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Abstract

An interplay of experimental and computational methods is required to achieve a comprehensive 

understanding of protein–RNA interactions. UV crosslinking and immunoprecipitation (CLIP) 

identifies endogenous interactions by sequencing RNA fragments that copurify with a selected 

RNA-binding protein under stringent conditions. Here we focus on approaches for the analysis 

of the resulting data and appraise the methods for peak calling, visualization, analysis, and 

computational modeling of protein–RNA binding sites. We advocate that the sensitivity and 

specificity of data be assessed in combination for computational quality control. Moreover, we 

demonstrate the value of analyzing sequence motif enrichment in peaks assigned from CLIP 

data and of visualizing RNA maps, which examine the positional distribution of peaks around 

regulated landmarks in transcripts. We use these to assess how variations in CLIP data quality 

and in different peak calling methods affect the insights into regulatory mechanisms. We conclude 

by discussing future opportunities for the computational analysis of protein–RNA interaction 

experiments.
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Introduction

RNA-binding proteins (RBPs) are key orchestrators of posttranscriptional RNA regulation. 

They determine the fate of a transcript throughout its life cycle, directing regulatory stages 

including splicing, polyadenylation, localization, translation, stability, and degradation. 

Over a thousand human RBPs have been annotated and identified by mass spectroscopy 

studies (1, 2). RBPs specify their RNA binding sites by recognizing a combination of 

features, including RNA sequence motifs, RNA modifications, RNA structural motifs, and 

interactions with additional RBPs that bind at nearby loci (3). Each transcript interacts with 

many different RBPs to assemble into a ribonucleoprotein complex (RNP), which changes 

as the RNA passes through the various regulatory stages. RNP formation depends on the 

abundance of RNAs and RBPs in each cell type and on their posttranslational modifications 

and is sensitive to the competition between multiple factors for overlapping binding sites (4).

Due to the combinatorial and dynamic assembly of RNPs, it is crucial to identify the 

protein–RNA interactions that form within cells. Crosslinking between RNAs and proteins 

can be achieved by ultraviolet C (UVC) irradiation at 254 nm due to the photoreactivity of 

RNA bases (5). This has been exploited by the UV crosslinking and immunoprecipitation 

(CLIP) method that uses UV light to crosslink proteins covalently to RNAs in intact cells 

or tissues, followed by purification and sequencing of RNA fragments that were crosslinked 

to an RBP of interest (6). The development of CLIP follows a rich history of preceding 

methods, including RNA immunoprecipitation (RIP). Over the last 15 years, many variant 

protocols of CLIP have evolved, and in combination with high-throughput sequencing, they 

have led to a wealth of data, encapsulating transcriptome-wide binding profiles of hundreds 

of RBPs in multiple species, tissues, and cell lines (7). Proteomics approaches have also 

been developed to study protein–RNA interactions and have recently been reviewed (8); they 

provide a complementary approach to CLIP but are not discussed further here. The original 

CLIP and the derived variants all rely on sequencing; therefore, we use the term “CLIP” to 

refer generically to protocols that purify covalently crosslinked protein–RNA complexes and 

then sequence the bound RNA fragments. In contrast, we use the term “CLIP-seq” to refer to 

the protocol that was used by the first publication employing this term (9), which employed 

the original CLIP protocol (Table 1; see also Supplemental Table 1).

Two orthogonal approaches to the analysis of CLIP data differ by their focus either on a 

specific RBP or on the interacting transcripts. In the RBP-centric approach, researchers aim 

to identify the RNA sequence, structure, and other features that are common to the binding 

sites of an RBP across the transcriptome in order to unravel the mechanisms underlying 

the specificity of these interactions and to identify functional relationships between the 

bound RNAs and their common regulatory principles. For example, the earliest CLIP 

studies of Nova proteins demonstrated that most RNA targets encode proteins with synaptic 

functions, identified the features of clustered YCAY motifs enriched at the endogenous 

binding sites, and defined the RNA map that demonstrated position-dependent activity of 

Nova at regulated exons and polyadenylation sites (6, 10, 11). The RNA-centric approach, 

on the other hand, examines the binding positions of a broad spectrum of RBPs on a specific 

transcript or set of transcripts. This approach requires integration of CLIP data sets for 

multiple RBPs, which can be achieved by comparing available CLIP data published by 
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multiple research groups. The results of both approaches need to be integrated with other 

methods to unravel fully the functions and mechanisms of action of RNPs (see the sidebar 

titled RNA Maps: Integrating CLIP with Orthogonal Methods).

Here, we review computational and modeling methods and use visualization of enriched 

motifs and RNA maps to examine how the use of different methods impacts the biological 

insights gained from CLIP data. We start with a short evaluation of the experimental 

methods from a bioinformatic perspective to understand how the technical details of various 

CLIP protocols impact the specific requirements for the computational approaches. We 

then proceed through the primary stages of CLIP data analysis: (a) quality control, (b) 

peak calling, (c) binding site modeling, and (d) functional evaluation. At each stage, we 

explore the pertinent issues and potential pitfalls to elucidate how RBPs recognize and act 

on specific transcripts. In the penultimate section, we broach what will likely become an 

important avenue of study in the near future: the integration of CLIP data from different 

RBPs. This will lay the foundations for developing an understanding of the complex 

network of RBP-RNA interactions. In concluding, we propose a set of standards as a 

framework for CLIP data analysis.

RNA Maps: Integrating CLIP with Orthogonal Methods

An RNA map is a conceptually simple yet powerful tool initially developed to explore 

the functional impact of Nova-binding motifs on splicing to predict Nova’s action 

genome-wide (10). It visualizes the positional distribution of assigned binding sites 

(commonly CLIP peaks or motifs) of the target RBP around regulated landmarks in 

transcripts (such as alternative exons for splicing regulators). Landmarks are defined by 

an orthogonal method, for example, by RNA-seq analysis of RBP knockout cells or 

tissues to identify the regulated exons. The distribution around each regulated landmark 

can be visualized as a heatmap, or summarized as a metaprofile (Figure 2d). To gain 

functional insight, researchers should also plot or use the distribution around control 

landmarks (such as unregulated exons) to determine binding enrichment, thus providing 

a sense of scale when comparing across experiments. The control variability can be 

examined using bootstrapping to determine the significance of enriched binding (97). To 

simplify implementation for general users, researchers have designed the rMAPS and 

expressRNA web servers to generate RNA maps using motifs or CLIP peaks around 

regulated exons and polyA sites (97, 98).

These maps are of great value not only in assessing RBP function, but also in validating 

CLIP experiments, since the enrichment of CLIP peaks around RNA features regulated 

by the same protein can serve as evidence of data specificity. The proportion of regulated 

RNAs with CLIP peaks at expected positions also provides insight into the sensitivity of 

data. In Figures 3 and 4, we use RNA maps to examine the sensitivity and specificity 

of CLIP peaks obtained by different CLIP methods and different peak calling tools or 

parameters.
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Differences between CLIP Methods from the Perspective of Data Analysis

Despite the many variations of CLIP, its core principles mostly remain the same (7) (Figure 

1). The covalent bond formed upon UV crosslinking allows the RNAs to be fragmented by 

a limited concentration of RNase after lysis, which is followed by purification of the RBP 

of interest under stringent conditions. Usually, an antibody is used to immunoprecipitate 

a specific RBP, which is separated via sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and visualized together with the crosslinked RNA fragments. 

The complex is then excised from the membrane and treated with proteinase K to remove 

the bulk of the RBP, leaving behind a short polypeptide at the crosslink site and releasing the 

RNA fragments. The fragments are then reverse-transcribed into cDNAs, and the resulting 

cDNA library is sequenced. Initially, CLIP relied on traditional Sanger sequencing to 

identify 340 RNA fragments that provided the first glimpse into the binding sites of the 

neuron-specific Nova proteins (6), but now, high-throughput sequencing enables us to gain a 

more comprehensive view across the transcriptome.

Resolution and Sensitivity

From the perspective of data analysis, CLIP methods can be divided into three principal 

approaches (Table 1, Figure 1). The division relates to the effect on reverse transcription of 

the polypeptide that remains at the crosslink site of fragmented RNAs. This can result in 

cDNAs that either (a) read through the peptide without any mutations, (b) read through the 

peptide but introduce a mutation at the crosslink site, or (c) truncate at the crosslink site.

The original CLIP method can only amplify cDNAs that fall into the first two categories 

because both adapters required for cDNA amplification are ligated to the RNA fragments, 

and therefore, the whole fragment needs to be reverse-transcribed along with its adapters. 

This method employs UVC light (254 nm) for crosslinking, which normally leads to only a 

minor proportion of cDNAs containing crosslink-induced mutations (12). Therefore, binding 

sites for CLIP and its derived methods such as HITS-CLIP are usually assigned on the basis 

of the whole-sequenced reads (6, 11). Nevertheless, mutations, and especially deletions in 

CLIP cDNAs, can help increase the method’s resolution (13).

In photoactivatable ribonucleoside–enhanced CLIP (PAR-CLIP), cells are preincubated with 

photoreactive ribonucleosides, usually 4-thiouridine (4SU), which enables the use of UVA 

light (365 nm) for crosslinking (14). Similar to CLIP, PAR-CLIP only amplifies cDNAs that 

fall into the first two categories, but it increases the proportion of cDNAs with mutations. 

About 50% of PAR-CLIP cDNAs normally contain thymidine-to-cytidine transitions at the 

crosslink site, which is the basis for binding site assignment used by most tools developed 

for PAR-CLIP analysis (14). However, a large proportion of PAR-CLIP cDNAs lacks 

transitions, and longer cDNAs may contain more than one transition, and thus, only a subset 

of cDNAs can be used for nucleotide-resolution studies (14).

Individual-nucleotide resolution CLIP (iCLIP) was developed to capture the third category 

of cDNAs that truncate at the crosslink site, in addition to the first two categories. This is 

achieved by ligating the second adapter to the cDNAs rather than the RNA fragments (15). 

In truncated cDNAs, the adapter is ligated exactly at the positions of their truncation. It has 
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been estimated that approximately 90% of cDNAs in iCLIP truncate at the crosslink site (12, 

16). Therefore, the nucleotide in the genome adjacent to the 5′ end of the aligned iCLIP 

cDNAs most often corresponds to the crosslink site. The same data analysis method applies 

to iCLIP and its more recent variants, including infrared CLIP (irCLIP) and enhanced CLIP 

(eCLIP) (17, 18), which also amplify truncated cDNAs.

The sensitivity of all CLIP methods is driven to a large extent by this choice between the 

three principal approaches. The relative crosslinking efficiency with UVC or UVA differs 

between RBPs (19), and this affects the relative sensitivity of CLIP versus PAR-CLIP 

methods. Both CLIP and PAR-CLIP lead to the loss of cDNAs truncating at crosslink 

sites, which represent ∼90% of the total in most cases; therefore, it is expected that 

iCLIP increases the sensitivity of the method by amplifying the truncated cDNAs. If 

UVA crosslinking upon 4SU preincubation is beneficial, it can be combined with iCLIP 

in the variant termed 4SU-iCLIP (16, 20). Sensitivity can be considered at two levels: the 

first basic and the second functional. Crudely, the number of unique cDNAs in a CLIP 

experiment does give a basic indication of sensitivity. However, assessment with functional 

orthogonal data using RNA maps (Figure 2d) affords a more accurate delineation. Taking 

PTBP1 as an example, based on unique cDNA counts alone, eCLIP and iCLIP have similar 

sensitivities, while irCLIP’s is an order of magnitude greater (16). However, if we consider 

the distribution of raw crosslink sites, ∼18% of silenced exons contain an iCLIP crosslink 

site at the peak position at the 3∗ splice site, compared to ∼15% for irCLIP and ∼4% for 

eCLIP (Figure 3a). The choice of exons or cell lines does not account for the difference in 

eCLIP compared to iCLIP and irCLIP, as the sensitivity does not increase when using exons 

defined by RNA-seq analysis of knockout PTBP1 in the same cell lines used to produce the 

eCLIP data (see Supplemental Figure 1). Although only one example, this demonstrates that 

the number of unique cDNAs is only an approximate measure of sensitivity and that the 

crosslinking signal around regulated events should be used, whenever possible, as a more 

appropriate measure of data sensitivity. We particularly recommend this second functional 

approach when comparing different CLIP methods.

Specificity

The specificity of CLIP depends less on the choice of the three principal methods and more 

on the stringency and validation of the steps required for purification of the protein–RNA 

complex of interest. Many RBPs participate in stable RNPs that do not dissociate even under 

the relatively stringent immunoprecipitation conditions of the standard CLIP, especially in 

the presence of RNA fragments that could help to stabilize them. Copurified RBPs can have 

different RNA specificities and functions from the RBP of interest, and therefore ideally no 

additional RBPs should be copurified to ensure high specificity. A denaturing condition is 

used by some CLIP variants to disrupt interactions with copurified RBPs, but this is not 

possible when using antibodies that recognize the natively folded state of endogenous RBPs.

Separation of complexes by SDS-PAGE and membrane transfer followed by their 

visualization, along with the use of appropriate negative controls, is thus a crucial quality 

control step for methods that omit a denaturation step. Greater care needs to be taken 

when analyzing data from methods that neither denature nor visualize the complexes, 
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such as eCLIP (17), since it cannot be assumed that the sequenced reads represent only 

RNAs in contact with the protein of interest. In these cases, careful computational quality 

control analyses, for example, orthogonal data and RNA maps, should be used to examine 

specificity on a protein-by-protein basis. As is evident by the analysis of PTBP1 RNA 

splicing maps (Figure 3b), the specificity of iCLIP is highest, since the silenced exons are 

specific in the enrichment at the 3′ splice site, while enhanced exons contain enrichment 

downstream of the exons. The specificity is also high for eCLIP despite its low sensitivity, 

with enrichment at silenced but not enhanced exons. However, specificity is low for irCLIP, 

where the enrichment at the 3′ splice site for silenced exons is only slightly larger than the 

enhanced exons.

The potential for nonspecific signal is higher for RBPs with low abundance or poor 

crosslinking efficiency. Crosslinking between RNAs and proteins requires close contacts 

between an amino acid and the nucleobase. Moreover, analyses of diverse CLIP data sets 

indicate that the crosslinking efficiency of uridines and uridine-rich motifs is highest (12, 

16), and therefore RBPs that contain such motifs in their binding site are expected to 

crosslink best. Therefore, it is least challenging to produce highly specific CLIP data for 

RBPs that bind to uridine-rich sequences, especially if they are abundant, such as PTB1 and 

ELAV1. However, low-abundant or poorly crosslinking RBPs, which likely include many 

noncanonical or double-stranded RBPs, such as STAU1, may require denaturing conditions 

to ensure that the isolated RNA fragments are specific (21). Taken together, visualization of 

protein–RNA complexes with SDS-PAGE analysis can validate the specificity of purification 

across a broad range of RBPs and conditions, thus simplifying downstream computational 

analyses.

A Considered Clip Analysis Strategy

At its outset, CLIP data analysis follows a similar pipeline to most next-generation 

sequencing, but it diverges in its experimental quality assessment and the subsequent 

determination and functional integration of the identified binding sites (Figure 1). In this 

section, we first note the nuances of read alignment particular to CLIP. We then delve 

into the distinct analytical issues faced by the experimental choices, detailing the CLIP 

quality measures necessary to appraise any results. We then consider the many challenges 

encountered in elucidating binding sites from the aligned reads. Finally, we end by looking 

at ways to distill the properties of these sites and to relate them to biological functions.

Read Alignment

After a standard quality assessment of the sequencing run, the CLIP data analysis pipeline 

turns to read alignment. Comprehensive benchmarking of RNA-seq read aligners has 

recently been undertaken and is outside the scope of this review (22). However, there are 

three factors that should be considered when tailoring this step to a CLIP experiment.

The first decision is whether to align to the transcriptome or the genome. The main 

advantage of transcriptomic over genomic alignment is increased sensitivity, with the 

proviso that only annotated mature transcripts are considered. However, for the majority 

of cases, where there is usually sufficient experimental sensitivity, alignment to the genome 
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is preferred. This ensures an appropriate assessment of the many RBPs that bind to precursor 

messenger RNA (pre-mRNA) transcripts, for example, in introns. Moreover, the use of 

a splice-aware aligner would accommodate those that bind to mature messenger RNA 

transcripts.

Second, the use of unique molecular identifiers (UMIs) in iCLIP and later methods accounts 

for the amplification biases introduced by polymerase chain reaction (PCR), but to be able to 

deconvolve UMIs for cDNAs that map to the same position, it is best to use only uniquely 

aligned reads. To maximize the fraction of reads that can be aligned uniquely, the originating 

cDNA needs to be sufficiently long. When cDNA lengths are greater than 35 nucleotides, 

high alignment rates can be achieved even with common RBP-bound repetitive elements, 

such as Alu elements (23, 24). However, if the RBP under study prefers other repetitive 

elements, such as microsatellite repeats or small nuclear RNA clusters, then a customized 

solution may be necessary. One option for these cases is to align reads to a consensus 

repetitive sequence (25). Another is to use expectation-maximization to assign multimapped 

reads (26), but with this approach, the mapping position cannot be used to identify PCR 

duplicates.

Third, more technically, it is important to fine-tune some of the alignment parameters to 

the CLIP method that has been used. The number of mismatches allowed must be chosen 

with care: Too lax a setting will align reads with multiple sequencing errors. These may 

subsequently be identified spuriously as originating from different cDNAs when collapsing 

duplicates. It will also affect the sensitivity and specificity of the mutation-based methods. 

Specifically for the truncation-based methods, it is important to disable soft-clipping to 

ensure that the crosslink site, reflected in the start of the read, is properly aligned.

Quality Control

Thorough quality assessment is imperative to understand the CLIP experiment, both for 

the appropriate assignment of binding sites and for integrating with other data sources. 

We propose that measures that evaluate sensitivity and specificity of data be explored in 

combination. The simplest measures of sensitivity and specificity are the number of unique 

cDNAs in the sequencing library and the number of significant peaks, respectively. In the 

future, it will be valuable to use a consistent computational approach to evaluate these 

basic quality measures in all publicly available data produced by the different variants of 

CLIP, thereby obtaining an estimate of the variation in existing data, and potentially create 

standards for future experiments.

Complementary DNA complexity—cDNA complexity provides an assessment of the 

sensitivity of the CLIP experiment. The total number of unique cDNAs helps one appreciate 

the dynamic range of RBP-RNA interactions that can be detected. Complexity reflects 

several biological and technical factors: the abundance and crosslinking efficiency of 

the RBP and the efficiency of immunoprecipitation, adapter ligation, and cDNA library 

preparation. PCR duplication, although necessary for the method, can create difficulties 

for monitoring library complexity. Amplification of cDNA fragments is not uniform but 

is affected by sequence content and length. In the original CLIP protocols, it is therefore 
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necessary to remove the duplicate reads and consider only the unique reads to count the 

cDNAs reliably. The CLIP Tool Kit achieves this by collapsing the identical reads before 

alignment (27), but ideally, reads are collapsed after alignment based on identical genomic 

start positions, since this accounts for read variations that result from sequencing errors (13).

The current gold standard is a more sophisticated approach that experimentally labels each 

cDNA as it is reverse transcribed (15, 28). This is done by introducing a UMI, which 

is a randomized sequence of nucleotides (hence, it is also known as a random barcode 

or randomer), into the reverse transcription primer. After PCR amplification, the UMI 

remains as a hallmark of unique cDNAs. iCount and other tools developed for the analysis 

of iCLIP data use UMIs in combination with the read start position to count the unique 

cDNAs accurately and thus obtain reliable information about cDNA complexity and enable 

quantitative analysis of crosslinking at individual nucleotide positions. The use of UMIs is 

crucial to overcome the artifacts of PCR amplification and thus preserve the quantitative 

information present in the cDNA counts; this is particularly important in quantifying binding 

to high-affinity binding sites and in abundant RNAs.

Complementary DNA specificity—Establishing cDNA specificity is the most difficult 

evaluation, and yet the most important. It is mostly dictated by the purification of the RNA-

RBP complex, hence the importance of optimizing this process. Ground truth is often not 

known, and the appropriate measurement may vary between RBPs due to differing sequence 

and structure specificities. In practice, often only circumspect or post hoc approaches can be 

used.

The percentage of crosslink sites that occur in peaks is a basic measure of the capacity of 

the cDNA library to identify binding sites, and it provides some indication of specificity. 

Enrichment of RBP-specific, binding-related k-mers within peaks, compared to a suitable 

background region, also provides some reassurance. Enrichment of motifs [ascertained using 

alternative methods, such as RNAcompete (29)] within clusters of peaks gives another 

independent, complementary assessment of specificity. However, these last two will only 

work for RBPs that bind particular sequences or motifs; for those that do not, there will 

be little enrichment regardless. Finally, the integration of CLIP results with orthogonal data 

provides the best measure of specificity but requires the availability of such data. RNA maps 

(detailed in the sidebar titled RNA Maps: Integrating CLIP with Orthogonal Methods) are 

an efficient approach for visualizing crosslinking around transcriptomic landmarks that are 

relevant for the function of the RBP: for example, exon–intron junctions of regulated exons 

for RBPs involved in splicing.

While overlapping cDNA starts are a measure of potentially high specificity of iCLIP data 

for crosslink clusters, they can also reflect the aforementioned sequence preferences of the 

UV crosslinking reaction, which needs to be taken into account. Moreover, overlapping 

cDNA ends in iCLIP (and both sides of cDNAs in HITS-CLIP and PAR-CLIP) reflect the 

preferences of the RNases used for fragmentation (30). The alignment of cDNA ends can 

lead to a generic misalignment of the starts of cDNAs of different lengths; while this was 

initially interpreted as possibly indicating the presence of readthrough cDNAs (31), the 

RNase fragmentation biases were found to be the more likely cause (16). The alignment of 
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cDNA ends correlates with an enrichment of k-mers at cDNA ends, which is a useful tool 

to examine the biases introduced by RNA fragmentation. Optimized RNase fragmentation 

conditions produce a broad range of cDNA lengths and so avoid such biases, ensuring that 

the full binding sites can be defined (which is particularly important for long binding sites) 

(16). This also guarantees that the peaks identified by overlapping cDNA clusters are a true 

measure of data specificity, rather than an artifact of inappropriate RNase fragmentation.

Peak Calling

The main challenge of CLIP data analysis is related to the biological context of protein–

RNA complexes. Binding cannot be classified into simple binary categories of specific and 

nonspecific; instead, RBPs bind RNAs with a range of affinities and kinetics (32). Some 

RBPs associate with RNA polymerase and transiently interact with many low-affinity sites 

on nascent transcripts before finding a high-affinity binding site, and others can spread 

over larger regions of RNA after finding a high-affinity sequence. Many assemble on 

RNAs combinatorially as part of larger complexes. While the probability that an RBP will 

crosslink repetitively to a clustered set of crosslink sites is generally increased at sites with 

high affinity and favorable binding kinetics, the exact threshold for defining functionally 

relevant types of crosslink clusters depends on many factors, such as the type of RBP under 

study, the type of bound RNA, the function under regulation, and the binding position 

relative to other regulatory complexes. Thus, there are no absolute thresholds that can be 

set to distinguish low-affinity, transient binding from high-affinity, functional binding. This 

challenge could become insurmountable if data contain many nonspecific sites that do 

not represent direct interactions of the specific RBP. It is thus of paramount importance 

to maximize the specificity of CLIP data experimentally, since this can ameliorate the 

computational analyses needed to identify the functionally relevant binding sites.

Peak calling is the first step toward identifying the RNA sites that are highly occupied by the 

RBP: those that are most likely of functional significance. The basic approach searches for 

the pileup of aligned reads at specific positions on transcripts. In methods such as ChIP-seq 

and RIP, which tend to purify large protein–protein complexes as well as free DNA or RNA, 

the purpose of this step is largely to isolate the signal from the inherent background noise 

of the techniques. CLIP employs many unique experimental steps to remove such noise, 

including covalent crosslinking, RNA fragmentation, stringent purification, and visualization 

of purified protein–RNA complexes, and thus, in a fully optimized experiment, the mapped 

reads should almost exclusively correspond to the sites of direct protein–RNA contacts. 

Therefore, noise from nonspecific backgrounds should not be a major concern for CLIP data 

analyses. As evidence of the high specificity of CLIP experiments, the raw whole reads from 

Nova (Figure 2c) and PTBP1 HITS-CLIP (Figure 3a) and the raw crosslink positions from 

PTBP1 iCLIP (Figure 3a) yield highly position-dependent enrichment on RNA splicing 

maps.

Many peak calling tools have been developed (33), some specific for particular CLIP 

protocols, others more generally applicable (detailed in Supplemental Table 2). The large 

number of peak calling tools, which often come with adjustable parameters, may present 

a bewildering set of possibilities. This is further complicated by the different strategies 
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in identifying the crosslink sites by the various experimental protocols (Table 1; see also 

Supplemental Table 1). Benchmarking tools is challenging because of the differences in 

experimental protocols and our limited understanding of the ground truth regarding RNA 

binding sites in vivo (34, 35). Nevertheless, in this review, we attempt to demonstrate the 

impact of the different CLIP protocols and computational tools through use of the RNA 

maps, which combine CLIP with orthogonal functional data to derive an estimate of ground 

truth on the assumption that RNA landmarks regulated by an RBP should contain its nearby 

RNA binding sites (see the sidebar titled RNA Maps: Integrating CLIP with Orthogonal 

Methods). A comparison of peak calling by three tools in Figure 4 demonstrates that all have 

similar specificity when using iCLIP data as input, with iCount leading to highest sensitivity, 

since it detects significant crosslink clusters at the peak position at 3′ splice sites of 25% of 

the silenced exons.

Challenge 1: What to use to call a peak?—The first consideration is how to use 

a read to define a peak. This differs for the mutation-based and the truncation-based 

CLIP methods. For mutation-based methods, it is important to distinguish a mutation 

from confounders, such as sequencing errors, single-nucleotide polymorphisms, or somatic 

mutations in cell lines. Early tools, such as PARalyzer, addressed this issue either by setting 

a minimum number of mutations at a site or by limiting the number of mismatches permitted 

during alignment (36). Although a simple and effective way of reducing false positives, this 

strategy has the disadvantage of also reducing the sensitivity of the experiment. PIPE-CLIP 

improves on this strategy by modeling each event with a binomial distribution, with a 

success rate calculated from the read coverage (37). As a further refinement, wavClusteR 

uses a nonparametric, two-component mixture model to distinguish crosslink-induced 

mutations from noise and integrates this using a Bayesian network representation (38, 39).

For truncation-based methods, peak calling seems more straightforward: The nucleotide 

upstream of the start of the read is the crosslink position (which we term the “cDNA start”) 

and can be used to call peaks. However, there is a caveat. For the clear majority of the 

cDNAs, reverse transcription stops at the crosslink site, but it does still read through at 

times (this provides the signal for the readthrough-based methods). In iCLIP experiments of 

most RBPs, however, over 90% of cDNAs terminate at the crosslink site (12). Therefore, 

as discussed above, provided that there are limited cDNA end constraints and that cDNA 

sizes cover a broad range of lengths, the use of the read starts assigns crosslink sites with no 

positional bias (16). Finally, 4SU-iCLIP uses 4SU for crosslinking, as is done in PAR-CLIP, 

but then employs iCLIP protocol to prepare the cDNA library, raising the question whether 

mutations (as in PAR-CLIP) or truncations (as in iCLIP) should be used. Analysis of 

PTBP1 binding motifs in 4SU-iCLIP cDNAs indicates that truncations report a more reliable 

estimate of crosslink sites than transitions (16). This still needs to be evaluated for additional 

RBPs.

It is important to use the appropriate marker to call peaks. The eCLIP narrowPeaks publicly 

available from the ENCODE consortium was defined using an algorithm that used whole 

reads. However, such use of whole reads leads to misalignment of binding sites and loss of 

resolution, as is evident from PTBP1 motif analysis (Figure 2a). This can be solved using 

the truncation-based approach of the iCount algorithm, which defines peaks based on the 
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starts of mapped reads (Figure 2b), and a similar approach has also been implemented by 

the published eCLIP study (25). In summary, the use of whole reads is appropriate for the 

original variants of CLIP, and mutations can be used as alternative sources for peak calling, 

such as thymine-to-cytosine (T-to-C) mutations in PAR-CLIP, while the read starts should be 

used for iCLIP and other methods that are optimized for amplification of truncated cDNAs.

Challenge 2: What is a peak?—The next problem is defining what constitutes a peak: 

How high and how wide does the pileup of reads need to be? The height of a peak provides 

a guide as to the likelihood of a locus being a true binding site, while the width may indicate 

when one binding site should actually be considered as two adjacent ones. This is important 

because some RBPs have narrow, focused binding sites (e.g., PTBP1), whereas others bind 

more diffusely across a transcript (e.g., MATR3).

Peak height: The focus of most tools is calculating the probability that a given binding site 

does not belong to a background CLIP read distribution (34, 40). Generally, a probability 

distribution is fitted to the count data; differences in the tools arise from the generation of 

the background and the probability distribution function chosen to model the read counts.

The majority of available tools use variations on a negative binomial distribution. This is 

often used for count data because it can account for overdispersion (i.e., if the variance 

of data is greater than the mean). ASPeak uses this distribution unmodified (41). Piranha 

(42) and PIPE-CLIP (37) use a zero-truncated negative binomial distribution. It has been 

shown for a range of RBPs and CLIP methods that this zero-truncated negative binomial 

distribution fits the count data better than simple negative binomial or Poisson distributions 

(42). Piranha calculates the counts in user-defined bins across the genome; an appropriate 

size depends on the RBP. A zero-truncated negative binomial distribution is fitted to the 

data; bins where there is a higher read count than would be expected can then be selected as 

peaks using a p-value threshold.

The iCount tool, developed along with the iCLIP method, avoids fitting a specific 

distribution but uses permutation analysis (15; T. Curk, G. Rot, C. Gorup, J. Zmrzlikar, 

J. König, et al., manuscript in preparation, available at https://github.com/tomazc/iCount). 

The counts are randomly distributed a predefined number of times within a relevant region 

of interest (such as introns) on a gene-by-gene basis to generate a background. Then, the 

comparison of the observed distribution with the random one yields a false discovery rate. 

The primary disadvantage of this method is that, in order to generate meaningful random 

distributions, one needs an annotation to provide the regions of interest. A similar approach 

is used by the CLIP Tool Kit (27) and Pyicoclip (43).

CLIPper (44), the tool of choice of the ENCODE consortium (25), combines ideas from 

both these approaches. Similar to iCount, a false discovery rate is calculated in a first pass. 

However, by default, the reads are randomly distributed within the entire gene rather than 

a more localized region of interest (9, 44). (A user-defined window around a read can be 

used instead as a semiexperimental option.) In a second pass, similar to Piranha, peaks that 

have fewer reads than would be expected across the transcriptome are removed. However, a 

Poisson distribution is used rather than the zero-truncated negative binomial.
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A different approach is used by PARalyzer for PAR-CLIP. Here, for a given position, 

a kernel density–based classifier estimates a Gaussian density profile for both T-to-C 

mutations (signal) and the absence of T-to-C mutations (background). Loci where the signal 

is greater than the background are called as binding sites.

Peak width: Demarcating the width of a peak is of important biological relevance. As 

already noted, different types of RBPs have differing binding preferences. Some tools, such 

as PIPE-CLIP, cluster adjacent overlapping reads to assign peak width, but this strategy 

lacks biological validity, as read length is more dependent on technical factors, such as 

RNase activity, than on RBP binding preferences.

The strategy to discern peak width from the crosslink positions usually needs to be adjusted 

to the RBP under study. As a result, several tools require the user to set this window or 

clustering size, e.g., PARalyzer, Piranha, iCount. However, prior knowledge of the RBP 

is needed to do so effectively. In cases where this is not available, it may be helpful to 

compare peak and motif distributions (Figures 2a,b) or RNA maps with different settings 

of clustering size (Figures 2d, 3b, and 4). Our current default conditions rely on three-

nucleotide clustering windows for preliminary data exploration (Figure 2d), but crosslink 

sites from wider windows can be included to incorporate various types of RNA binding 

(Figure 3b). With this approach, it is evident that PTBP1 binding at 3∗ splice sites of 

silenced exons is highly clustered, and thus, the sensitivity at this position remains the same 

as for raw data, while sensitivity at control exons drops (compare Figures 3a and 3b). As 

further validation, this approach defines interaction sites with high sensitivity and specificity 

when using exons defined either by microarray (Figure 3b) or RNA-seq data (Figure 4).

Other methods utilize the read distribution to define the cluster boundaries on a statistical 

basis. wavClusteR uses a coverage-based algorithm called mini-rank norm to identify the 

boundaries by evaluating all putative clusters using a rank-based approach. The CLIP Tool 

Kit uses a valley-seeking algorithm, which uses user-defined thresholds based on the heights 

of local maxima within a cluster of peaks and the intervening valley read coverage to 

delineate adjacent peaks. Finally, CLIPper uses cubic spline fitting to fit a curve to the peak 

and defines the boundaries by excluding points on the curve that exceed the false discovery 

rate threshold. The precise margins for fitting the curve can be adjusted.

Taken together, the choice of the peak calling tool and settings for each tool can modify the 

sensitivity and specificity of data, thereby affecting the conclusions that are drawn (Figure 

4). Thus, two principles can be used to determine the optimal approach for peak calling: 

settings should be tailored to the biology of the RBP under study, and when performing 

comparisons between data sets, the same tool and settings should be used.

Challenge 3: How to account for variable RNA abundance?—The read count is 

not a direct measure of RBP affinity or indeed even the importance of a binding site. It can 

be influenced by other factors, most notably RNA abundance. This varies from gene to gene, 

and so the count of CLIP cDNAs within a transcript, or within an intron, is a composite 

measure of both RBP binding affinity and the abundance of the transcript or the intron. 

This is confirmed by the correlation between CLIP read counts and RNA-seq read counts 
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(42). A negative control lacking the specific antibody (usually replaced by nonspecific 

immunoglobulin G) is often performed as part of CLIP experiments, but due to the high 

stringency of the immunoprecipitation conditions in CLIP experiments, this negative control 

normally contains at least 100-fold fewer cDNAs than the specific experiments (15). Thus, 

if CLIP conditions are well optimized, the cDNA coverage from negative controls is too 

shallow to be used for correcting for RNA abundance.

To some extent, the CLIP data itself can be used to correct for the abundance of the different 

transcript regions. Most available data indicate that RBPs tend to crosslink quite broadly 

across their bound transcripts such that, in addition to the high-affinity binding sites that 

contain clustered crosslinking, many additional dispersed crosslink sites are present in the 

same transcripts, indicative of a low-affinity, scanning mode of binding. The density of such 

broadly dispersed crosslinking depends more on the abundance of transcript regions than on 

the presence of specific binding motifs. Thus, the randomization and permutation approach 

adopted by peak callers such as iCount, which uses the total number of CLIP cDNAs in each 

region to model the background distribution, implicitly models the variable RNA abundance 

between transcript regions.

In order to control for the impact of transcript abundance, one can obtain additional data 

in parallel with the CLIP experiment. RNA-seq data are the most commonly produced 

and have been used to normalize CLIP coverage within transcripts (42). Most peak 

calling algorithms cannot include RNA-seq or other independent count–based data for 

normalization, but Piranha and ASpeak are two exceptions. Piranha uses the data as a 

covariate in the zero-truncated negative binomial regression model for the counts, whereas 

ASpeak uses the data to calculate an expression-sensitive background.

There are limitations of using RNA-seq. Most commonly, polyadenylated or total RNA-seq 

data are used. However, many, if not most, RBPs strongly bind to pre-mRNA transcripts, 

especially to introns, which are not well covered by RNA-seq. In this case, it has 

been shown that normalizing the CLIP data using NET-seq (native elongating transcript 

sequencing), which captures nascent transcripts including pre-mRNA, improves recovery 

of binding motifs (45). An alternative approach is the generation of input libraries without 

immunoprecipitation (46). Here, the total lysate after treatment with RNase is loaded on 

the gel and transferred to the membrane. The RNAs that crosslink to all RBPs present in 

a selected section of the membrane are isolated and their cDNA libraries are prepared in 

the same way as for the specific immunoprecipitated RBP. A similar approach has been 

employed for the analysis of eCLIP data, where an enrichment score is calculated by 

dividing the cDNA count of a specific RBP at a given site by the size-matched input (SMI) 

read count (17).

Furthermore, it is not sufficient just to consider read counts per transcript for data 

normalization. The distribution of the reads along a transcript is also a factor. It has been 

observed with total RNA-seq that the abundance of reads along the long introns in the 

brain is variable, which results in a sawtooth pattern (47); interestingly, the long introns 

(especially introns longer than 100 kb) are strongly enriched in genes that are specifically 

expressed in the brain (48). Transcription of introns longer than 100 kb is expected to take 
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over 30 minutes, which is much longer than the time needed for any nuclear RBPs to 

assemble on introns, regardless of whether this binding is cotranscriptional. It is this long 

delay that leads to increased RBP binding to 5′ regions compared to 3′ regions of introns 

and the resulting sawtooth pattern. Thus, it is expected that most nuclear RBPs should have 

the sawtooth binding pattern on long introns expressed in the brain—the possible exception 

being RBPs that bind introns only after splicing is completed, such as the branchpoint 

binding protein that binds to spliced intron lariats. Indeed, a study using iCLIP (49) reported 

that most nuclear RBPs that bind to long introns in the brain show the sawtooth pattern, 

including FUS, TDP-43, and U2AF2. However, a study using CLIP-seq (i.e., the original 

CLIP method) reported that only FUS, but not TDP-43, has such a pattern, which was the 

basis for the conclusion that FUS binds via cotranscriptional deposition (50).

The difference between conclusions reached by iCLIP (49) and CLIP-seq (50) might reflect 

the differences in the quantitative nature of the two methods. Overlapping cDNAs that map 

to the same position on transcripts are much more common for TDP-43 than FUS because 

the binding pattern of FUS is more broadly dispersed across introns. Due to its use of UMIs, 

iCLIP can quantify cDNAs that map to the same genomic locations, while the quantitative 

analysis of binding patterns across introns might be affected by PCR amplification artifacts 

in CLIP-seq. While the reasons for the observed differences remain to be further examined, 

it is clear that technical differences can affect the biological conclusions drawn from CLIP 

data, and thus data quality analyses are needed to aid their interpretation. Moreover, methods 

to normalize the data not only by the variable abundance of RNAs as a whole but also by 

variable abundance between exons and introns, between different introns, and across long 

introns are necessary to allow a more reliable interpretation of the binding profiles.

Finally, an important consideration for data analysis is that most RBPs are enriched in 

a specific cellular compartment, where the abundance of available RNAs is likely to 

be different from that seen in RNA-seq or SMI libraries. As our appreciation of RBP 

localization in subcellular compartments grows, with techniques that fractionate the cell 

before performing CLIP (51, 52), it will be valuable to produce SMI data for these 

compartments also, thus controlling for the compartmental variations in RNA abundance.

Challenge 4: How to account for crosslinking biases?—It is well established that 

there are inherent biases in the UV crosslinking reaction, with preferential crosslinking 

between certain peptides and certain nucleotides. UVC-induced crosslinking, as used in the 

truncation-based methods, occurs predominantly at uridines (12). Furthermore, analysis of 

the SMI controls from eCLIP experiments identified 10 generically enriched tetramers (16). 

These generic motifs were enriched at cDNA starts of eCLIP and iCLIP data of multiple 

RBPs, indicating that they might reflect increased efficiency of crosslinking rather than 

simply the presence of a few dominating RBPs in these different experiments. All the 

generic motifs have a high uridine content, which is consistent with the uridine enrichment 

seen in iCLIP when using UVC for crosslinking (12) but not with crosslinking induced by a 

mutant RNA methylase in methyl-5-cytosine methylation-iCLIP (53).

The SMI control can be used to account for these biases as well as to normalize for RNA 

abundance. However, it is not yet clear whether the normalization process is sufficient 
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or whether peaks that overlap with those found in the SMI control should be subtracted. 

PureCLIP is one tool that uses a statistical framework to address this particular bias (54). 

It uses a hidden Markov model framework to incorporate experimental biases into the 

peak calling process. PureCLIP learns crosslink motifs from the SMI control data and 

incorporates this into the emission probability of the crosslink state. In this way, regions 

that correspond both to peaks and to generic motifs can be excluded to reduce the sequence 

artifacts that might arise from crosslinking preferences. However, this approach should be 

applied with care, since the binding preferences of many RBPs may include generic motifs; 

for example, proteins such as PTBP1 preferentially bind to uracil-cytosine-rich motifs, and 

therefore generic motifs are more strongly enriched at crosslink sites in PTBP1 iCLIP data 

(16).

Challenge 5: How reproducible are the data?—CLIP experiments should be 

replicated to ensure the robustness of the data and the resulting biological conclusions. 

The overall reproducibility can be assessed to some extent by correlating the number of 

crosslinks per peak between replicates. However, few tools explicitly leverage data across 

replicates in peak calling. One tool currently being developed, omniCLIP, aims to do so, in 

addition to modeling several confounding factors, including RNA abundance (55).

There are two ways to use replicates; the choice depends upon the quality of the experiment 

and the desired balance between sensitivity and specificity. If the sensitivity of the 

experiment is a concern, biological replicates can be merged before peak calling to boost it. 

This comes at a cost to the specificity of the results. An alternative that offsets this to some 

extent, but still increases sensitivity, calls peaks on each replicate separately, improving 

the signal-to-noise ratio. Then, taking the union of peaks from the replicates maximizes 

sensitivity. Of course, corroborative data would be needed to validate any resultant findings.

However, if specificity is of greater importance, then after peak calling on each replicate 

separately, the intersection of peaks can be used. Early studies took this route both to 

reduce the chance of peaks arising as an artifact of PCR duplication and to account for 

biological variation (11). The use of UMIs is now well established to deal with PCR 

duplicates. Nevertheless, replicate analysis does engender greatest confidence in the set of 

putative binding sites, particularly in experiments with greater expected biological variation, 

provided that the sensitivity of each replicate is sufficient to allow reliable peak calling 

within both the highly and the lowly abundant RNAs. Members of the ENCODE consortium 

have refined this approach by using the irreproducible discovery rate (56) originally 

implemented for ChIP-seq data to identify reproducible peaks across replicates using a 

statistical threshold (17). Given the great variation in RNA abundance levels, it remains to be 

tested if this approach introduces any bias for highly abundant RNAs.

Modeling Binding Sites and the False Negative Problem

Peak calling identifies putative binding sites, minimizing the false positive rate of 

the underlying experimental data. There are many tools for examining these results 

(Supplemental Table 3). Further simple analysis can reveal basic biological information 

about the RBP-RNA interaction: relationships with transcript regions or gene sets and 
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ontologies. However, a more complex characterization is required for a fuller understanding. 

CLIP methods have an intrinsic biological and computational limitation: They can only 

generate data about binding sites on expressed transcripts and in regions that are mappable. 

Furthermore, these data are restricted by the sensitivity of the experiment, as already 

discussed. This is termed the false negative problem. A more complex characterization 

is required for one to generalize the findings beyond the cell, tissue, or biological state 

in which the experiment was performed or indeed beyond the limitations imposed by the 

quality of the experiment. This starts with basic motif finding but extends to computational 

modeling.

Sequence motif finding—The putative binding sites can be used to learn about the 

sequence preferences of the RBP under study. Motif-finding tools, such as DREME 

(discriminative regular expression motif elicitation) (57) and HOMER (hypergeometric 

optimization of motif enrichment) (58), generally work by comparing a positive (bound) and 

negative (background) set of sequences and assessing the enrichment of motifs statistically 

(Fisher’s exact test for DREME and a hypergeometric test for HOMER) to generate position 

weight matrices.

The motif recognition domain may not be the RNA binding domain in the protein; hence, 

on the transcript, the motif may not be at the binding site but adjacent to it. Thus, for the 

positive sequence, a predefined window around the putative binding site should be used. 

Care needs to be taken with the selection of the background sequences, as this has a large 

influence over the statistical assessment of the enrichment. An appropriate set of sequences 

should be chosen based on available knowledge of the RBP for maximizing both sensitivity 

and specificity. This could be designed in silico (59), but it is probably more straightforward 

to select relevant genomic sequences informed by the data set. For instance, if one is 

investigating an RBP involved in splicing, such as PTBP1, with the putative binding sites 

highlighting a preference for intronic binding just upstream of the intron–exon boundary, 

a suitable background would be the unbound deep intronic regions of the targeted genes. 

Easier options, such as shuffling the positive sequences (DREME) or generating a random 

sequence of nucleotides (HOMER), should be used only as a second option. Shuffling will 

reduce the sensitivity of the detection of short motifs. A random sequence will reduce 

the specificity, as spurious motifs may be called significant since the true distribution of 

nucleotides in the genome is not random. The majority of these tools were designed for 

transcription factors and ChIP-seq data. Often, however, RNA motifs are shorter and more 

degenerate than their DNA counterparts. Recently, in kpLogo, a more customized tool has 

been developed to look for shorter sequence motifs and consider positional information (60). 

This may prove to be more useful for CLIP data.

Sequence motifs generated from CLIP data can be used to predict possible binding sites in a 

genomic sequence of interest, using tools such as FIMO (find individual motif occurrences) 

(61). They can also be compared with those generated from in vitro experiments, such as 

RNAcompete (29) or RNA Bind-n-seq (62, 63) to corroborate the specificity of the CLIP 

experiment. Motifs are known for only ∼15% of RBPs (29), however, and poor experimental 

specificity should not be conflated with a lack of sequence specificity.
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Although less well understood, it is known that structural context, in addition to sequence 

preference, plays a role in RBP binding preferences (64–67). This is likely one of the 

reasons for a lack of sequence specificity. Structural context should therefore be considered 

when predicting binding sites. However, it is difficult to incorporate adequately either the 

complexity of RNA structure or the interdependence between sequence and structure into 

motif discovery tools, despite attempts to do so in tools such as Zagros (67), MEMERIS (66) 

and RNAcontext (68). Recent programs have been more successful, at least in incorporating 

the interdependence, by using a hidden Markov model (ssHMM) (69), but computational 

modeling of binding sites is ideally placed to integrate multiple related features, as discussed 

next.

Computational binding site modeling—GraphProt was the first tool to use machine 

learning methods to incorporate sequence and structure into the analysis of CLIP data (70). 

The features are encoded using a graph kernel approach, and a support vector machine is 

used to build the model, which is essentially treated as a classification task. The utility 

of GraphProt in addressing the false negative problem has been demonstrated: Peaks not 

detected from the raw signal because they are in a poor mappability region were predicted 

using GraphProt, and furthermore, 90% have been experimentally validated (34). More 

advanced machine learning methods, such as deep boosting (DeBooster) (71), have helped 

to derive more accurate predictions using multiple binding site features.

Ideally, in vivo experimental data elucidating RNA structure would be used as inputs 

to these models. Despite the great advances that have recently been made by icSHAPE 

(in vivo click selective 2-hydroxyl acylation and profiling experiment; 72), DMS-seq 

(dimethyl sulfate sequencing; 73), DMS-MaPseq (dimethyl sulfate mutational profiling with 

sequencing; 74), and structure-seq (75, 76) in identifying paired or unpaired nucleotides and 

by hiCLIP (RNA hybrid and individual-nucleotide resolution CLIP; 21), PARIS (psoralen 

analysis of RNA interactions and structures; 77), LIGR-seq (ligation of interacting RNA 

with sequencing; 78), and SPLASH (sequencing of psoralen crosslinked, ligated, and 

selected hybrids; 79) in identifying RNA duplexes, these data are not yet comprehensive 

enough to use for modeling. Hence, computational predictions, often using thermodynamic 

free energy minimization, must instead be used, despite their fallibility (80, 81). Although 

SHAPE data can be incorporated into these predictions (82), their inherent limitations 

should be borne in mind when interpreting RBP-RNA interaction preferences.

RNA sequence and structure are not the only variables that drive RBP-RNA interactions. 

Other factors, such as cooperative binding, position in the gene relative to exons, and other 

features, also play a role (83). These parameters can be included in both unsupervised and 

supervised models. iONMF uses orthogonality-regularized non-negative matrix factorization 

to identify factors associated with RBP binding and to estimate the importance of their 

contributions (83). Alternative machine learning methods, such as iDeep and iDeepS, which 

use neural networks, have slightly improved these predictions (84, 85).

Integrative analysis of CLIP data across RNA-binding proteins—As increasing 

numbers of CLIP data sets are produced for an ever-widening range of RBPs, researchers 

naturally turn to exploring the RNA interactions of a given RBP in the context of all 
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the others. Several studies have already exploited CLIP data to identify coregulatory 

interactions, such as the competition between hnRNP C and U2AF2 in controlling Alu 
exonization (23) and the interplay between PTBP1 and MATR3 in coregulating alternative 

splicing (86). Databases such as DoRiNA 2.0 (87) and POSTAR (88) have been set up 

to help. DoRiNA 2.0 uploads RBP binding sites as they are published. This places a 

severe limitation on the comparisons that can be meaningfully undertaken. As already 

demonstrated, the use of both different CLIP techniques and different CLIP peak callers has 

a significant impact on the number, location, and size of binding sites that are discovered. 

POSTAR reanalyzes all the raw data using a different peak caller for each kind of CLIP 

variant. Non-negative matrix factorization can then be used to group together RBPs that bind 

to the same sites to explore co-operativity (83, 89). This enables more reliable comparisons 

across experiments, but it is best to avoid comparing RBPs for which different peak calling 

tools or different CLIP methods were used, since this could result in differences that are of 

a technical nature (89). Ideally, if a comparison is being undertaken using publicly available 

data, the approach taken by POSTAR should be bolstered first by assessing whether the 

quality of the experiment is sufficient even to proceed with a comparison, and second, by 

using the same peak calling procedure for all the RBPs that are part of the same comparison. 

An alternative approach has been to use matrix factorization directly on the crosslink sites as 

input, thus combining binding site prediction with integration of data across RBPs (83).

Integrative analysis of CLIP with orthogonal functional data—RNA binding 

profiles need to be integrated with orthogonal data to gain functional insight into the 

role of a given RBP-RNA interaction. Throughout this review, we have used RNA maps 

to demonstrate analytical considerations. However, RNA maps are also a powerful tool 

for studying the functions of these interactions and understanding the position-dependent 

mechanisms behind these functions (see the sidebar titled RNA Maps: Integrating CLIP with 

Orthogonal Methods) (90). Integration with nonsequencing data, such as analysis of RNA 

specificity with RNA Bind-n-seq or RBP subcellular localization, can also provide new 

mechanistic hypotheses, such as the potential role of DHX30 in mitochondrial transcription 

termination (25).

iCLIP, (YO)U-CLIP, (w)eCLIP

We are in an era of integrative genomics. Fusing insights gleaned from CLIP data from 

multiple RBPs with orthogonal genomic and nongenomic approaches will be the cornerstone 

for further studies of RBP-RNA interaction networks. It is crucial to attend to the minutiae 

of each data set to avoid being misled in this unifying vision. In this review, we have 

considered the effects of the experimental choices on the sensitivity and specificity of 

CLIP data. Appreciating these limitations is necessary to adapt the computational analyses 

appropriately. We have discussed the need to examine sensitivity and specificity of data 

in combination in order to give credence to the biological conclusions drawn. A unique 

feature of CLIP (when compared with methods such as chromatin immunoprecipitation or 

RIP) is its capacity to assess specificity experimentally via visualization of the purified 

RBP-RNA complexes, which also can be used to check that RNase fragmentation conditions 

are appropriate. Moreover, computational quality controls can be performed by combining 
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CLIP analysis with mechanistic (sequence motif) or functional data (RNA maps) concerning 

the RBP under investigation.

Several key steps can ensure a robust assignment of binding sites from CLIP data. First, 

peak calling is performed to distinguish high-occupancy sites from the more dispersed 

binding that is less likely to be of functional significance. Using cDNA starts in truncation-

based methods to identify the crosslink position is crucial to maintain the single-nucleotide 

resolution in the peak calling step. Second, the peaks require normalizing for RNA 

abundance and assessing for crosslinking bias. Further studies are needed to better 

understand how the precise parameters of both these aspects should be defined with due 

consideration to the binding characteristics of the RBP under study. Third, using peaks as 

an input for computational predictive models of the binding sites can help generalize the 

findings and address the false negative problem. To achieve these goals, researchers should 

provide a well-annotated protocol for each published experiment so that computational 

biologists can examine the potential sources of technical variation in the data. Dozens of 

different CLIP protocols are already available, and further changes will likely continue to be 

introduced. To enable appropriate quality control analyses, we suggest that the submission of 

each CLIP data set to a public database is accompanied by a protocol file that describes how 

each of the core 11 experimental steps of the protocol were performed (7).

Due to the increasing amount of data across species, tissues, cell lines, and RBPs, the 

computational analysis of protein–RNA interactions is well positioned to address new 

questions. For example, it is still difficult to examine the different modes of RBP binding: 

Could one distinguish low-affinity, scanning modes of binding from high-affinity, anchored 

binding from CLIP data? Other methods have generated large data sets on protein–protein 

interactions (91), protein localization (92), in vitro binding preferences (29, 62), and RBP 

function (25). Integration of these diverse data sets is a present challenge but will yield 

significant advances in our understanding of the role of protein–RNA interactions.

Finally, RBPs have been implicated in a range of diseases, from cancers to neurological 

conditions (93, 94). Studies of RBPs have already led to major medical advances. 

Understanding the interactions between the RBPs hnRNPA1/A2 and the SMN2 pre-mRNA 

has led to a break-through, FDA-approved treatment for spinal muscular atrophy using 

the antisense oligonucleotide nusinersen (95, 96). Developing appropriate computational 

approaches hand-in-hand with further applications of CLIP to primary cells and tissues, 

pluripotent stem cell models, and disease model organisms will undoubtedly lead to further 

insights into protein–RNA interactions that could be targets for future therapies.

Summary Points

1. Optimizing and visualizing purification of RBP-RNA complexes maximizes 

specificity.

2. Most current CLIP protocols can amplify truncated cDNAs, and analysis of 

cDNA starts forms the cornerstone of the analysis of data produced by these 

protocols.
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3. UMIs identify PCR duplicates, reducing downstream biases in the peak 

calling stage.

4. Peak calling should ideally be performed by evaluating the crosslink clusters. 

The window size parameters for clustering need to be adapted to the RBP 

under study.

5. SMI libraries are valuable to normalize the peaks for variable RNA 

abundance.

6. Motif analysis, in addition to providing mechanistic insight, elucidates the 

quality and resolution of the data.

7. Computational modeling could help address the false negative problem and 

evaluate the contribution of RNA sequence, structure, and other features to 

endogenous RNA recognition.

8. It is best to use a consistent experimental and analytical approach when 

integrating multiple CLIP data sets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CLIP the key experimental method for exploring protein–

RNA interactions using covalent crosslinking and 

immunoprecipitation

RNA map a tool for visualizing the function of protein–RNA 

interactions by integrating orthogonal data sets

Peak calling the computational process of identifying statistically 

significant binding sites from the experimental 

sequencing data

SDS-PAGE a technique to isolate proteins by their molecular weight 

using sodium dodecyl sulfate to denature the protein and 

polyacrylamide gel electrophoresis to separate them

UMI a unique molecular identifier of random nucleotides 

that is introduced to the reverse transcription adapter 

to enable reads arising from polymerase chain reaction 

duplication to be collapsed
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Figure 1. 
A computational biologist’s overview of the CLIP method, and its key experimental (left) 
and computational (right) steps. The experimental steps, common across most methods, are 

numbered according to the scheme in Reference 7. Highlighted in the center are the three 

primary data analysis approaches that rely on cDNA readthrough, mutation, or truncation, 

depending on the type of CLIP protocol used to generate the data (related to Table 1). 

The cDNAs that are captured by representative protocols are in black, while those that are 

lost during reverse transcription are in blue, and those that are discarded during analysis 
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are marked by dashed lines. Abbreviations: cDNA, complementary DNA; CLIP, UV 

crosslinking and immunoprecipitation; IP, immunoprecipitation; NET-seq, native elongating 

transcript sequencing; PAR-CLIP, photoactivatable ribonucleoside–enhanced CLIP; PCR, 

polymerase chain reaction; RNA-seq, RNA sequencing.
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Figure 2. 
Visualization of CLIP data: motif plots and RNA maps. (a) The distribution of PTBP1 

motifs from Reference 16 are shown around eCLIP peaks that are defined as narrowPeaks 

and are available from the ENCODE website (https://www.encodeproject.org/). This 

algorithm relies on the use of whole reads, which leads to misalignment of motifs and 

peaks. (b) The iCount peak caller (15) uses the starts of aligned reads to define the crosslink 

positions and peaks, leading to good overlap with PTBP1 motifs. (c) Integrating CLIP and 

orthogonal data allows further exploration of data quality using an RNA splicing map, which 

examines the distribution of clusters of assigned binding sites around silenced (blue) and 

enhanced (red) exons. This approach was first used with HITS-CLIP reads for Nova in 

mouse brain (11). In this panel, we assign a binding site to all positions in transcripts that 

overlap with at least one raw read, based on the 168,632 reads obtained by the original 

HITS-CLIP publication (11); even though we do not use peak calling, this results in high 

position-dependent enrichment that agrees well with the computationally derived RNA map 

(10), thus highlighting the high specificity of raw CLIP data. (d) An RNA splicing map 

of PTBP1 iCLIP data from HeLa cells (16) is drawn in two ways, with peaks called 

using iCount with 3-nt clustering (15). Regulated exons are defined using microarray data 

upon knockdown of PTBP1/PTBP2 in HeLa cells (99). Each row of the heatmap is a 

regulated exon with its flanking region. The positions of peaks are shaded dark red; PTBP1 
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motifs inside or outside the clusters are shown as black and light red, respectively. The 

metaprofile of significant crosslink clusters is plotted below. The enrichment of peaks 

around regulated exons compared to control indicates the mechanisms of splicing regulation 

and the specificity of CLIP data. The code to reproduce this figure is available for download 

at https://github.com/jernejule/clip-data-science. Abbreviations: CLIP, UV crosslinking and 

immunoprecipitation; eCLIP, enhanced CLIP; HITS, high-throughput sequencing; iCLIP, 

individual-nucleotide resolution CLIP; nt, nucleotide.
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Figure 3. 
Using RNA maps to examine sensitivity and specificity of CLIP data. PTBP1 is an abundant 

RBP that crosslinks efficiently and follows a position-dependent regulatory mechanism, thus 

making it suitable for data analysis via an RNA map. The regulated exons were defined as 

those with an absolute dIrank of greater than 1 on analysis of splice junction microarray 

data with ASPIRE3 software upon knockdown of PTBP1/PTBP2 in HeLa cells (99). In 

panel a, we compare the raw data for different experimental methods, with whole reads from 

HITS-CLIP in HeLa cells (100), crosslink positions from irCLIP (18) and iCLIP (16) in 

Chakrabarti et al. Page 31

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2023 April 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



HeLa cells, and eCLIP in HepG2 cells (25). This demonstrates that CLIP data can lead to 

strong enrichments even without peak calling, but this depends on the specificity of data. 

In panel b, we analyze the effects of peak calling on the crosslink positions from different 

experiments, with data from irCLIP (18) and iCLIP (16) in HeLa cells and eCLIP in 

HepG2 cells (25) analyzed using the iCount peak caller with 15 nucleotide clustering (15). 

The code to reproduce this figure is available for download at https://github.com/jernejule/

clip-data-science. Abbreviations: CLIP, UV crosslinking and immunoprecipitation; eCLIP, 

enhanced CLIP; HITS, high-throughput sequencing; iCLIP, individual-nucleotide resolution 

CLIP; irCLIP, infrared CLIP; RBP, RNA-binding protein.
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Figure 4. 
A comparison of different CLIP peak calling tools. RNA maps are used to demonstrate the 

differences in peak calling tools for the same iCLIP PTBP1 data set (16). To show that the 

RNA maps can be reproduced by exons defined using a different data source, we defined 

the regulated exons using RNA-seq data following PTBP1 CRISPR knockout in K562 cells 

from the ENCODE website. We identified the skipped exons detected using rMATS (101) 

using only junction counts and a p-value threshold of 0.05 and FDR threshold of 0.1. 

Silenced and enhanced exons were defined using an inclusion level difference threshold 

of 0.05; control exons were selected as those with a p-value greater than 0.1, an FDR 

value greater than 0.1, an inclusion level of less than 0.9, and an inclusion level difference 

less than 0.05. We compared the peaks called using iCount (15) (using a 15-nucleotide 

peak calling half-window and 30-nucleotide clustering window), Piranha (42) (using a 

30-nucleotide bin size and 30-nucleotide merging window), and CLIPper (25, 44) (using 

default settings). For this data set, Piranha and iCount have runtimes of ∼2 minutes and 

∼7 hours, respectively, using 1 processor; CLIPper has a runtime of ∼7 days using 20 

processors. The code to reproduce this figure is available for download at https://github.com/
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jernejule/clip-data-science. Abbreviations: CLIP, UV crosslinking and immunoprecipitation; 

FDR, false discovery rate; iCLIP, individual-nucleotide resolution CLIP.
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Table 1

The central features of CLIP methods from the perspective of data analysis
a

Methods Specificity Resolution Sensitivity

HTTS-CLIP, 
CLIP-seq, 
CRAC

++ to +++
Strong detergents and high-salt washes are used 
with further purification by SDS-PAGE and 
membrane transfer, which allows one to optimize 
RNase conditions and ensure that copurified 
RBPs and noncrosslinked RNAs are removed. 
Thus, only specific RNAs crosslinked to the 
immunoprecipitated RBP are normally isolated, 
but specificity depends on careful optimization 
and visualization of the purified complexes.

Oligonucleotide 
corresponding to the size 
of readthrough cDNAs

++
Limited by the loss of cDNAs truncated at 
crosslink sites

iCLIP, 4SU-
iCLIP, 
FAST-
iCLEP, 
BrdU-CLIP, 
irCLIP, Fr-
iCLEP, 
sCLIP

++ to +++, as in HTTS-CLIP Nucleotide corresponding 
to the start of truncated 
cDNAs

++ to +++
Increased due to amplification of truncated 
cDNAs, as well as other method-specific 
optimizations

eCLIP, 
FLASH

+ to +++
The purity of protein-RNA complexes is not 
validated by visualization. Blind cutting from 
the membrane is used in eCLEP, while SDS-
PAGE separation is removed in sCLIP. Thus, 
copurification of nonspecific RBPs is not 
monitored, which could result in large variations 
in specificity.

iCLAP, 
uvCLAP

++ to +++
Expression of affinity-tagged proteins permits 
rigorous washing with denaturing conditions, 
which removes copurified RBPs. However, 
expression of tagged RBPs could in some 
cases affect RNA specificity or lead to artifacts 
associated with overexpression.

PAR-CLIP ++ to +++, as in HTTS-CLIP Nucleotide corresponding 
to the crosslink-induced 
mutations

+ to +++
Limited by the loss of cDNAs truncated 
at crosslink sites but offset to differing 
degrees by increased crosslinking efficiency 
for some RBPs

CIMS of 
HITS-CLIP

++ to +++, as in HTTS-CLIP +
Limited by the loss of cDNAs truncated at 
crosslink sites and the low proportion of 
cDNAs with deletions

RIP-seq +
Preserves protein-protein interactions due to 
mild washing conditions or formaldehyde 
crosslinking, thus copurifying interacting RBPs

Transcript-level 
resolution achieved by 
the original version of 
RIP-seq, since it doesn’t 
fragment the bound 
RNAs

++
If no crosslinking is used, then transient 
weak interactions that take place in vivo 
can be lost during immunoprecipitation, 
and abundant RNAs tend to dominate the 
pulldown, leading to decreased coverage of 
introns or other low-abundant RNAs.

RIPiT-seq, 
DO-RIP-seq

++
Use of RNase reduces copurification of RBPs 
that bind to the same transcripts, but such RBPs 
can still be purified due to the preserved protein-
protein interactions. Sequential IP with two 
separate antibodies can specify RNPs composed 
of multiple RBPs in RIPiT-seq.

Oligonucleotide 
corresponding to the size 
of cDNAs due to the use 
of RNase to fragment the 
bound RNAs

++
Due to saturation with reads from abundant 
RNAs bound by copurified RBPs, the 
method has limited sensitivity for RBPs 
that primarily bind introns and other low-
abundant RNAs.

Abbreviations: +, moderate; ++, high; +++, best; 4SU, 4-thiouridine; BrdU, bromodeoxyuridine; cDNA, complementary DNA; CIMS, crosslink-
induced mutation sites; CLAP, crosslinking and affinity purification; CLIP, UV crosslinking and immunoprecipitation; CRAC, crosslinking and 
cDNA analysis; DO, digestion-optimized; eCLIP, enhanced CLIP; FAST, fully automated and standardized; FLASH, FADD-like IL-1 (3-converting 
enzyme-associated huge protein; Fr, fractionation; HITS, high-throughput sequencing; iCLAP, individual-nucleotide resolution CLAP; iCLEP, 
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individual-nucleotide resolution CLIP; IP, immunoprecipitation; irCLIP, infrared CLIP; PAR, photoactivatable ribonucleoside-enhanced; RBP, 
RNA-binding protein; RIP, RNA immunoprecipitation; RIPiT, RNA-protein IP in tandem; RNP, ribonucleoprotein complex; sCLIP, simphfied-
platform CLIP; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; seq, sequencing; uvCLAP, ultraviolet CLAP.

a
CLIP methods are grouped according to how the reads are used to identify binding sites. Associated technical features and limitations are 

summarized in terms of resolution, sensitivity, and specificity. Colors represent the quality of the parameter (red is poor, orange is adequate, and 
green is good).
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