-level loop, one task imn
source , imn

target
n is randomly sampled from the 

task set imn
source , imn

target
n = 1, …, N  containing all possible tasks, with a set of k interactions 

imn
source , imn

target
n, m = 1, …, k  randomly sampled from this given task, to form an episode (Fig. 

1). Each sampled task corresponds to a task-specific loss in Eq. (4). We define our meta-

learning task as a pair of source and target images with their associated source and target 
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annotations, from each subject. During each episode we undergo ‘task-level learning’ using 

stochastic gradient descent (SGD) or its variants, for k SGD steps, the task-specific gradient 

gn
m ϕ  can be computed to update the network weights ϕ:

ϕm
* ϕ − βtask ⋅ gn

m ϕ , (6)

where

gn
m ϕ = ∂

∂ϕ ℒsim
∗ ϕ + αdefℒdef

* ϕ , (7)

and βtask is the learning rate. After an episode of k steps, a cross-task gradient gn(ϕ*) is used 

to update the network weights at the outer-level loop, corresponding to Eq. (3):

ϕn ϕ − βmeta ⋅ gn ϕ* , (8)

where

gn ϕ* = ∂
∂ϕ ℒsim

* ϕ + αdefℒdef
* ϕ ϕ* , (9)

and βmeta is the meta-learning rate. With gradient-based meta-learning methods, such as 

MAML [32], the cross-task meta-gradient gn(ϕ*) is computed directly to obtain the Jacobian 

for updating parameters, at the inner-loop-optimized weight values ϕ*. However, estimating 

the Jacobian involves computationally problematic second derivates; First-Order MAML 

[32] and Reptile [33] have been proposed to approximate this meta update step, and we 

adapt such approximations to train the interactive registration network.

In the meta-test phase, parameters ϕ are adapted to the test task through few-shot learning. 

During meta-testing, a few interactions im, test
source  and im, test

target  are acquired from the test task 

to compute a few steps of test-task-specific gradients and update the model, using Eq. (6), 

before predicting the transformation using images xtest
source and xtest

target (Fig. 2).

D Exemplar Clinical Application: Volume-to-Sparse Weakly-Supervised Multimodal Image 
Registration

In this section, we discuss our proposed methods for interactive registration to a real-world 

clinical application, in which only sparse TRUS images are available to be registered 

to preoperative MR images, using an interactive weakly-supervised multimodal image 

registration.

Prostate MR-TRUS image registration leverages MR imaging to aid tumour-targeted needle 

biopsy [40–47] and focal treatments [48–49] for suspected clinically significant prostate 

cancer. Image registration allows the presentation of MR-visible information, such as 

tumour size and location, for guiding surgical instruments or therapeutic energy placement. 

Often, the MR-derived lesion and tumour information are superimposed on the TRUS 

images as a visual aid.
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A weakly-supervised methodology used to train an interactive registration network with a 

label-driven loss can be considered as a meta-learning problem, as described in Eq. (3) and 

Eq. (4), with αimage = 0, without using explicit intensity-based similarity measures which 

have been considered less effective [1]. To accommodate sparse ultrasound images, readily 

available as interactions in this application, we develop a volume-to-sparse registration 

algorithm, where the training target images being a set of TRUS slices xmn
target  and 

annotations of anatomical structures identified on these slices lmn
target , with source MR 

images xmn
source

 and the corresponding MR annotations lmn
source . These annotations can contain 

multiple types of anatomical structures [1], though this notation is omitted for brevity. We 

discuss the detailed representation of the interactive data in Section III.E and the need for 

TRUS slice localization information in the Discussion.

Our implementation utilizes LocalNet, a recent method for weakly-supervised image 

registration [1]. LocalNet’s encoder-decoder structure comprises down- and up-sampling 

blocks and can predict a DDF that is summed over multiple resolutions. LocalNet is similar 

to the UNet [50] architecture found in VoxelMorph [2] – often used for unsupervised and 

weakly-supervised image registration. Compared to VoxelMorph, LocalNet has a smaller 

memory requirement and is more densely connected, with multiple types of residual 

shortcuts and summation-based skip layers to allow deeper supervision [1].

E Interactive Acquisition of Labelled TRUS Images

This study investigates an MR-TRUS registration where volume-to-sparse registration 

continually re-occurs throughout acquisition, as opposed to discreate registration to 

reconstructed 3D TRUS volumes. The continuous 2D TRUS images in such registration 

are considered the addition of new data, with or without the automatically acquired 

prostate gland segmentation [51], as interactions. At inference, this continuous stream 

of interactively acquired data provides additional context and a constantly up to date 

registration.

Here, interaction stems from the continual acquisition of frames by moving TRUS probe. 

Therefore, during few-shot learning, new frames are incorporated into the input of the 

model. This requires knowledge of the spatial relationship between each frame, so that the 

new frame may be inserted into the correct location within the TRUS volume. To provide 

initial spatial information for the network, the first interaction comprises two frames, and 

subsequent interactions require at least one new frame. Given the current clinical workflow 

for tumour-targeted needle biopsies, this interaction is unlikely to introduce any delay or 

modifications to existing protocols.

To simulate interactions in training, we select one pair of target interactions imn
target by 

randomly selecting a series of TRUS images in a clinically feasible manner, whilst the target 

“interaction” is the fixed MR images and their annotation imn
source, as described in Scenario D in 

Section III.A. The label pair ℓmn
source and ℓmn

target may define either the prostate boundary, the apex 

and base of the prostate, or any other patient-specific landmarks; such as zonal structures, 

water-filled cysts, and calcifications [52]. The binary mask is generated to randomly include 

some number of frames F, where F ∈ ℕ : F ∈ [Fmin, Fmax], which defines the image 
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slices within the TRUS volume xmn
target. Once generated, sections of the input image xmn

target, 

and corresponding label ℓmn
target are masked-out, leaving only TRUS slices and corresponding 

labels from the simulated acquisition.

F Meta-Learning an Initialization with Reptile

We adopt Reptile [33] as our gradient-based meta-learning strategy. Reptile provides 

a computationally efficient optimization of the gradient-based update procedure to 

approximate Eq. (8) and Eq. (9) by:

ϕn ϕ − βmeta ⋅ 1
k∑m = 1

k ϕ − ϕm
* , (10)

where ϕm
* can be estimated using Eq. (6).

It is of note that, given that the complete prostate (and other patient-specific landmarks) 

labels are available, a stronger form of supervision is used to compute the loss during 

meta-training, such that the entire label similarity is computed rather than a partial similarity 

on sparse labels. This allows the initialization to be learned from complete data, illustrating 

how interactive labels and images used in computing training losses may differ from those 

seen in meta-testing in order to better guide learning.

During the meta-test phase, for evaluation, few-shot learning occurs with F gradient updates 

on interactions xmn
target and ℓmn

target from the test task. This fine-tunes the model to obtain adapted 

parameters ϕ′ which can perform accurate registrations on the test patient. Unlike the 

random generation of interactions during the meta-training phase, xmn
target and ℓmn

target define a 

continuous, single-sweep TRUS acquisition. Therefore, the first few-shot learning gradient 

update contains Fmin images and subsequent updates add an image, until the final update 

with Fmax − 1 images. This ensures that the inference step is computed on an input 

with Fmax images. During the meta-test phase, we only use the label which defines the 

prostate boundary. This is done to emulate the labels which may be available (via automatic 

segmentation) in practice with the application of our method. A visual summary of the 

meta-learning phases for our application is shown in Fig. 3.

G Loss Functions

Two loss functions are used in training. In weakly-supervised registration, we seek to 

maximize the expected label similarity using a multiscale soft probabilistic Dice [1], which 

has shown effectiveness, especially when small foreground labels do not overlap initially. 

Using interactively acquired TRUS labels ℓmn
target and pre-operative MR labels ℓmn

source. we obtain:

ℒsim
* ϕ = 1

Z ∑σSDice fσ ℓmn
target , fσ ℓmn

source un
ϕ , (11)

where SDice is the soft probabilistic Dice [53], fσ is a 3D Gaussian filter with an isotropic 

standard deviation σ ∈ {0, 1, 2, 4, 8, 16, 32} in mm, and Z = |σ|. We additionally use 

bending energy [54] to regularize deformation ℒdef
* ϕ  on un

ϕ in tandem with ℒsim
* ϕ  as in Eq. 

(3) and Eq. (4).
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H Data

We used 108 pairs of pre-operative T2-weighted MR and intraoperative TRUS images 

from 76 patients, acquired during the SmartTarget clinical trials [52], a study approved 

by the London-Dulwich Research Ethics Committee (REF 14/LO/0830) and conducted 

at University College London Hospital (UCLH). Images were split into training and test 

sets comprising 88 and 20 images, respectively. No patient appears in both sets. Images 

were normalized and resampled to an isotropic voxel size of 0.8 × 0.8 × 0.8 mm3. 

MR segmentations were acquired as part of the SmartTarget clinical trial protocols [52]. 

TRUS prostate gland segmentations were acquired automatically [51], and landmarks were 

manually segmented.

I Baseline Model Implementation and Training

The framework was implemented in TensorFlow [55] and Keras [56]. The weakly-

supervised registration framework and loss functions were adapted from DeepReg 

[57]. Hyper-parameters are as described in [1] unless otherwise specified. A random 

affine transformation, without flipping, was applied to each image-label pair for data 

augmentation.

The Baseline interactive registration model was trained for 250000 iterations with the Adam 

optimizer [58], a minibatch size of 4, and an initial learning rate, βtask, of 1 × 10-5. 

In the meta-training phase, the value of k for task-level learning was 10, and the initial 

meta-learning rate, βmeta, was set to 0.5, with a linear decay to 1 × 10-5 at the final 

training iteration. Loss weights γ and α were both set to 1.0. We let Fmin = 2 and Fmax = 

10. Training took approximately 120 hours using one Tesla V100 GPU. We note that the 

number of iterations comprises each episode of task-level training, but does not include the 

meta-update; such is to say that we perform 25000 episodes of task-level learning, where 

each episode of task-level learning encompasses k gradient updates.

J Comparison with Meta-Learning Variants

Without extensively searching all hyper-parameters, which may misrepresent 

generalizability, we provide experimental results and validation on variants to the Baseline. 

First, we modify the number of gradient updates performed in task-level learning, k, to 1 

and 100. Notably, when k = 1, a single step of SGD on the expected loss is equivalent 

to jointly training on a mixture of all tasks [33]. Though k is often defined as ≤10 in 

other meta-learning applications [33], we also demonstrate training with a higher value. 

Due to the changes introduced to the training process (for k = 1), and the deviation of the 

gradients from those which would normally be encountered in a non-meta-learning-based 

training protocol (for k = 100), these variants will likely underperform relative to the 

baseline. Second, we modify the initial meta-learning rate, βmeta, to 0.25 and 1.0. The linear 

decay remains unchanged. To prevent arbitrary selection, we choose values corresponding 

closely to those presented in [33]. Finally, we vary the maximum number of frames used in 

training, Fmax, to 5 and 15. We expect a higher and lower Fmax would result in better and 

worse performance, respectively. Though if the increase in performance gained per frame 

diminishes as Fmax increases, training with a smaller Fmax may be beneficial. Conversely, if 
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the increase in performance per frame does not significantly diminish, training with a higher 

Fmax and acquiring additional frames in practice may be prudent.

K Comparison with State-of-the-Art Approaches

We compare the proposed Baseline to the application of ‘registration’ without alignment, 

and of a simple initialization whereby the prostate gland centroids are aligned. Furthermore, 

we compare to two weakly-supervised state-of-the-art approaches for deformable pairwise 

medical image registration; LocalNet [1], and VoxelMorph [2]. In all comparisons, we 

use complete 3D volumes for source and target input images – unlike our interactive 

meta-learning approach which provides a sparse target input. Hyper-parameters are all kept 

at defaults as described in [1] and [2], and we set loss weights γ and α to 1.0.

L Comparison with Non-Meta Learning Approaches

We emulate the sparse 2D target input of our interactive meta-learning approach with 

instances of LocalNet and VoxelMorph with 5 or 10 randomly sampled 2D target input 

images in training. We demonstrate the effects of few-shot learning on these models 

trained without meta-optimization and our meta-learning Baseline by performing inference 

with and without any few-shot learning. To illustrate the effectiveness of the meta-learned 

initialization, we randomly initialize LocalNet and VoxelMorph models and apply few-shot 

learning to the networks. While the impact of sparse data was not investigated in [1] or 

[2], and therefore, may adversely impact their performance, this assessment provides a 

benchmark to which we may compare the performance of our approach to learning-based 

methods with comparable amounts of input data.

M Evaluation of Registration Methods

To compare the Baseline to all aforementioned methods, we test interactions which represent 

a clinically realistic scenario on our real-world, clinical test data. Through the continuous 

acquisition of frames from a right-to-left sweep through the prostate, we obtain a series of 

sagittal images which are uniformly distributed through the prostate (Fig. 4). As noted in 

Section III.F, we initially acquire two images (as Fmin = 2) to provide spatial context of the 

frames in this first acquisition.

Registration accuracy was quantified using the Dice similarity coefficient (DSC) and target 

registration error (TRE). Two-tailed paired t-tests, at significance level α = 0.05, are used 

to compare each method to the Baseline. DSC is computed between the warped MR label 

and the entire ground-truth TRUS label. TRE is defined as the root-mean-square distance 

between the geometric centroids of the registered landmark pairs. In our dataset, landmarks 

consisted of 309 pairs of manually identified points, including the apex and base of the 

prostate, and various patient-specific landmarks including zonal boundaries, water-filled 

cysts, and calcifications [1, 52, 59]. Notably, such landmarks have been previously utilized 

yield an overall spatial distribution which is representative of the full TRE distribution 

in this application [1, 4–5, 7–8, 10–11, 13, 60–70], therefore providing an evaluation of 

registration accuracy and an estimate of registration errors, such as those associated with 

tumour localization. We also report the computational time per few-shot learning gradient 

update and subsequent registration in the meta-test phase for our approach.
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IV Results

A Baseline Performance

One gradient update and inference for the Baseline model requires 0.67 ± 0.07s and 0.37 ± 

0.05s, respectively. Therefore, during adaptation, which may occur during image acquisition, 

approximately 6s is needed to perform fine-tuning and inference, considerably faster than 

the 2-4 mins required for acquisition, contouring, and registration in conventional image-

fusion targeted biopsies, such as those reported in the SmartTarget clinical trials [52].

After few-shot learning, we achieved a median TRE of 4.26 mm and a mean DSC of 0.85 

with 10 input TRUS frames. This is within range of previously defined clinically significant 

thresholds of 2.97 mm [71] and 5.00 mm [62]. A detailed summary of TRE and DSC is 

given in Table 1. Example slices of input MR and TRUS image pairs and registered MR 

images are provided in Fig. 5 for qualitative visual assessment for the Baseline through each 

few-shot step in the meta-test phase.

B Performance of Baseline Variants

After few-shot learning, the k = 1 variant had a median TRE of 4.48 mm and mean DSC of 

0.83, whereas the k = 100 variant had a median TRE of 4.58 mm and mean DSC of 0.85. In 

both, no significant difference was found between TRE or DSC relative to the Baseline. The 

effects of k in training on TRE are illustrated in Fig. 6 and summarized in Table 2.

After few-shot learning, the βmeta = 0.25 variant had a median TRE of 4.33 mm and a mean 

DSC of 0.84, whereas the βmeta = 1.0 had a median TRE of 3.29 mm and a mean DSC of 

0.87, no significant difference to the Baseline, as summarized in Table 3 and Fig. 6 with 

varying βmeta.

After Fmax − Fmin gradient updates of few-shot learning, the Fmax = 5 variant had a median 

TRE of 4.50 mm and mean DSC of 0.85, whereas the Fmax = 15 variant had a median TRE 

of 3.58 mm and mean DSC of 0.84, no significant difference to the Baseline. The effects of 

Fmax during training on TRE are illustrated in Fig. 6, and given for TRE and DSC in Table 4.

We note that the Fmax = 5 variant performs better than the Fmax = 15 variant for all values 

of F ≤ 5. This is likely due to the distribution of the input images in the presented clinical 

scenario, whereby one continuous sweep of the prostate occurs, as presented in Fig 4. 

For example, when F = 5, while the input frames of the Fmax = 5 variant will be evenly 

distributed across the entire prostate, while the 5 input frames of the Fmax = 15 variant will 

be condensed into the right-most third of the prostate, resulting in less spatial information 

being presented about the remaining prostate volume.

Example slices of input MR and TRUS image pairs and registered MR images are provided 

in Fig. 7 for qualitative visual assessment of the results for each variant.
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C Performance of State-of-the-Art Approaches

With no initial registration or alignment, a median TRE of 32.4 mm and mean DSC of 0.66 

are obtained. Further, a median TRE of 18.4 mm and mean DSC of 0.77 are obtained if only 

prostate gland centroid alignment is performed.

The performance of the Baseline model was not significantly different than LocalNet for 

TRE and DSC, where a median TRE and mean DSC of 3.97 mm and 0.87 are obtained. 

The performance of the Baseline model was not significantly different than voxelMorph, for 

TRE and DSC, where a median TRE and mean DSC of 4.32 mm and 0.84 are obtained.

A summary of TRE for the Baseline and the non-meta-learning-based methods is given in 

Fig. 8. Example slices of input MR and TRUS image pairs and the registered MR images 

are provided in Fig. 9 for qualitative visual assessment of the registration results for each 

approach. It is important to note that these methods use complete 3D volumes for source and 

target input images, and only achieve comparable performance to our method, which uses 

between two and ten frames of the target image in training and at inference. This represents 

between 1.6% and 8.5% of the complete 3D volume, which contains 118 image slices.

D Performance of Non-Meta-Learning Approaches

When emulating sparse input on LocalNet, a median TRE of 7.51 mm and a mean DSC of 

0.76 are obtained with 5 input images. A median TRE of 6.26 mm and mean DSC of 0.79 

are obtained with 10 input images. Fine-tuned Baseline model performance is significantly 

different than when providing 5 (p < 0.01) and 10 (p = 0.04) input images for TRE. No 

significant difference is observed for DSC. When using VoxelMorph, a median TRE of 7.36 

mm and a mean DSC of 0.78 are obtained with 5 input images. A median TRE of 5.86 mm 

and mean DSC of 0.81 are obtained with 10 input images. Performance of the fine-tuned 

Baseline model is significantly different than when providing 5 input images (p < 0.01), but 

not 10 images, for TRE. No significant difference is observed for DSC.

Applying few-shot learning to these same models at inference, LocalNet obtains a median 

TRE of 7.64 mm and mean DSC of 0.76 are obtained with 5 input images. A median 

TRE of 7.23 mm and mean DSC of 0.73 are obtained with 10 input images. VoxelMorph 

obtains a median TRE of 7.30 mm and mean DSC of 0.79 are obtained with 5 input images. 

A median TRE of 5.81 mm and mean DSC of 0.81 are obtained with 10 input images. 

This suggests that few-shot learning has little effect when applied to conventionally trained 

registration networks, without the meta-trained network initialization. Using the Baseline, 

without few-shot learning, a higher median TRE of 4.57 mm and a lower mean DSC 

of 0.82 is obtained without detected significance, compared to the Baseline when using 

few-shot learning. Applying few-shot learning to an untrained model, where the weights are 

initialized randomly, results in a median TRE of 19.4 mm and a mean DSC of 0.76 for 

LocalNet, and a median TRE of 20.1 mm and a mean DSC of 0.77 for VoxelMorph.

Detailed results summarizing the TRE of the Baseline and the non-meta-learning-based 

methods are illustrated in Fig. 8. Example slices of input MR and TRUS image pairs and 

the registered MR images are provided in Fig. 10 for qualitative visual assessment of the 

registration results for each approach.
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V Discussion

This work presents a deep learning framework for interactive medical image registration 

using meta-learning. As illustrated in Fig. 9, the performance of our Baseline network for 

volume-to-sparse registration provides accuracy that is comparable from recent 3D-to-3D 

methods, while using a fraction of the data. Further, it yields significantly improved metrics 

compared to other tested volume-to-sparse methods and indicates that our method is not 

sensitive to meta-learning hyper-parameters, demonstrating flexibility and generalizability. 

This motivates use for other registration applications.

of importance for multimodal image registration, the lack of robust voxel-level similarity 

between image pairs necessitates the tested weakly-supervised registration algorithms, 

which require labelled structures in training, but not at inference. As we utilize few-shot 

learning in the meta-test phase, real-time prostate segmentations may be required on 2D 

TRUS images. High DSC and rapid inference times have been reported for this task [13, 

51], as such, the need for segmentation must be considered, but should not be considered 

prohibitive to the real-time implementation of interactive registration in practice given that 

the addition of these additional segmentation inference steps would add, at most, several 

seconds to the total time required to compute the registration.

All employed volume-to-sparse methods require positional information for the TRUS 

images relative to a fixed reference. In practice, this may be obtained using positional, 

mechanical, or electromagnetic/optical tracking. Assessing our method’s suitability for un-

tracked TRUS images, however, is considered out of the scope of this work.

VI Conclusion

This paper presents a novel interactive image registration approach, using an exemplar 

application of partial registration of MR to sparsely acquired intra-operative TRUS images. 

We obtain similar registration accuracies to state-of-the-art 3D image registration methods 

which require complete image volumes. our method significantly outperforms alternative 

methods when applied to the same challenging partial data problem. This work demonstrates 

the effectiveness and efficiency of our real-time interactive image registration method, which 

may be applied during intraoperative procedures, such as prostate biopsy.
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Fig. 1. 
Schematic of one episode of task-level learning. For each of the k tasks in the sampled task 

set, the image pair is coupled with an associated annotation.
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Fig. 2. 
An interactive meta-learning medical image registration framework. A learning-based 

registration model is trained over multiple episodes in meta-training (left) to learn an 

initialization for adaptation at inference. In each task-level learning episode, a task is 

sampled to train the model. Then, the meta-update (red arrow) updates the model based 

on the direction (black dashed line) of the task-level learning gradients (white arrows), 

continued from previously learned gradients (blue arrows). Later, the model is fine-tuned in 

the meta-test phase (right) with few-shot learning, coupled with user-defined interactions.
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Fig. 3. 
Proposed framework for interactive medical image registration with meta-learning, as 

applied to weakly-supervised volume-to-sparse prostate MR-TRUS registration. The learner 

is trained over multiple episodes in metatraining (left) to learn an initialization for adaptation 

at inference. In each tasklevel learning episode, a set of images, labels, and some number of 

frames F is sampled and trained on. After each episode, the meta-update updates the learner 

using the Reptile algorithm based on the task-level learning gradients. Once training is 

complete, the learner is optimized in the meta-test phase (right). Here, interactively-acquired 

data is coupled with few-shot learning to fine-tune a registration model in real-time as the 

TRUS image acquisition occurs.
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Fig. 4. 
Illustration of TRUS images acquired in the presented clinical scenario. Acquired images 

(dashed lines) are captured in the sagittal plane (left) and shown with previously acquired 

images (solid lines) through one continuous ‘sweep’ of the prostate with the TRUS probe 

until full coverage is obtained.
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Fig. 5. 
Example image slice from one test case. The left-most column contains an image slice 

from source MR volume. The right-most column contains the corresponding target TRUS 

image slice. Other columns present the warped source MR image, resulting DDF, alternating 

vertical slices of the warped MR and target TRUS image, and warped MR prostate gland 

contour (Red) overlaid on the target TRUS prostate gland contour (Green), using the 

Baseline at a given shot of training during few-shot learning, with F frames.
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Fig. 6. 
Tukey’s boxplots of TRE for the Baseline and all variants in the MR-TRUS registration 

experiment. Whiskers indicate 10th and 90th percentiles. Results are presented for 

registrations with 10 frames unless otherwise indicated. For Fmax variants, we additionally 

present results at 10 frames for direct comparison to the Baseline and other variants.
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Fig. 7. 
Example image slices from one test case. The left-most column contains image slices from 

source MR volume and corresponding target TRUS image slice. other columns present the 

warped source MR image, resulting DDF, alternating vertical slices of the warped MR and 

target TRUS image, and warped MR prostate gland contour (Red) overlaid on the target 

TRUS prostate gland contour (Green), using the above-labelled network.
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Fig. 8. 
Tukey’s boxplots of TRE for Baseline, state-of-the-art, and all non-meta-learning methods in 

the MR-TRUS registration experiment. Whiskers indicate 10th and 90th percentiles. Baseline 

results presented for registrations with 10 frames, with input size indicated explicitly for all 

other methods.

Baum et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 March 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 9. 
Example image slices from two test cases. The left-most column contains image slices from 

source MR volume and the corresponding target TRUS image slice. other columns present 

the warped source MR image, resulting DDF, alternating vertical slices of the warped MR 

and target TRUS image, and warped MR prostate gland contour (Red) overlaid on the target 

TRUS prostate gland contour (Green), using the above-labelled network.
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Fig. 10. 
Example image slices from one test case. The left-most column contains image slices from 

source MR volume and corresponding target TRUS image slice. other columns present the 

warped source MR image, resulting DDF, alternating vertical slices of the warped MR and 

target TRUS image, and warped MR prostate gland contour (Red) overlaid on the target 

TRUS prostate gland contour (Green), using the above-labelled network.
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Table I
Summary TRE And DSC For The Baseline Network At Each Step Of Few-Shot Learning. 
Values Are Presented ± SD. TRE in MM.

F Grad. Updates Median TRE Mean DSC

2 0 7.02 ± 4.08 0.77 ± 0.06

3 1 6.98 ± 3.98 0.79 ± 0.06

4 2 6.02 ± 4.17 0.81 ± 0.06

5 3 5.61 ± 4.11 0.82 ± 0.07

6 4 5.34 ± 4.16 0.82 ± 0.07

7 5 5.27 ± 4.08 0.83 ± 0.07

8 6 4.34 ± 4.12 0.84 ± 0.06

9 7 4.37 ± 4.13 0.84 ± 0.06

10 8 4.26 ± 4.19 0.85 ± 0.06
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Table II
Summary TRE and DSC for the k = 1, 100 variants at each step of Few-Shot Learning. 
Values Are Presented ± SD. TRE in MM.

k F Grad. Updates Median TRE Mean DSC

1

2 0 7.79 ± 3.75 0.76 ± 0.06

3 1 7.55 ± 3.88 0.78 ± 0.06

4 2 7.03 ± 3.97 0.79 ± 0.06

5 3 5.79 ± 3.90 0.80 ± 0.06

6 4 5.59 ± 3.90 0.80 ±0.06

7 5 5.49 ± 4.12 0.80 ± 0.06

8 6 4.93 ± 4.07 0.81 ± 0.06

9 7 4.43 ± 4.01 0.83 ± 0.06

10 8 4.48 ± 3.96 0.83 ± 0.05

100

2 0 7.83 ± 3.86 0.76 ± 0.06

3 1 7.05 ± 4.00 0.78 ± 0.06

4 2 6.49 ± 4.12 0.79 ± 0.06

5 3 5.88 ± 4.20 0.81 ± 0.06

6 4 6.03 ± 4.32 0.82 ± 0.06

7 5 5.64 ± 4.43 0.83 ± 0.06

8 6 5.18 ± 4.44 0.84 ± 0.05

9 7 4.78 ± 4.48 0.84 ± 0.05

10 8 4.58 ± 4.48 0.85 ± 0.04
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Table III

Summary TRE and DSC for the βmeta = 0.25, 1.0 variants at each step of few-Shot learning. values are 

presented ± SD. TRE in MM.

βmeta F Grad. Updates Median TRE Mean DSC

0.25

2 0 7.06 ± 4.00 0.75 ± 0.07

3 1 6.95 ± 3.95 0.76 ± 0.07

4 2 6.44 ± 4.03 0.78 ± 0.06

5 3 5.70 ± 3.88 0.80 ± 0.05

6 4 5.35 ± 4.00 0.80 ± 0.05

7 5 5.26 ± 4.04 0.81 ± 0.05

8 6 4.62 ± 4.06 0.82 ± 0.05

9 7 4.31 ± 4.11 0.83 ± 0.05

10 8 4.33 ± 4.11 0.84 ± 0.05

1.0

2 0 7.54 ± 3.76 0.79 ± 0.05

3 1 7.17 ± 3.77 0.81 ± 0.05

4 2 6.62 ± 3.73 0.83 ± 0.05

5 3 5.05 ± 3.64 0.84 ± 0.05

6 4 4.41 ± 3.64 0.84 ± 0.04

7 5 4.22 ± 3.71 0.85 ± 0.04

8 6 3.64 ± 3.84 0.86 ± 0.04

9 7 3.22 ± 3.93 0.87 ± 0.04

10 8 3.29 ± 3.97 0.87 ± 0.04
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Table IV
Summary TRE and DSC for the Fmax = 5, 15 variants at each step of few-Shot learning. 

values are presented ± SD. TRE in MM.

Fmax F Grad. Updates Median TRE Mean DSC

5

2 0 6.49 ± 3.80 0.79 ± 0.06

3 1 5.67 ± 3.94 0.82 ± 0.06

4 2 4.58 ± 3.91 0.84 ± 0.05

5 3 4.50 ± 3.93 0.85 ± 0.04

15

2 0 7.19 ± 4.01 0.76 ± 0.04

3 1 6.82 ± 4.08 0.77 ± 0.05

4 2 6.53 ± 4.19 0.78 ± 0.05

5 3 6.33 ± 4.27 0.79 ± 0.05

6 4 5.71 ± 4.16 0.80 ± 0.05

7 5 5.51 ± 4.14 0.81 ± 0.06

8 6 5.36 ± 4.10 0.81 ± 0.06

9 7 5.44 ± 4.06 0.81 ± 0.06

10 8 4.83 ± 4.03 0.81 ± 0.06

11 9 4.37 ± 3.99 0.82 ± 0.06

12 10 4.03 ± 3.96 0.83 ± 0.06

13 11 3.86 ± 3.95 0.84 ± 0.06

14 12 3.64 ± 4.01 0.84 ±0.06

15 13 3.58 ± 4.00 0.84 ± 0.06
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