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Abstract

Brains contain networks of interconnected neurons and so knowing the network architecture 

is essential for understanding brain function. We therefore mapped the synaptic-resolution 

connectome of an entire insect brain (Drosophila larva) with rich behavior, including learning, 

value computation, and action selection, comprising 3016 neurons and 548,000 synapses. 
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We characterized neuron types, hubs, feedforward and feedback pathways, as well as 

cross-hemisphere and brain-nerve cord interactions. We found pervasive multisensory and 

interhemispheric integration, highly recurrent architecture, abundant feedback from descending 

neurons, and multiple novel circuit motifs. The brain's most recurrent circuits comprised the 

input and output neurons of the learning center. Some structural features, including multilayer 

shortcuts and nested recurrent loops, resembled state-of-the-art deep learning architectures. The 

identified brain architecture provides a basis for future experimental and theoretical studies of 

neural circuits.

Introduction

One of the brain's defining characteristics is its synaptic wiring diagram, or connectome. A 

synapse-resolution connectome is therefore an essential prerequisite for understanding the 

mechanisms of brain function (1, 2). To date, complete synaptic-resolution connec-tomes 

have only been mapped for three organisms with up to several hundred brain neurons 

(3–5). Reconstructing and proof-reading circuits from larger brains has been extremely 

challenging. Synapse-resolution circuitry of larger brains has therefore been approached 

only considering select subregions (6–8). However, pervasive interconnectivity has been 

observed between brain regions (9, 10). Large-scale recording of functional activity in 

invertebrates (11) and vertebrates (12) demonstrates that neural computations occur across 

spatially dispersed brain regions, highlighting the need for brain-wide circuit studies.

We therefore sought to generate a comprehensive synapse-resolution connectivity map of 

a relatively complex brain of a small insect that has a rich behavioral repertoire and is 

experimentally tractable. We settled on the 1st instar larva of Drosophila melanogaster, 
which has a compact brain with several thousand neurons that can be imaged at the 

nanometer scale with electron microscopy (EM) and its circuits reconstructed within a 

reasonable time frame. Its brain structures are homologous to those of adult Drosophila 
and larger insects of other species (13–15). The 1st instar larva already has as rich a 

repertoire of adaptive behaviors as the 3rd instar (16–18), including short- and long-term 

memory (13, 19, 20), value computation, and action selection (19, 21–23). Furthermore, 

the circuit architecture is stable throughout larval stages (24). Thus, although neurons grow 

in size to accompany the growth of the body, they maintain the fraction of synapses they 

receive from specific partners. Finally, an exceptional genetic toolkit and transparent body 

make the Drosophila larva an excellent model for manipulating and recording activity in 

specific neurons in freely behaving animals and relating structural motifs to their function 

(19, 21–23, 25–27). We mapped all neurons of a Drosophila larva brain and annotated 

their synapses using computer-assisted reconstruction with CATMAID (see Methods) in a 

nanometer-resolution EM volume of the central nervous system (CNS) (23).

Results

Reconstruction of the Drosophila larva brain in a full-CNS electron microscopy volume

We previously generated a synaptic-resolution EM volume of the CNS of a 1st instar 

Drosophila larva (23, 28). This volume contains all CNS neurons, as well as sensory 
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neuron axons and motor neuron dendrites, enabling reconstruction of all neural pathways 

from sensory input to motor output. Previous studies have used this EM volume to 

reconstruct most sensory inputs to the brain (455 neurons), their downstream partners, and 

the higher-order learning center (total 1054 brain neurons). We reconstructed the remaining 

1507 neurons in the brain. The resulting dataset contains 480 input neurons and 2536 

differentiated brain neurons (3016 neurons total), and ~548,000 synaptic sites (Fig. 1, A and 

B, and fig. S1, A to D). Most neurons (>99%) were reconstructed to completion, and the 

majority of annotated synaptic sites in the brain (75%) were linked with a neuron (Fig. 1B). 

The remaining 25% were mostly composed of small dendritic fragments, reconstruction of 

which is labor-intensive. Moreover, prior studies have shown that neurons make multiple 

connections with the same partner on different dendritic branches (24, 28), so orphaned 

synapses may affect synaptic weights of known connections but are unlikely to add entirely 

new strong connections or change conclusions about strongly connected pathways.

Most neurons in Drosophila are mirrored across hemispheres, such that each neuron has 

a hemilateral homolog in the opposite hemisphere (28). We identified all homologous 

hemilateral partners using automated graph matching (29–31) followed by manual review. 

These pairings were robust across a variety of independent morphological and connectivity 

metrics (fig. S1, E and F). Our data suggest that 93% of brain neurons have hemilateral 

homologous partners in the opposite hemisphere (Fig. 1C). Kenyon cells (KC) (176 neurons) 

in the learning and memory center comprise most unpaired neurons (13).

These homologous partners were used to identify potential reconstruction errors and 

to target proofreading to such neurons (fig. S1D). To assess the effectiveness of this 

targeted proofreading, we randomly selected ten brain interneurons and fully proofread 

them according to previously described methods (23, 28). Most (74%) neuron→neuron 

connections, or edges, remained unchanged. Edges that did change after proofreading 

mostly displayed a modest increase in synaptic strength, suggesting errors of omission, 

which were previously described as the most common type of error (28, 32) (fig. S1, G 

and H). In the following sections, we investigate neuron and connection types, the flow of 

information from inputs to outputs, multisensory integration, cross-hemisphere interactions, 

feedback from outputs to inputs, and the level of recurrence in the brain and brain-nerve 

cord interactions.

Identification of all brain input neurons, interneurons, and output neurons

To facilitate the analysis of the connectome, we identified a set of broad neuron classes 

based on prior information. Brain neurons were divided into three general categories: input 

neurons, output neurons, and interneurons (Fig. 1, D and E). Brain input neurons (Fig. 1F) 

comprise two broad classes: (i) sensory neurons (SNs) with axons in the brain (33–35), and 

(ii) ascending neurons (ANs; fig. S2) that transmit somatosensory signals from the ventral 

nerve cord (VNC) (23, 36–38). Brain output neurons comprise three broad classes: those 

with axons terminating in the ring gland (RGNs), descending to the SEZ (DNsSEZ), or 

descending into the VNC (DNsVNC) (Fig. 1H). The full set of RGNs have been previously 

described (35, 36, 39), whereas DNsSEZ and DNsVNC were reconstructed and identified here 

based on axon projections (fig. S3).
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Brain interneurons comprised all neurons with cell bodies and axons and dendrites in the 

brain. We subdivided interneurons into classes based on previously known functional role or 

direct connectivity with neurons of known functional role (Fig. 1G and fig. S4). We started 

with sensory input neurons and identified their projection neurons (PNs) in the primary 

sensory neuropils and the neurons postsynaptic of these PNs in the brain center for encoding 

innate valences (the lateral horn, LH). We used the previously characterized neurons of 

the learning center [the mushroom body (MB)], including: the KCs that sparsely represent 

stimulus identities; MB output neurons (MBONs) that represent learned valences of stimuli; 

MB modulatory input neurons (MBINs, mostly dopaminergic, DANs) that provide teaching 

signals for learning; and their input neurons (MB feedforward neurons, MB-FFN) (19); 

MB feedback neurons (MB-FBNs that connect MBONs and MBINs) (19); and convergence 

neurons (CN) that integrate learned and innate valences from the MB and LH (21). We also 

identified all presynaptic partners of the three output neuron types.

Identification of all axons and dendrites in the brain

To better understand neuron morphology, we identified all axons and dendrites. In 

Drosophila, axons and dendrites contain most of a neuron's presynaptic and postsynaptic 

sites, respectively, and are separated by a linker domain devoid of synapses. We used 

an established strategy to identify the synapse-devoid linker domains (see Methods) (28). 

Axonic and dendritic compartments were defined as distal or proximal to these linker 

domains, respectively. These data were manually proofread, and an axon-dendrite split 

point was placed for each neuron. We determined that 95.5% of the brain (2421 neurons) 

are polarized with an identifiable axon and dendrite, 0.5% (13 neurons) are unpolarized 

with no definable axon, and 4.0% (102 neurons) are immature (Fig. 2A). These immature 

neurons were not the developmentally arrested, small undifferentiated (SU) neurons that 

later differentiate into adult neurons (40) and their nuclei were not heterochromatin-rich like 

those of SU neurons, despite their general lack of arborization or synaptic sites. It is likely 

that these immature neurons started to differentiate but were still in the process of neurite 

outgrowth and polarization when the sample was collected. This population includes 78 

immature KCs (13) but also 24 non-KC immature neurons, revealing limited neurogenesis of 

larval neurons outside the memory and learning center.

All polarized neurons segregated pre- and post-synaptic sites within axons and dendrites, 

respectively (Fig. 2B). However, we also found that axons often contained postsynaptic sites 

and dendrites contained presynaptic sites. Thus, neurons can synapse directly onto axons 

and dendrites can directly synapse onto other neurons.

Four connection types: axo-dendritic, axo-axonic, dendro-axonic and dendro-dendritic

Whereas axo-dendritic connections are well established in the literature, other nonca-nonical 

interactions such as axo-axonic connectivity (13, 41–44) and dendritic output (13, 45–47) 

have been observed but are not as well studied, and their prevalence was unknown. We 

therefore identified all axodendritic (a-d), axo-axonic (a-a), dendro-dendritic (d-d), and 

dendro-axonic (d-a) connections in the brain. Most synapses were a-d (66.6%) or a-a 

(25.8%); however, there were still many d-d (5.8%) and d-a synaptic sites (1.8%, Fig. 2C).
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Most (71.8%) of brain neurons received some level of reproducible axonic modulation (fig. 

S5). Notably, 95 neurons (3.8%) received especially large amounts of axonic input relative 

to output (fig. S5, A and B), including subsets of KCs, DANs, and predescending neurons 

(pre-DNsVNC). Neurons that make dendritic output onto other neurons were much rarer 

(16.5%), but some made an especially large amount of dendritic output relative to input, 

including subsets of KCs and predescending neurons (fig. S5, C and D).

The connectome can be thought of as four graphs (Fig. 2D), where all four graphs share 

the same set of nodes (i.e., neurons), and the four edge types (a-d, a-a, d-d, and d-a) 

each comprise a separate graph. We quantified the number of neurons (nodes), the density, 

and maximum node degree for each graph (Fig. 2E). The axo-dendritic graph had the 

highest density (i.e., the most connections) and highest number of neurons participating 

in connectivity, whereas the axo-axonic graph had the highest maximum degree (i.e., the 

maximum number of synaptic partners observed in an individual neuron).

We next wondered whether neurons were connected by one or multiple edge types. Most 

neuron partners (95%) were connected in only one way (a-d, a-a, d-d, or d-a). However, 

we also observed many edges with multiple connection types (fig. S6D), which occurred 

more often than expected by a null model. The most common examples were a-d combined 

with a-a, however many combinations were observed, including rare combinations of three-

or four-edge types between the same neurons. Four-edge connections were mostly found 

in local neurons (LNs, i.e., neurons involved in local processing in a specific neuropil) 

and predescending neurons, whereas three-edge connections were more dispersed amongst 

multiple cell types, but with a focus in LNs and predescending neurons (fig. S6E).

Numerically strong connections are reproducible across brain hemispheres

We investigated the distribution of edge strengths for each connection type (fig. S6, A and 

B). Most edges were weak (1 or 2 synapses) for all connection types (a-d: 60%, a-a: 75%, 

d-d: 79%, d-a: 91%; 66% across all types). However, strong edges (≥5 synapse) contained 

the majority (a-d: 61%; across all types: 55%; fig. S6B), whereas weak edges (1 or 2 

synapses) contained the minority (a-d: 22%; across all types: 28%) of synaptic sites.

We next investigated edge symmetry across the two brain hemispheres. Edge strength 

correlated with interhemispheric symmetry (fig. S6C): weak edges were mostly 

asymmetrical whereas strong edges were highly conserved between hemispheres. With edge 

strengths of at least 5 and 10 synapses, most edges (>80 and >95%, respectively) were 

symmetrical across all edge types. Similarly, weak, variable connections were observed in C. 
elegans (48). Given that many weak connections are not reproducible between hemispheres, 

we cannot discern whether the observed sto-chasticity is due to reconstruction error or 

developmental noise (28). We therefore focus much of our analysis on strong reproducible 

connections (see Methods). However, weak connections could have notable roles, such 

as maintaining a certain membrane potential (49), adding noise (50) or contributing to 

idiosyncratic variability in behavior.
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Distinct connection types differentially contribute to feedforward and feedback pathways

We studied the contribution of different edge types to either feedforward or feedback 

signals throughout the brain. We applied the signal flow algorithm (see Methods) to the 

graph with all edge types combined to sort neurons according to the flow from sensory 

to descending neurons. We used this input-to-output sorting to categorize connections in 

the brain: we defined connections as feedforward if they projected from neurons closer to 

sensory periphery to neurons closer to descending neurons, and vice versa for feedback 

edges. The a-d graph displayed the most feedforward synapses; a-a and d-d graphs displayed 

a mixture of feedforward and feedback, with a bias toward feedforward synapses; whereas 

the d-a graph displayed the most feedback synapses (Fig. 2F and fig. S6, F and G).

We next compared neuron sortings when performed on each of the four graphs 

independently (Fig. 2G and fig. S7). The sorting of the a-d graph best matched the summed 

graph (graph with all edge types combined) and sorted the network from sensory periphery 

to brain output neurons. The a-a and a-d graphs displayed a similar flow from sensory to 

output, despite the details of the sorting being different (Spearman's correlation coefficient 

= 0.44 between the signal flow sorting of the a-a and a-d graphs). Notably, the d-a graph 

sorting tended to be the inverse of the a-d graph's (Spearman's correlation coefficient = 

–0.61), i.e., starting at brain output neurons and ending at the sensory periphery. Most d-a 

edges (63%) were the inverse of a-d edges (i.e., there was a high edge reciprocity; Fig. 2H), 

which explains the inverse relationship between these graphs.

A-a and to a lesser extent d-d connections displayed high edge reciprocity, meaning many 

neurons displayed reciprocal a-a connections and d-d connections, respectively (Fig. 2H). 

Note that because all connections are directional, such reciprocal loops were not guaranteed 

to occur.

Hierarchical clustering estimates 93 connectivity-based brain neuron types

Next, we subdivided brain neurons into types based on their synaptic connectivity. We used 

the graph structure of all four connection types to spectrally embed all brain neurons in a 

shared space and clustered them using this representation (see Methods). This resulted in 

nested sets of clusters that can be examined at a desired granularity, from large groups of 

neurons to 93 fine-grained cell types (Fig. 3A and fig. S8, A to D). In contrast with results 

from community detection algorithms, our clusters are not necessarily composed of groups 

of neurons which communicate more densely within a cluster (see Methods). Instead, our 

clustering grouped neurons with similar connectivity to other neurons even if little direct 

intracluster connectivity was present—for example, olfactory PNs from the antennal lobe 

which function as parallel input channels and whose activity is regulated as a group (33). 

Thus, our approach is better suited to finding neuron types, rather than densely connected 

processing modules. Our connectivity-based clusters were internally consistent for attributes 

besides connectivity. The morphology of neurons within clusters was similar, with the mean 

within-cluster NBLAST score (0.80 ± 0.15 SD) much higher than expected by chance (0.5), 

even though clustering was based solely on connectivity and no morphological data were 

used (Fig. 3B and fig. S8, A and B). Furthermore, neurons with similar known functions 
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were usually found in the same or in related clusters (e.g., clusters of olfactory PNs, KCs, 

MBINs/MBONs, MB-FBNs, and others; Fig. 3A and fig. S8, D to G).

The connectivity within and between all clusters is displayed in Fig. 3C. Many (but 

not all) clusters displayed strong intracluster connectivity and shared output to similar 

postsynaptic clusters. A coarser granularity can also be selected (Fig. 3D) and used to 

explore connectivity between larger groups of related neuron types.

Most brain hubs are pre- or postsynaptic to the learning center

Hubs play key roles in brain computations and behavior (51). We therefore identified 

brain hubs for all connection types. To focus on the strongest hubs, reproducible across 

hemispheres, we filtered the connectome to include only strong connections observed in 

both hemispheres (using a ≥1% input threshold; see Methods). Brain hubs were defined 

as having ≥20 pre- or postsynaptic partners, respectively, i.e., an in- or out-degree of ≥20 

[this threshold is based on the a-d network mean plus 1.5 standard deviations (SD)]. We 

distinguished between in-hubs (over the in-degree threshold), out-hubs (over the out-degree 

threshold), and in-out hubs (over both thresholds). Using these criteria, we identified 506 

a-d, 100 a-a, 10 d-d, and 8 d-a hubs (Fig. 3E and fig. S9). a-d out-hubs were often observed 

in clusters closer to the sensory periphery, notably PNs, whereas a-d in-hubs were more 

often closer to output clusters, including pre-output and output neurons. Most (73%, 19 

of 26 pairs) of a-d in-out hubs were postsynaptic to the learning center output neurons 

(MBONs) and/or presynaptic to its modulatory neurons that drive learning (MBONs, CNs, 

MB-FBNs, MB-FFNs, and one pre-DNVNC pair postsynaptic to MBONs; Fig. 3F). Several 

in-out hubs (23%, 12 pairs) were convergence neurons (CNs), receiving input from both the 

MB and LH, which encode learned and innate values, respectively (19, 21). One such in-out 

hub is the CN-MBON-m1, shown to functionally integrate learned and innate values and 

bidirectionally control approach and avoidance (21).

Identification of all brain local neurons

Brain neurons are often divided into local neurons (LNs), involved in local processing within 

a specific brain neuropil or layer, and PNs, which carry information to other brain regions. 

To systematically identify all brain LNs, we developed two connectivity-based definitions 

(fig. S10, A and B). Type 1 LNs provide most of their output to neurons in their sensory 

layer (defined by the number of hops from SNs of a particular modality), and/or to the 

sensory layer directly upstream of them (fig. S10A). Type 2 LNs received most of their input 

and sent most of their output to any sensory layer, to which it did not belong (fig. S10B). 

In this way, we identified all previously published LNs (13, 33, 34) and many new putative 

LNs (fig. S10, C and D). We then defined all 2nd order PNs by exclusion, i.e., all neurons 

that were not local but were directly downstream of SNs (fig. S10E). Non-LN neurons that 

are higher order (i.e., not directly downstream of SNs) are usually termed output neurons 

from a specific neuropile (13, 52, 53) rather than PNs, but we refrain from labeling them 

in a specific way and leave them undefined as non-LNs. Although our LN definitions were 

connectivity-based, they provided results that matched morphological expectations. Namely, 

the Euclidean distance between the axon and dendrite of local neurons was small, whereas 

for PNs the axon-dendrite distance was large (fig. S10F). Notably, LNs engaged in more 
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noncanonical connectivity than PNs, including a-a, d-d, and d-a connections (fig. S10G), 

perhaps allowing LNs to regulate multiple aspects of activity in both the axon and dendrite.

Most of the LNs (98 neurons) that met the above definition were either 2nd order neurons 

directly downstream of SNs (i.e., one hop from SNs) or 3rd order neurons (two hops 

downstream of SNs; fig. S10C). A very small number of 4th-order LNs were also identified 

(6 neurons; fig. S10, C and D). Two of the three pairs were pre-DNVNC neurons and one was 

downstream of neurons that integrate learned and innate valence, suggesting some level of 

local processing in the pre-DNVNC and post-MB flayers. Overall, progressively fewer LNs 

were found further from the sensory periphery.

Identification of all brain sensory pathways

We systematically characterized brainwide pathways from distinct types of SNs to all 

other brain neurons. For the remainder of the paper, we will focus our analysis on a-d 

connections because they are the most abundant and best understood in terms of functional 

effects. We generated all possible a-d pathways from brain input neurons to all other 

brain neurons and ending at output neurons in fewer than 6 hops (Fig. 3G). We classified 

input neurons based on their known sensory modalities. Olfactory (33), gustatory (35), 

thermosensory (54), visual (34), gut (35), and respiratory state SNs (55) project directly to 

the brain. Somatosensory ANs from the nerve cord received direct or indirect input from 

mechanosensory (22, 23), nociceptive (23, 56), and proprioceptive SNs (28) (fig. S2 and 

table S1) and their axons projected to the brain.

We identified all 2nd-, 3rd-, 4th-, and 5th-order brain neurons downstream of each input 

modality (Fig. 4, A to C). For the purpose of this analysis, we defined the order of a neuron 

according to its lowest order input from any input neuron type. However, neurons can 

receive multipath input from the same input neuron type, through distinct paths of different 

lengths (e.g., they can be both 2nd-and 3rd-order). Many brain neurons (545; 21%) were 

2nd order, but most (1410; 56%) were 3rd order (received input from a SN in two hops). A 

considerable number were 4th order (377; 15%), but only 16 neurons (<1%) were 5th order 

(Fig. 4C). Note that 188 brain neurons (7%) were either immature or received only input 

from neurons in the SEZ of unknown modality and were therefore not categorized. Of the 

neurons analyzed, no brain neuron was more than 4 hops removed from at least one input 

neuron and most were only 2 or 3 hops removed.

Most 2nd-order neurons received direct input from a single SN type (Fig. 4B), with some 

exceptions, including olfactory local neurons that also received input from gustatory and 

thermowarm SNs (33, 54). 3rd-order neurons were more often shared across modalities and 

by the 4th order, most neurons were shared across modalities (Fig. 4B). However, even 

neurons that are exclusively 2nd or 3rd order for one modality can receive input from other 

modalities through longer paths.

Most sensory modalities exhibited a large expansion of neuron numbers in the 3rd order, 

compared with 2nd-order layers (Fig. 4A and table S2), indicating prominent divergence, 

i.e., they broadcast their signals to many different downstream partners. Generally, the 

number of neurons downstream of 2nd-order PNs (divergence) was higher than the number 
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of PNs upstream of the 3rd-order neurons (convergence). Convergence was also prominent, 

with most 3rd-order neurons receiving input from multiple 2nd-order PNs.

Sensory information can reach output neurons within one to three hops

We investigated the cell type identities of neurons at different processing layers, i.e., at 

different hops from SNs or ANs (2nd-, 3rd-, 4th-and 5th-order neurons) within each sensory 

circuit (Fig. 4C). Sensory information reached all cell classes within a couple hops. A 

notable percentage of brain output neurons were 2nd order, i.e., postsynaptic (one hop) of 

SNs or ANs (DNsVNC: 13%, DNsSEZ: 53%, RGNs: 46%), or 3rd order, i.e., two hops from 

SNs or ANs (DNsVNC: 52%, DNsSEZ: 38%, RGNs: 29%). The remaining 34% of DNsVNC, 

5% of DNsSEZ, and 21% of RGNs were 4th order (three hops from SNs/ANs, Fig. 4C). 

Thus, most output neurons receive sensory information within a maximum of three hops. 

However, although these direct (one-hop), two-hop, or three-hop connections represent the 

shortest paths to output neurons, most output neurons also received longer multihop input 

from SNs.

The highest order neurons in the brain (5th order) were not output neurons, but contained 14 

pre-output neurons, presynaptic to DNsVNC. These neurons received input from and output 

to other pre-DNsVNC (the most numerous group of 4th-order neurons) and shared some 

upstream and downstream partners, suggesting complex, multilayered connectivity between 

pre-DNsVNC (fig. S11). This suggests that, even though DNVNC neurons can receive sensory 

input in very few hops, they also receive the most processed information in the brain through 

longer paths. We observed multiple parallel pathways from each sensory modality to DNs 

(fig. S12, A and B). However, we also found extensive connectivity between neurons within 

these parallel pathways, suggesting they likely form a distributed processing network (fig. 

S12C). Most pathways and most individual neurons within paths were not restricted to a 

particular sensory modality and were instead shared by multiple modalities (fig. S12, D and 

E).

Different sensory modalities targeted different types of output neurons (Fig. 4C). For 

example, gustatory and gut sensory signals targeted more DNsSEZ than DNsVNC, whereas 

other modalities targeted more DNsVNC than DNsSEZ. Generally, sensory pathways to 

DNsSEZ were shorter compared with pathways to DNsVNC. Most DNsSEZ were 2nd order 

(receiving direct inputs from SNs) whereas most DNsVNC were 3rd order.

Output neurons receive input from the same modality through multiple paths of varying 
lengths

Sensory information is processed both serially and in parallel (57) but the architecture 

of sensory circuits is not fully understood. While characterizing the shortest paths from 

SNs to output neurons, we observed that output neurons also receive sensory information 

through longer paths. The additional hops in longer paths likely result in further processing 

of the stimulus, which may be important to extract more abstract features (58, 59) or to 

layer more complex computations on top of existing ones (60). To provide a basis for a 

comprehensive understanding of sensory processing circuits, we therefore systematically 

analyzed all pathways and not just the shortest ones.
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We developed a computational tool, the signal cascade, that propagates polysynaptic signals 

through the brain based on the assumption that the likelihood of signal propagation between 

two connected neurons depends on the number of synapses between them (Fig. 4D; see 

Methods). Synapse counts can be used to accurately predict synaptic surface area and 

are therefore a good proxy for synaptic strength (61). This tool therefore captures all 

polysynaptic pathways with reasonably strong connections along their length. The algorithm 

makes no assumption about the sign of connections and assumes that both excitatory and 

inhibitory connections can influence the activity of downstream neurons relative to baseline 

activity. In support of this assumption, patch-clamp recordings show that larval neurons 

have baseline activity that can be bidirectionally modified (19, 22) and direct optogenetic 

inhibition; further, activation of neurons relative to their own baseline can promote opposite 

actions (21).

Signals can be started and terminated at predefined neurons to explore all pathways that link 

them. We use brain output neurons as end points unless otherwise mentioned. In cascades 

started at SNs, the signal generally reached DNsVNC in 3 to 6 hops and rarely more than 

8 hops (Fig. 4E), which we therefore considered the maximum depth of the brain. 5-hop 

pathways were shown to be functional in the larva (specifically, MD class IV neurons to 

MB DANs) (19), but no studies have yet functionally tested 6-, 7-, or 8-hop pathways. We 

therefore stop the cascades at either 8 or 5 hops, using 8 hops to not miss long paths and 

5 hops to determine which aspects of architecture are apparent with a pathway length for 

which functional connectivity has been confirmed.

Using 8-hop cascades, we identified all pathways between SNs or ANs and output neurons 

(Fig. 4E). Individual sensory modalities had different median pathway depths to output 

neurons (fig. S13A). Overall, olfaction and gustation displayed the shortest pathways to 

output neurons, whereas the ascending somatosensory modalities displayed the longest.

Output neurons received sensory inputs from the same modality through multiple paths 

of different lengths. For example, some paths from the same sensory modality reached 

DNsVNC in 2 hops, whereas others displayed as many as 6 hops (fig. S13A). DNsVNC, on 

average, received input from pathways of three different lengths from individual sensory 

modalities (Fig. 4F and fig. S13B).

Most brain neurons are multimodal

We next investigated the multimodal character of the brain as a whole, while taking into 

account the longer pathways. We started 8-hop signal cascades from each sensory modality 

and reported the combinations of sensory input each neuron received (fig. S13, C and D). 

Very few neurons (12 or 14% with 8- or 5-hop cascades, respectively) received signals from 

only one modality, purported labeled line neurons, whereas most neurons were multimodal 

(Fig. 4G), including brain output neurons (fig. S13, E and F). Most labeled line neurons 

were close to the sensory periphery (Fig. 4H). Nevertheless, many modalities converged 

already at the earliest stages of sensory processing, with only 36 or 38% (with 8- and 

5-hop cascades) of 2nd-order PNs/PNssomato being unimodal (fig. S13C). Consistently, we 

observed multimodal mixing between different sensory circuits at the 2nd, 3rd, 4th, and 5th 

orders (fig. S13D).
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We also analyzed sensory convergence on MB DANs. DANs have been implicated in 

learning, motivation, and action-selection across the animal kingdom (62) and understanding 

the type of sensory information they receive is essential for understanding their function. 

DANs receive input from sensory systems that sense rewards and punishments (19, 63), but 

the extent to which they receive input from other modalities was unclear. We found that 

DANs received input from all sensory modalities, including from those that normally sense 

conditioned stimuli in learning tasks (e.g., olfactory) and from proprioceptive neurons (with 

5- or 8-hop cascades; Fig. 4I). By contrast, other MB modulatory neurons (13) were not 

as integrative: only 33% (with 5- or 8-hop cascades) of octopaminergic neurons (OANs) 

received input from all modalities.

Identification of all ipsilateral, bilateral, and contralateral neurons

The presence of two hemispheres is a fundamental property of the brain, but the way in 

which information from both hemispheres is integrated and used in neural computation is 

not well understood. To investigate the structural basis of interhemispheric interactions, we 

identified all neurons that engaged in interhemispheric communication through contralateral 

projections (axonal or dendritic, Fig. 5, A and B). Most (98%) of neurons displayed 

ipsilateral dendrites (fig. S14). A small population of neurons (1%) had bilateral dendrites 

with either ipsilateral, bilateral, or contralateral axons. These neurons were only observed 

in the learning center (MBONs) and brain output network (pre-DNsVNC, DNsVNC, DNsSEZ) 

(fig. S15). Although most neurons had ipsilateral (61%) a substantial number had bilateral 

(24%) or contralateral (15%) axons (Fig. 5C). Notably, 88% of a-d in-out hubs had either 

contra- or bilateral axons, even though these neurons account for only 39% of brain neurons.

Some neurons with bilateral axons target distinct partners in the two hemispheres

Neurons with bilateral axons project to both hemispheres, but do they communicate 

with homologous postsynaptic partners in both hemispheres? We calculated the cosine 

similarity between postsynaptic partners of individual bilaterally projecting neurons in the 

two hemispheres (Fig. 5D, left). Most bilateral neurons generally connected to homologous 

partners in both hemispheres, i.e., had high partner similarity scores, but there were some 

neurons that had low scores. We binned these neurons into three categories based on their 

partner similarity scores and analyzed their partners further (Fig. 5D, right; fig. S16).

We found 7 pairs of bilateral neurons with completely different postsynaptic partners on 

the ipsi- and contralateral hemispheres and 13 pairs with mostly non-overlapping ipsi- 

and contralateral partners (fig. S16). All of these neurons had unilateral dendrites. Most 

asymmetric bilateral neurons synapsed onto pre-DNs or DNs in one hemisphere but not the 

other, or onto different DNs or pre-DNs in the two hemispheres. These neurons could be 

involved in controlling asymmetric motor patterns that require activation of different subsets 

of muscles on the left and right sides of the body. Indeed, some DNs that receive input from 

asymmetric bilateral neurons (fig. S16, C and D) have presynaptic sites in thoracic and early 

abdominal segments, perhaps indicating a role in turning (64).
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Reciprocal contralateral loops

To better understand information flow between brain hemispheres, we asked how ipsilateral, 

bilateral, and contralateral neurons communicate with each other and calculated their 

connection probability (Fig. 5E). Ipsilateral neurons synapsed approximately equally onto 

ipsilateral, bilateral, and contralateral neurons in the ipsilateral hemisphere. Bilateral 

neurons had a slight preference for bilateral and contralateral neurons. Contralateral neurons 

displayed a notable preference for other contralateral neurons, both in terms of input and 

output. Individual contralateral neurons synapsed onto 3.4 other contralateral neurons on 

average (34% of their downstream partners), whereas ipsilateral neurons synapsed onto 1.5 

contralateral neurons on average (15% of their downstream partners).

Because each contralateral neuron has a homolog in the opposite hemisphere, we wondered 

whether homologous left-right contralateral neuron pairs tended to directly synapse onto 

each other. We found that the connection probability onto a homologous contralateral 

partner was much higher than onto a nonhomologous neuron (Fig. 5F). We identified 24 

reciprocally connected homologous pairs (10% of contralateral neurons; fig. S17). Most 

were either pre-DNsVNC, DNsVNC, postsynaptic of the learning center outputs (MBONs), 

and/or provided feedback onto the MB DANs (figs. S17D and S18). Many homologous pair 

loops interacted amongst themselves, forming double or super loops (fig. S18B). Double 

and super loops occurred between neuron pairs with similar morphology and/or connectivity. 

One super loop involved four neuron pairs downstream of the in-out hub, MBON-m1, which 

integrates input from other MBONs and from the LH (21) and computes predicted values 

of stimuli. This super loop projected onto pre-DNsVNC and indirectly sent feedback onto 

MB DANs through MB-FBNs (fig. S18C). The other super loop involved five neurons 

that projected onto DNsVNC. Thus, the reciprocal pair loops, double loops, and super 

loops appear to be prevalent in brain areas that potentially play a role in action-selection 

(downstream of MBONs and upstream of DNsVNC) and learning (upstream of MB DANs).

Interhemispheric integration occurs across most of the brain

Our finding that 39% of brain neurons have contra- or bilateral axons suggests that the 

two hemispheres are heavily interconnected and that their information could be integrated 

at many sites. To systematically investigate where interhemispheric convergence occurs, we 

generated signal cascades from either left-or right-side SNs and observed the resulting signal 

propagation through both hemispheres (fig. S19, A to C). Signals crossed to the opposite 

hemisphere within 2 hops and were robustly found in both hemispheres by 3 hops (fig. 

S19A). We assessed simultaneous overlap between left- and right-side sensory signals to 

find interhemispheric integration sites. The cell types of all integrative ipsilateral, bilateral, 

and contralateral types were identified (fig. S19B). We quantified the lateralization of each 

neuron by the ratio of left and right signals they received through signal cascades. Most 

neurons (81 or 79%, using 8- or 5-hop cascades) integrated signals from both left and right 

SNs (fig. S19C). Most lateralized neurons were PNs, KCs, and DNsSEZ (Fig. 5G). Thus, 

after integration of contralateral- and ipsilateral information on one side of the brain, the 

integrated information is often passed back to the other hemisphere (fig. S19, D to I).
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Analysis of brainwide pathways reveals a nested recurrent architecture

The dominant synaptic network of the brain comprised a-d connections (Fig. 2C), many 

of which provide feedforward signal from sensory to output systems (Fig. 2F). However, 

recurrence is an important feature of brain circuits (19, 65) and can improve computational 

power in artificial neural nets (66). We therefore characterized the reverse signal in the a-d 

network, from output neurons back toward the sensory periphery. We generated independent 

signal cascades starting at each level-7 brain cluster (Figs. 6A and 3A). Because these 

clusters were sorted from brain inputs to outputs, we could track the extent to which signals 

propagated up or down this brain structure to other clusters. We kept these cascades short 

(ending after 2 hops) to initially limit our analysis to the shorter paths of reverse signal 

and identify its lower bound. A cascade signal that traveled up the brain cluster structure 

toward the sensory periphery was considered backward, whereas a signal that traveled down 

the cluster structure toward the output neurons was considered forward. Robust forward and 

backward signal originated from nearly all brain clusters (Fig. 6B). Deeper brain clusters 

(closer to brain outputs) received mostly forward signals, whereas shallower clusters (closer 

to sensory periphery) received a mixture of forward and backward signals. Most brain 

clusters provided forward and backward signals to multiple other clusters simultaneously; 

this was observed even for single neurons within each cluster (Fig. 6C).

We wondered to what extent individual neurons provide feedback to their own upstream 

partners, thereby forming recurrent loops. We therefore used multihop signal cascades from 

individual neurons to identify their direct and indirect downstream partners throughout 

the brain (up to 5 hops). We then determined which of these downstream partners sent 

recurrent signals back to the source neuron. We found that 41% of brain neurons were 

recurrent, i.e., sent signals back to at least one of their upstream partners (Fig. 6D). 

Furthermore, downstream neurons often sent recurrent signals to upstream neurons using 

paths of multiple different lengths (Fig. 6E). On average, recurrent communication between 

a single downstream neuron and its upstream partner used polysynaptic paths of multiple 

different lengths (on average 1.9 ± 0.9 SD).

Input and output neurons of the learning center are among the most recurrent in the brain

We next analyzed which brain cell classes were the most recurrent (Fig. 6F). We define 

recurrence for individual neurons as the fraction of their polysynaptic downstream partners 

(using cascades of up to 5 hops) that sent signal back to that source neuron (also using 5-hop 

cascades) with a-d connections. Therefore, neurons with high and low recurrence scores are 

engaged in many and few recurrent loops, respectively.

The fraction of recurrent partners varied widely between distinct neuron classes (Fig. 6F). 

PNs and the intrinsic neurons of the learning center (KCs) had virtually no recurrent partners 

(on average, 1.2% and 0.1%, respectively). Other neurons associated with the learning 

center were amongst the most recurrent in the brain: DANs (57%), the modulatory neurons 

that drive learning; MB-FBNs (51%), presynaptic to DANs and implicated in computing 

predicted value and regulating learning (19); MBONs (45%), the outputs of the learning 

center and presynaptic to MB-FBNs; and CNs (42%), presynaptic to both MBONs and 

LHNs, which integrate learned and innate signals (21) (Fig. 6F). Together, these four sets of 
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neurons implicated in learning (13, 19) and in memory-based action-selection (21) form a 

set of interconnected recurrent loops (Fig. 6, F and G).

Descending neurons provide efference copy to learning center dopaminergic neurons

Many deep brain clusters far from the sensory periphery (Fig. 6B), including many DNs, 

provided backward signals to many brain neurons. The axons of some DNsVNC (37%) 

and most DNsSEZ (66%) synapsed onto other brain neurons before descending to the 

VNC and SEZ, thus providing putative efference copy signals (i.e., copies of motor 

commands). Single DNs broadcasted signals to neurons that were directly or indirectly 

upstream of themselves (feedback signals) or onto parallel pathways, namely neurons 

upstream of other output neurons (parallel efference copy signals; Fig. 6H). DNs synapsed 

onto many different brain neurons (Fig. 6H), including 130 postsynaptic partners and 588 

partners 2 hops downstream of DNsVNC and 320 postsynaptic partners and 1284 partners 

2 hops downstream of DNsSEZ. Of those DNs that synapsed onto brain neurons, we found 

that individual DNsVNC synapsed on average onto 6 postsynaptic neurons and indirectly 

(through 2 hops) onto 43 neurons. Individual DNsSEZ synapsed on average onto 8 neurons 

directly and onto 79 neurons in 2 hops.

We investigated the cell type identities of brain neurons receiving DNSEZ and DNVNC 

input (Fig. 6H). The most prominent DNSEZ targets were PNs [including direct connections 

to an olfactory uniglomerular PN (uPN 67b), 5 pairs of multi-glomerular PNs, 24 pairs 

of gustatory PNs] and pre-DNVNC neurons. The most prominent DNsVNC targets were 

pre-DNVNC neurons and MB-related neurons thought to play a role in memory-based action 

selection (CNs) (21) and in driving learning: MBINs (mostly dopaminergic, DANs) and 

FBNs that integrate MBON input and feed it back onto the MBINs (19) (Fig. 6H). DNsVNC 

also synapsed onto a few PNs (2 nociceptive and 2 gut/mechanosensory PN pairs) and 4 

pairs of MB-FFNs (which carry sensory signals to DANs and OANs) (Fig. 6H).

Signal cascades revealed that all DANs and most of their upstream MB-FBNs (90%) receive 

feedback signals from DNsVNC (fig. S20, A to D), forming larger recurrent loops. DANs 

even received direct or 2-hop input from DNsVNC. DNsVNC also sent robust feedback to 

MB-FBNs, that are presynaptic to MBINs/DANs (fig. S20C).

Brain-nerve cord projectome provides a basis for studying how the brain controls actions

Our EM volume contains the complete CNS (brain, SEZ, and nerve cord), allowing us to 

assess communication between the brain and the rest of the CNS. Because most motor 

neurons (MNs) are located in the VNC, understanding brain-nerve cord communication is 

essential to understanding how behavior is generated. We reconstructed axons of brain DNs 

that send feedforward signals outside of the brain. We divided the CNS into 13 regions 

based on stereotyped landmarks, including all VNC segments, and determined how many 

DN presynaptic sites were located in each CNS region (Fig. 7A-i, fig. S21). This resulted 

in a brain-VNC projectome directly linked to the connectome. Each VNC segment contains 

MNs, which innervate muscles in stereotyped positions throughout the body (Fig. 7A-ii). 

Previous studies have identified body segments involved in specific behaviors (Fig. 7A-iii), 
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such as forward and backward locomotion (11, 64), turning (64), hunching (22, 67), speed 

modulation (68), and head movement (69).

Using these linked projectome-connectome data, we generated an overview plot that 

displays the following for each DNVNC: (i) its upstream partners; (ii) the location of its 

outputs throughout the CNS, and (iii) all its downstream partners in the brain (Fig. 7B-i 

to iii). We annotated the projectome plot with candidate behaviors that each DNVNC might 

produce (Fig. 7B-ii). We found a strong correlation (Cramer's V Correlation Coefficient = 

0.58) between the cluster identity (based on brain connectivity) and nerve cord projection 

region for the descending neurons (Fig. 7B-iv), indicating that neurons that project to 

distinct nerve cord regions and likely mediate distinct behaviors also receive distinct patterns 

of brain input (fig. S22, B and C).

Multiple feedforward pathways of different kinds and different lengths converged onto 

DNsVNC (Fig. 7C). There were many short paths through PNs directly onto DNsVNC, longer 

paths through the LH, and even longer ones through the MB. Specifically, 19 and 65% of 

DNsVNC were directly or 2 hops downstream of PNs, respectively. 11 and 66% were directly 

or 2 hops downstream of both PNs and LHNs, respectively. A few DNsVNC were directly 

or 2 hops downstream of innate pathways (14%) or downstream of only learning pathways 

(3%). However, most DNsVNC (80%) were directly or 2 hops downstream of both neurons 

that encode innate (PNs and LHNs) and learned valences (MBONs, CNs, MB-FBNs).

Descending neurons target a small fraction of premotor circuit interneurons in the nerve 
cord

The brain projectome reveals which segments DNsVNC project to, but not the way in which 

the brain communicates with the VNC circuitry. We analyzed how the brain communicates 

with the most completely reconstructed VNC segment (A1), in which all motor (70, 71) and 

many sensory circuits (22, 23, 38, 56, 72, 73) have been reconstructed. We identified A1 

ascending neurons to the brain (fig. S2) and therefore have all links from the brain to the A1 

(through DNsVNC) and from A1 to the brain (through ANsA1; Fig. 7D).

First, we characterized the motor and sensory layering in A1 to determine where DNsVNC 

input went onto this structure (Fig. 7, D to F). We quantified the number of hops upstream 

of MNs (for motor layering, Fig. 7E) or downstream of SNs (for sensory layering) each 

A1 interneuron (Fig. 7F). Of the A1 interneurons, 232 of 342 (68%) had direct or indirect 

connections to MNs, whereas 110 (32%) did not. Of those that did, most (198 neurons, 

85%) were either directly or 2 hops upstream of MNs, indicating that A1 motor circuits are 

relatively shallow (Fig. 7E). Premotor and prepremotor neurons were the most prominent 

DNVNC targets (Fig. 7E). Out of the 42 DNsVNC inputting to A1 (DNsVNC-A1), 28 (66.7%) 

synapsed onto premotor or prepremotor neurons (fig. S23, A to C). Whereas 2 DNsVNC-A1 

(1 pair, 4.8%) synapsed onto an MN, 12 DNsVNC-A1 (28.5%) synapsed onto sensory circuit 

neurons (directly or indirectly downstream of A1 SNs, fig. S23, A to C).

Individual DNsVNC synapsed onto relatively few A1 interneurons, with 1.9 (± 1.4 SD) 

neurons downstream of each DNVNC and only 48 of 342 A1 neurons (14%) downstream 

of all DNsVNC. Similarly, only a small fraction of premotor (12%) and their upstream 
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prepremotor neurons (17%) were direct targets of DNsVNC (Fig. 7E). Many (71%) of 

these pre- and pre-premotor DNVNC targets also received direct or indirect A1 sensory 

input, sometimes from multiple modalities. We also asked whether DNVNC targeted A1 hub 

neurons (with ≥10 up-or downstream partners based on A1 network mean + 1.5 SD). Indeed, 

DNVNC targeted two hubs, namely neurons A03o (in-hub) and A18b (out-hub).

Some descending neurons modulate sensory processing in the nerve cord

The depth of sensory circuits was varied from 3 hops (proprioceptive) to 7 or 8 hops 

(nociceptive and chordotonals) from SNs within A1 (Fig. 7F). DNsVNC mostly targeted 

3rd or 4th-order SNs (2 or 3 hops downstream of SNs), many of which were also 

pre- or prepremotor neurons (31 and 39%, respectively). A notable exception were the 

proprioceptive circuits. DNsVNC synapsed onto several 2nd-order proprioceptive neurons 

(Fig. 7F), half of which were also pre- or prepremotor neurons.

We categorized DNsVNC into three types based on their direct targets (fig. S23, A to C). 

Group 1 (20 neurons, 47.6%) targeted both premotor and 2nd-order SNs. Group 2 (10 DNs, 

23.8%) targeted 8 A1 motor circuit neurons (4 pairs) that were not part of sensory circuits 

and had axonal outputs mostly restricted to T3-A1 (fig. S23D). Group 3 (12 DNs, 28.6%) 

targeted 12 2nd- or 3rd-order A1 SNs (6 pairs) that were not part of A1 motor circuits, 

including ANs (2 pairs) and long-range A1 neurons that output collectively to all thoracic 

segments and most abdominal segments (fig. S23E). These results suggest that DNVNC 

modulation of post-sensory cells is propagated across the CNS, including back to the brain 

through ANs, within A1 itself, and across nearly all VNC segments (T1 to T3, A2 to A7).

Direct descending-ascending connectivity reveals novel brain-nerve cord zigzag motifs

To better understand reciprocal brain-nerve cord communication, we analyzed neurons 

upstream and downstream of A1 ANs. We observed many instances of direct DNVNC→AN 

and AN→DNVNC and AN→DNSEZ connectivity (but no AN→RGN; Fig. 7G and fig. 

S24A). Specifically, 12 DNsVNC-A1 (30%) synapsed onto 4 ANs in A1 (11%), whereas 

24 ANs in A1 (57%) synapsed onto 22 DNsVNC (12%) and 12 DNsSEZ (7%) in the brain. 

To test whether AN-DN and DN-AN connections were a general feature present in other 

segments, we assayed connectivity between DNsVNC and all currently reconstructed ANs 

from all VNC segments. Individual DNsVNC received 3.6% (± 5.2% SD) of their input from 

ANs, with some receiving >20% of their input from ANs (to a maximum of 37%). It should 

be noted that this is an underestimate because most ANs from segments other than A1 have 

not yet been reconstructed. Conversely, individual ANs across the VNC received 3.1% (± 

6.1% SD) input from DNsVNC, with some receiving >20% of their input from descending 

neurons (to a maximum of 32%).

Reciprocal loops between DNsVNC and ANs were never observed. Instead, we found zigzag 

motifs, DNVNC→AN→DNVNC, with different DNsVNC on each side (Fig. 7, H and I). 

Similar motifs were observed involving DNsSEZ (fig. S24, B and C). To obtain further 

insight into zigzag motifs, we analyzed the sensory information carried by the A1 ANs 

and the behavioral roles of DNs that participate in these motifs. One pair of ANs was 

postsynaptic to proprioceptive SNs, whereas the other was highly multimodal and 2 hops 
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downstream of most SNs (fig. S23, see asterisks). We know the behavioral roles of a small 

fraction of DNsVNC (because the driver lines for most have not yet been generated) but we 

found one motif with known roles for both DNs (Fig. 7J). This motif contained PDM-DN 

(DN1
VNC) and the MDNs (DN2

VNC), which promote stop (74) and backup (15), respectively. 

Stop-backup is a common behavioral sequence (75), raising the possibility that ANs in 

zigzag motifs could facilitate transitions between actions in a sequence, based on both brain 

inputs and proprioceptive feedback or somatosensory context.

Discussion

We present a synaptic-resolution connectivity map of an entire Drosophila larva brain and 

a detailed analysis of the associated brain circuit architecture. Each neuron was split into 

two compartments, axon and dendrite, resulting in a rich multiplexed network with four 

connection types, facilitating analysis. To characterize long-range brainwide anatomical 

pathways, we developed an algorithm that utilizes synapse numbers between neurons to 

track signal propagation across polysynaptic pathways.

Connectivity-based clustering reveals 93 distinct types of brain neurons

Neuron types have been classified based on their functional role (19, 21, 76), morphology 

(32, 77), gene expression (78), or combinations of features (79, 80). Although these 

features are likely correlated, it is still unclear which is ideal for defining neuron types 

and how neuron types based on different features correspond to each other. We performed 

an unbiased hierarchical clustering of all neurons using synaptic connectivity alone and 

identified 93 types. The morphology of neurons within clusters was notably similar. 

Furthermore, neurons that had similar known functions were usually found in the same 

or related clusters. Thus, clustering neurons based on synaptic connectivity resulted in 

clusters that were internally consistent for other features, when those features were known. 

However, many clusters contained uncharacterized neurons with unknown gene expression 

and function.

Noncanonical connection types are pronounced in learning and action-selection circuits

Although most connections in the brain were a-d (66.4%), we found a significant number of 

a-a (26.4%), d-d (5.4%), and d-a (1.8%) connections. Most neurons that received prominent 

axonic input were in the learning center: DANs that provide the teaching signals for learning 

and KCs that encode stimuli. Modulatory a-a DAN-to-KC input drives heterosynaptic 

plasticity of the KC-to-MBON synapse (81). DANs also receive excitatory a-a input 

from KCs, which provides positive feedback that facilitates memory formation (41). KCs 

also receive a-a input from other KCs. In the adult Drosophila, a-a connections between 

otherwise excitatory (cholinergic) KCs were found to be inhibitory due to expression of 

inhibitory mAChR-B in axon terminals (82). Lateral inhibition between KCs could improve 

stimulus discrimination and reduce memory generalization (13). A subset of pre-DNsVNC 

and a few somatosensory PNs, LHNs, and MBONs, and FBNs also had a high axonic input/

output ratio. If a-a connections in these neurons are inhibitory they could enhance contrast 

between representations of distinct stimuli and actions (57).
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We also observed edges with multiple connection types between neurons, including up to all 

four types simultaneously. The most common combination, axo-dendritic with axoaxonic, 

may grant the presynaptic neuron post- and presynaptic control of the downstream neuron, 

as has been observed in triad motifs in mammals (83).

Pathways from sensory to output neurons form a multilayered distributed network

We observed multiple parallel pathways of varying depths downstream of each modality, 

albeit with extensive interconnectivity between different pathways. This architecture 

suggests that distinct features may not be processed independently but rather that each 

feature may potentially influence the computation of many other features in a distributed 

network. Such architecture has the potential to generate a diversity of neural responses with 

mixed selectivity for specific combinations of features thereby expanding the dimensionality 

of neural representations and increasing output flexibility (84).

We found that the shortest paths from sensory neurons to output neurons are surprisingly 

shallow. All output neurons receive input from sensory neurons within a maximum of 3 

hops. However, most output neurons also received input from the same modality through 

multiple longer pathways. Such an architecture, with connections that skip layers, is 

characteristic of prominent machine learning networks (85, 86), including deep residual 

learning and U-Net architectures. Although predictive accuracy improves with depth, 

features can become too abstract at deep layers leading to performance degradation (87). 

Shortcuts between layers can solve this problem by combining lower-level features as an 

additional teaching signal (85, 88). Shallower networks with shortcuts can therefore exceed 

the performance of deeper networks lacking shortcuts (85). The layer skipping we observed 

may therefore increase the brain's computational capacity, overcoming physiological 

constraints on the number of neurons that limit network depth.

Recurrent architecture of the brain with multiple nested loops

Recurrence has been observed in many brain circuits and implicated in a range of 

computations (65, 89–92). However, the architecture of long-range recurrent pathways and 

the nature of the feedback that each neuron receives is still poorly understood. We used 

signal cascades to systematically identify all connected pairs of brain neurons (with up to 5 

hops) that had a reciprocal connection (of up to 5 hops). We found that 41% of brain neurons 

received long-range recurrent input (up to 5 hops) from at least one of their downstream 

partners with recurrent pathways of varying lengths forming multiple nested loops.

Recurrent nested structure can compensate for a lack of network depth in artificial neural 

networks (66) and supports arbitrary, taskdependent computation depth (93).

Learning center dopaminergic neurons are amongst the most recurrent in the brain

DANs were amongst the most recurrent neurons in the brain. Dopaminergic neurons, 

referred to as DANs in insects, are central for learning, motivation, and action across 

the animal kingdom (62) and are implicated in a range of human mental disorders (94). 

The highly recurrent connectivity of DANs might deliver high-dimensional feedback (95), 
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enabling them to encode a range of features and flexibly engage in parallel computations. 

Recurrent excitatory loops could also play roles in working memory (19, 96–98).

Previous studies have reported that DANs receive extensive feedback from neurons that 

integrate learned and innate values (19). We find that DANs also receive long-range 

feedback (up to 5 hops) from descending neurons, which likely encode motor commands. 

Furthermore, we found that DANs receive polysynaptic feedforward inputs from all sensory 

modalities. DAN activity correlates with movement in both vertebrates and flies (99), which 

could be explained by the observed input from DNsVNC or from proprioceptive neurons.

Most brain hubs are directly downstream or upstream of the learning center

Hub neurons have been shown to play essential roles in behavior (51, 100). We found 

that most (73%) of the larval brain's in-out hubs were postsynaptic to the learning center 

output neurons (MBONs) and/or presynaptic to the learning center modulatory neurons 

(mostly DANs). Many were also postsynaptic to the LH that mediates innate behaviors, thus 

integrating learned and innate values (21). One of these hubs, MBON-m1, has been shown 

to compute overall predicted value by comparing input from neurons encoding positive 

and negative values (21). MBON-m1 bidirectionally promotes approach or avoidance when 

its activity is increased or decreased, respectively. Several additional hubs identified here 

have similar patterns of input to MBON-m1, suggesting that they may play similar roles in 

computing predicted values. These hubs provide direct feedback to the MB DANs and could 

therefore play roles in regulating learning.

Cross-hemisphere interactions

We identified all contralaterally projecting neurons and their connections, providing a basis 

for understanding how information from both hemispheres is used by the brain. Notably, 

neurons with contralateral axons were disproportionately represented amongst in-out hubs, 

suggesting that they have important roles in behavior. Contralateral neurons tended to 

synapse onto each other. Thus, after integration of contra- and ipsilateral information in 

one hemisphere, the integrated information is often passed back to the other hemisphere. 

Multiple consecutive hemisphere crossings could potentially enable better discrimination 

between ipsilateral, contralateral, or bilateral events and better coordination between the 

two hemispheres. We also discovered multiple reciprocal pair loops between contralateral 

left-right homologs. If inhibitory, pair loops could mediate interhemispheric comparisons, 

and if excitatory, they could be involved in signal perpetuation or short-term memory (96, 

97). Consistent with this idea, many pair loops occurred between neurons presynaptic to the 

MB DANs.

Brain and nerve cord interactions

Our study sheds light on brain-nerve cord interactions. DNs targeted only a small fraction 

of premotor elements that could play important roles in switching between locomotor 

states. A subset of DNs targeted low-order post-sensory interneurons likely modulating 

sensory processing. DNs and ANs also synapsed onto each other, often forming zigzag 

motifs (DN1→AN→DN2). A recent study has demonstrated that an AN can activate 

the downstream DN and drive the same action as the DN (101). Thus, ANs may 
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facilitate DN activation and transitions between actions based on proprioceptive feedback 

or somatosensory context. Somatosensory neurons have been shown to activate descending 

neurons in vertebrates (102, 103), raising the possibility that ascending-descending 

connectivity may be a general feature of brain-nerve cord interactions.

Materials and Methods

Electron Microscopy Data and Reconstruction

The EM volume of the central nervous system (CNS) of the 6-hour-old Drosophila 
melanogaster 1st instar larva used in this study has been previously reported (23, 28). 

Briefly, the genotype of this female larva was Canton S G1 [iso] × w1118 [iso] 5905. The 

resulting EM volume contains 4841 z-slices with an x,y,z resolution of 3.8 × 3.8 × 50 nm. 

This dataset includes the complete CNS, including all neurons, synapses, and accessory 

structures. Note that only the axons and dendrites of sensory neurons and motor neurons, 

respectively, are present in the volume. However, the morphology and location of these 

neurons was sufficient to match them to the respective neurons in whole animal datasets 

and thereby identify the identities and modalities of sensory axons (33–35, 104) or the 

corresponding muscle targets of motor neurons (71).

We identified the boundaries of the brain hemispheres and all brain neurons using 

stereotyped landmarks (105). Neurons and synapses were manually reconstructed by 

multiple users using the Collaborative Annotation Tool for Massive Amounts of Imaging 

Data, CATMAID (28). Many previous publications have contributed to the reconstruction 

of neurons in this CNS (13, 22, 23, 33–35, 71, 73, 104), so the completeness of brain 

neurons was first assessed using proofreading status and publication status. A complete 

census of the brain was conducted by examining each lineage entry point (105) to identify 

all brain cell bodies. Each cell body was then used as a seed point for iterative reconstruction 

by multiple users until all arbor end-points were identified. The reconstruction process 

generally followed previous descriptions (23, 28), however a targeted proofreading process 

was used by comparing left-right homologous neuron pairs. Quantification of the results of 

this methodology suggests it produced neuron reconstructions that are robust across multiple 

metrics (fig. S1, E and F), although some errors of omission were observed.

Axon and Dendrite Identification

We identified all axons and dendrites using a previously developed algorithm, synapse 

flow centrality (SFC) (28). In Drosophila, axons contain most presynaptic sites, whereas 

dendrites contain most postsynaptic sites, except for mushroom body Kenyon cells. SFC 

finds the shortest physical paths along the neuronal arbor between each pair of presynaptic 

and postsynaptic sites in the neuron. The section of arbor that contains the highest number 

of these presynaptic-to-postsynaptic paths corresponds to a synapse-devoid region located 

between the axon and dendrite that we name the linker domain and which generally 

corresponds to the axon initial segment. We used SFC to identify these linker domains in 

all brain neurons and assigned the axon-dendrite split point to the most proximal part of the 

linker domain. All split points were generated automatically and then manually proofread. 
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The compartment with the highest postsynaptic to presynaptic site ratio (the dendrite) was 

always located closer to the soma.

Threshold to focus on strong, reproducible (symmetrical) connections

Some of the weak (1- or 2-synapse) connections could be erroneous, transient, or not 

functional. Given that many are not reproducible between the left and right hemispheres, 

we cannot discern whether the observed sto-chasticity is due to errors in reconstruction 

or developmental noise in establishing new synapses or retracting them (28). We therefore 

focus much of our analysis on the strong reproducible (symmetrical) connections.

Strong reproducible (symmetrical) connections are defined as those that are observed 

between homologous pre- and postsynaptic partners in both brain hemispheres (e.g., if 

a connection is observed between left-side pre- and postsynaptic neurons, a connection 

must also be observed between the matching right-side pre- and postsynaptic neurons). 

Additionally, these connections must account for on average ≥1% input onto the dendrite in 

axo-dendritic connections. Note that a connection in one brain hemisphere can be <1%, as 

long as the connection on the opposite side is strong enough to compensate and both are 

observed. For example, a 0.5% connection and a 2% connection result in a mean connection 

strength of 1.25%, which passes the 1% threshold. Any analysis indicating use of a ≥1% 

input threshold uses this left-right thresholding approach.

However, it should be noted that weak connections could have notable functional roles, 

such as helping maintain a certain desirable membrane potential (49) or adding noise 

for computation (50). They could also contribute to idiosyncratic differences in behavior 

between individuals.

Clustering

We developed a modified spectral clustering procedure to cluster brain neurons based on 

connectivity. To achieve clustering in which homologous left and right neuron pairs are 

likely to be in the same cluster (as opposed to having clusters comprised of left-only or 

right-only neurons), we developed a technique to perform a spectral embedding which 

collapses left and right symmetry into a single embedding space. First, the network was 

split into four subgraphs: connections from neurons on the left side to neurons on the left 

side (LL), from right to right (RR), from left to right (LR), and from right to left (RL). 

Each subgraph had its edge weights transformed using a procedure called pass-to-ranks, a 

regularization scheme which replaces each edge weight with its normalized rank among 

all edges and is helpful for spectral embedding in the context of outliers or skewed 

edge weight distributions (106–108). We then embed each subgraph into a d-dimensional 

Euclidean space (d = 24) using the adjacency spectral embedding (ASE) as implemented 

in Graspologic (107, 108). Because of an orthogonal nonidentifiability associated with the 

latent position estimates from ASE (107), we used a joint optimal transport/orthogonal 

Procrustes procedure (109) to align the latent positions of the LL and RR subgraphs, and 

separately the LR and RL subgraphs. This procedure yields a representation for each node in 

terms of its ipsilateral (LL or RR) inputs and outputs, as well as its contralateral (LR or RL) 

inputs and outputs. To achieve a single representation for each node which is amenable to 
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clustering, we concatenated each of these representations per node, and performed another 

singular value decomposition to further project each node into a lower-dimensional space 

(d = 10). Finally, to ensure that homologous neuron pairs are clustered the same way, we 

average the embeddings for a left and right node (note that most of these points were already 

close in this embedded space due to the procedure described above).

With this representation for each neuron, we clustered using a hierarchical approach 

to Gaussian mixture models (GMM) inspired by past work on hierarchical stochastic 

block models (110, 111). GMM on an ASE embedding was recently shown to be a 

consistent way of estimating the membership assignments for a statistical network model 

called the stochastic block model, motivating this approach (107, 112). We use a Python 

implementation of GMM with model selection (113, 114). In the hierarchical paradigm, all 

neurons currently under consideration are clustered using a 1-component and 2-component 

GMM. The fit of both models is evaluated using the Bayesian information criterion (BIC) 

metric (115), which is commonly used to select the number of clusters in a GMM (116). If 

the 2-component model is preferred by the BIC score and the number of neurons is not too 

small (32 neurons is chosen as the cutoff), then the set of neurons under consideration is 

split according to this clustering. This procedure recursed until the depth of the “cluster tree” 

reached eight, yielding a multiresolution clustering of brain connectivity.

Finding homologous neuron pairs through graph matching

We employed a family of techniques based on the Fast Approximate Quadratic (FAQ) graph 

matching algorithm (30, 31) to predict bilateral neuron pairs on the basis of connectivity. 

These algorithms seek to find a 1-to-1 alignment of one network's adjacency matrix with 

respect to another which minimizes the norm of their difference. In this case, the two 

adjacency matrices were the induced subgraphs (all connections among a specified subset 

of nodes) of the left and right hemispheres (i.e., the ipsilateral connections) of the brain. 

We used 406 groundtruth neuron pairs from previous publications (13, 21, 33) as seeds, 

specifying a fixed, partial alignment between the two networks. The seeded graph matching 

algorithm was randomly initialized 50 times (while preserving the known matching from the 

ground truth pairs). Predicted pairs from each initialization of the algorithm were recorded. 

We then ranked potential pairs according to how often they were matched to each other, 

manually reviewing each potential pair for correctness. This process was iterated multiple 

times, with newly identified pairs added to the population of seed pairs, until all reasonable 

pairings were exhausted.

Quantifying similarity of connectivity for neuron pairs

To quantify the similarity in connectivity of neuron pairs (fig. S1E), we evaluated how likely 

our pairs were to be matched by an automated, unsupervised algorithm which aimed to find 

the best alignment of the nodes of the left and right hemisphere networks. We performed 

multiple graph matchings of the paired left and right hemisphere networks, and measured 

how strongly each neuron on the left hemisphere was matched to each possible neuron 

on the right hemisphere. To do so, we ran the previously developed FAQ graph-matching 

algorithm (31), using K = 20 initializations and a maximum of 30 iterations for each 

initialization (see original publication for algorithm details). Note that the annotated pairs 
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were not used as seeds for this analysis and the initializations were random; thus, these 

annotations did not bias the graph matching toward our pairs.

Each run k of the FAQ algorithm yielded a doubly stochastic matrix, (all rows and columns 

sum to one) Dk. The element Dij
k can be thought of as indicating the strength of the match 

(for that run, k) from the left hemisphere neuron i to the right hemisphere neuron j. Letting 

sk be the FAQ objective function value at the end of optimization for run k, and

S = ∑
k = 1

K
sk

be the sum of these objective function values, we took the weighted average of solutions:

D = 1
S ∑

k = 1
skDk

to find a final doubly stochastic matrix for ranking, D.

Then, we assessed how well bilateral pairs were matched by this assignment matrix D. We 

ranked the elements of each row i of D (settling ties using the average) and then found the 

rank of that neuron's assigned pair. For instance, if a left neuron's true pair on the right 

hemisphere was the neuron it was matched to most strongly, then its neighbor rank was 1; 

if it was matched to its true pair less strongly than only one other right hemisphere neuron, 

then its neighbor rank was 2, and so on. This provided a metric to evaluate our assigned 

neuron pairs, where high ranks for a neuron's pair in the other hemisphere indicated that the 

assignment agreed with an unsupervised matching of the two networks.

Network ordering from inputs to outputs

To order the network from sensory neurons to output neurons (fig. S6, F and G), we 

applied the “signal flow” algorithm (117, 118). Intuitively, this algorithm seeks to find 

a one-dimensional number (the “score”) associated with each neuron, where high values 

indicate a neuron is close to the “top” (inputs) of the network, and low values indicate a 

neuron is close to the “bottom” (outputs) of the network. To establish this ordering, this 

algorithm finds the scores which minimize the sum of edge weights which connect neurons 

with very different scores or which connect a low score neuron to a high score neuron 

(feedback). Unless otherwise stated, we used the network made up of all edge types when 

computing the signal flow score for each neuron. When sorting neuron groups, we sorted 

based on the mean signal flow score within each group. In some analyses (Fig. 2G and 

fig. S7) we computed signal flow for each edge type network independently. For pairwise 

comparisons of these network orderings, we computed the rank correlation (Spearman's ρ) 

between the signal flow rankings for each network.

Analyzing edges with multiple connection types Edge reciprocity

Reciprocity is a commonly used metric in network science which quantifies the probability 

that two nodes in a directed network are connected through mutual edges in each direction 
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(119). Specifically, it is defined as the number of reciprocal edges divided by the total 

number of edges, where a reciprocal edge means that both Aij and Aji are present in 

the adjacency matrix A. Here, we generalize this notion to multigraphs. With Asource 

representing the unweighted, loopless adjacency matrix for the source network, and Atarget 

defined likewise for the target network, we define the edge reciprocity r (Asource, Atarget) as r 

as r(Asource , Atarget ) = 1
∑i, j

n Asource ∑
i, j

n
Aij

source Aji
target

In other words, averaged over the entire network, this is the conditional probability 

of observing a reciprocal edge (Aij
target  conditioned on observing the forward edge 

(Aij
source )P (Aji

target = 1 ∣ Aij
source = 1).

Probabilities of overlapping connection types

To examine the likelihood of edges with various multiple connection type combinations, we 

counted the number of (i, j) pairs with each possible combination of edge type occurrences 

in the measured networks (e.g., an axo-dendritic edge with no other type present, axo-

dendritic and axo-axonic but no other edge types) (fig. S6D). To calibrate expectations for 

these counts, we used a simple null model of multiplex edge overlaps. This model assumed 

that each of the four edge type graphs was generated independently, and modeled each 

network as a random (Erdos-Renyi) network. To compute the parameters of this model, we 

first simply calculate the global connection probability pk for each network A(k) as

pk = 1
n2 ∑

i, j

n
Aij

(k)

Where n is the number of nodes, and A(k) is the unweighted, directed adjacency matrix for 

network type k (k = 1,2,3,4 corresponding with AD, AA, DA, DD, respectively). Under the 

assumptions above, the expected number of (i, j) pairs which have only axo-dendritic (AD) 

edges (denote this m([1, 0, 0, 0])) is m([1, 0, 0, 0]) = n2 p1 (1 − p2)(1 − p3)(1 − p4)

More generally, we denote x to be a 4-dimensional binary vector, which indicates the 

presence (1) or absence (0) of the AD, AA, DA, DD edge types, respectively. Then, we can 

write the expected number of edges under edge type pattern x as:

m(x) = n2 ∏
i = 1

4
pi

xi(1 − pi)1 − xi

Under this definition, we calculated the expected number of edges for each combination of 

the four edge types and used this to compare with the observed counts.

Studying potential information propagation through signal cascades

We applied a technique for modeling information propagation through a network based 

on the independent cascade model, which has been used to study epidemic and social 

information transmission (120). Briefly, the algorithm (which we call the signal cascade) 
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starts with a set of active neurons which propagate their active state to other neurons based 

on the number of synapses from active to inactive neurons. Synapse counts can be used to 

accurately predict synaptic surface area and are therefore a good proxy for synaptic strength 

(61). Note that when investigating downstream partners of neuromodulatory neurons, such 

as dopaminergic neurons, we focus on their chemical synapses, which maintain a typical T-

bar structure at the presynapse (13). At each time step, a new set of neurons becomes active, 

and previously active neurons enter a deactivated state for the remainder of the experiment. 

We modified the original independent cascade model to include a set of “stop” neurons from 

which the cascade does not proceed further. This tool allows one to determine how much 

signal from a given set of starting neurons could reach other sets of neurons in the brain, and 

after how many timesteps (hops). Our approach differs from some previous models of signal 

propagation across a connectome in that we only allow activation from neurons which were 

active at the last timestep, rather than from neurons which were activated at any previous 

timestep (121, 122), allowing us to assess the temporal ordering of the potential flow of 

information through the brain.

To elaborate on the details of the model, the algorithm starts with a set of user-defined 

nodes which are initially in an active state at time t = 0, and all other nodes in an inactive 

state, meaning they are susceptible to activation. We denote the set of active, inactive, and 

deactivated nodes at timepoint t as St
A, St

I, St
D, and Sf, respectively. Our modified cascades 

algorithm also includes a set of nodes SE which are “end” nodes from which the cascade 

no longer continues—these nodes can become active, but then do not propagate their signal 

at the next timepoint. To determine which nodes bcome active at the next timepoint t + 1, 

each synapse is assigned an equal probability p of transmission, with p = 0.05. For each 

outgoing synapse (i → j) from each active node that is not a stop node (i ∈ (St
A − SE)) to 

each previously unactivated node (j ∈ St
I), we conduct an independent Bernoulli trial with 

probability p to determine whether that synapse activates node j at the next timepoint. Nodes 

that had at least one successful activation of an upstream presynapse are included in the set 

St + 1
A . Every node that was active at time t is moved to the set St + 1

D , the deactivated nodes 

which cannot be activated again during the current cascade. This process was repeated for 

T timesteps, where T could vary depending on the particular question of interest. These 

cascades were run 1000 times for the same set of start and end nodes (St = 0
A , SE). To 

understand how signals could propagate through the brain based on this model, we tracked 

the probability that a node was active at a given time over these 1000 independently run 

cascades. Neurons were considered to receive cascade signals when visited in most cascade 

iterations. In Fig. 4F, only pathways contributing substantial cascade signal per hop were 

considered (>0.1 multihop signal). When analyzing groups of neurons, signal cascade data 

were aggregated by averaging these activation probabilities across neurons in a group.

Statistical analysis

Mann Whitney U tests were used in fig. S19, F to I, and fig. S10G. This nonparametric 

test was used to avoid assumptions about sample distributions, especially when non-normal 

distributions were observed, preventing use of a student's t test.
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Morphological similarity calculation within neuron groups

To quantify the similarity between neuron morphologies within clusters (Fig. 3B and fig. 

S8, A and B), we applied the NBLAST algorithm (123) as implemented in navis (124), 

computing NBLAST scores between all pairs of neurons in the same hemisphere. To make 

NBLAST scores symmetric (same score between neurons (i, j) as between (j, i) we set 

the NBLAST scores for (i, j) and (j, i) to be the geometric mean of their original scores. 

We then apply a normalization scheme to each pairwise NBLAST similarity matrix, in 

which scores are converted to their pairwise ranks in the similarity matrix (108). With these 

normalized NBLAST scores, we defined a simple score of morphological similarity within 

each cluster. First, we computed the mean of all pairwise similarity scores between neurons 

in a hemisphere of a specific cluster. Then, we took the mean of those average scores 

between left and right hemispheres to compute the final score for a given cluster.

Code

Analyses relied on NumPy (125), SciPy (126), Pandas (127), NetworkX (128), navis (124), 

and pythoncatmaid (https://pypi.org/project/python-catmaid/). Plotting was performed using 

matplotlib (129), Seaborn (130), and Blender (https://www.blender.org/). UpSet plots were 

used to visualize complex intersections (131).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Comprehensive reconstruction of a Drosophila larva brain.
(A) Morphology of differentiated brain neurons in the CNS of a Drosophila larva. (B) 

Most (>99%) of neurons were reconstructed to completion, defined by reconstruction of 

all terminal branches (see Methods) and no data quality issues preventing identification of 

axons and dendrites. Pre- and postsynaptic sites were considered complete when connected 

to a brain neuron or ascending arbors from neurons outside the brain. (C) Left and right 

homologous neuron pairs were identified using an automated graph matching with manual 

proofreading. There was no clear partner for 14 neurons based on this workflow (unpaired), 

along with 176 unpaired KCs in the learning and memory center. (D and E) Schematic 

overview of brain structure. Brain inputs include SNs, which directly synapse onto brain 

neurons, and ANs from VNC segment A1, which receive direct or polysynaptic input from 

A1 sensories (see fig. S2). Brain interneurons transmit these input signals to output neurons: 

DNs to the subesophageal zone (SEZ) (DNSEZ), DNs to the VNC (DNVNC), and ring gland 

neurons (RGN). (F to H) Cell classes in the brain. Some interneurons belong to multiple 

classes, but are displayed as mutually exclusive for plotting expedience (see fig. S4). Note 

that some previously reconstructed interneurons (40 total) and output neurons (6 total) are 

included in the barplots but are not brain neurons per se and not included in counts. There 

were 20 brain output neurons with known cell classes that were therefore also included in 

(G).
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Fig. 2. Identification of all brain axons and dendrites revealed four connection types.
(A) Axons and dendrites were identified in all brain neurons, >95% of which contained fully 

differentiated axons and dendrites. The remainder were unpolarized neurons and immature 

neurons. (B) Axons contained mostly presynaptic sites (orange), whereas dendrites 

contained mostly postsynaptic sites (blue), but pre- and postsynaptic sites were observed 

in both compartments. (C) Synaptic connections between brain neurons were categorized 

as axo-dendritic (a-d), axo-axonic (a-a), dendro-dendritic (d-d), or dendro-axonic (d-a). 

(D) Adjacency matrices displaying all connection types between brain neurons (raw data 

in data S1 and S2). Each quadrant represents a different connectivity type between each 

presynaptic neuron (row) and postsynaptic neuron (column) in the brain. (E) Graph metrics 

for subgraphs comprising each connection type: number of nodes participating in each 

connection type, graph density (number of connections observed divided by all possible 

connections), and max degree (maximum number of connections from a single neuron). (F) 

Fraction of feedforward and feedback synapses per connection type, defined based on the 

overall neuron sorting from sensory to output (fig. S6, F and G). (G) Comparison of the 

direction of information flow for the indicated connection types. Individual neurons in each 

graph type were sorted using the signal flow algorithm (see Methods) and the correlation 

between these node sortings was quantified. a-d sorting best matched the summed graph 
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sorting (all edge types together). The d-a sorting was negatively correlated with a-d (–0.59). 

(H) Edge reciprocity between different edge types, i.e., fraction of forward edges that were 

coincident with different backward edge types.
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Fig. 3. Hierarchical clustering and analysis of brain structure.
(A) Hierarchical clustering of neurons using a joint left-right hemisphere spectral embedding 

based on connectivity. Clusters were colored based on cell classes (Fig. 1G and fig. S4), 

but this information was not used for clustering. Clusters were sorted using signal flow. 

(B) Example clusters with intracluster morphological similarity score using NBLAST (see 

Methods). (C) Adjacency matrix of the brain sorted by hierarchical cluster structure. (D) 

Network diagram of level 4 clusters displays coarse brain structure. Colored pie charts 

display cell types within clusters. (E) Fraction of a-d hub neurons in level 4 clusters. Cell 

types of each cluster are depicted on the x-axis and annotated to match clusters in (D). Hubs 
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were defined as having ≥20 in- or out-degree (≥20 presynaptic or postsynaptic partners, 

respectively; based on the mean degree plus 1.5 standard deviations). (F) Cell classes of 

in-out hubs (a-d). Most neurons were downstream or upstream of the memory and learning 

center (gray semicircle, MB-related). Note that CN + MB-FBN indicates neurons that were 

both CNs and MB-FBNs. One pair of pre-DNVNC neurons received direct MBON input. (G) 

Pathways from SNs to output neurons with 6 or fewer hops, using a pairwise ≥1% input 

threshold of the a-d graph. Plot displays a random selection of 100,000 paths from a total set 

of 3.6 million paths.

Winding et al. Page 38

Science. Author manuscript; available in PMC 2023 May 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 4. Multimodal sensory integration across the brain.
(A) Morphology of neurons in sensory circuits, identified using multihop a-d connectivity 

from SNs or ANs. (B) Neuron similarity across sensory circuits using the Dice 

Coefficient. Most 2nd-order neurons were distinct, whereas 3rd- and 4th-order neurons 

were progressively more similar between modalities. (C) Cell classes in each sensory 

circuit. Note that neurons can be shared across sensory modalities within 2nd- or 3rd-order 

layers. (D) Schematic of a multihop signal cascade, which probabilistically propagates 

signal polysynaptically from a user-defined source and endpoint based on synaptic weights 

between neurons. (E) Signal cascades from sensory modalities to brain output neurons, 

DNsVNC. The number of hops between these input and output neurons was quantified. (F) 

The number of pathways with different lengths was quantified from individual sensory 

modalities to individual DNsVNC. Most sensory signals propagating to DNsVNC used 

multiple paths of differing lengths (short, medium, long). (G) Individual neurons were 

classified as unimodal or multimodal, based on signal cascades from individual sensory 

modalities. Most brain neurons integrated from multiple sensory types (multimodal), 

whereas a few integrated from a single modality (unimodal). (H) The distance from sensory 

input in unimodal or multimodal cells from (G) was quantified. (I) Signal cascades (up to 

5 hops) from SNs or ANs of different modalities to the input neurons of the learning and 

memory center, including dopaminergic neurons (DANs), octopaminergic neurons (OANs), 
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and neurons of unknown neurotransmitters (MBINs). All DANs, 33% of OANs, and 60% of 

other MBINs received signals from all sensory modalities.
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Fig. 5. Characterization of interhemispheric communication by bilateral and contralateral 
neurons.
(A) Connectivity between left and right hemispheres, sorted within each hemisphere by 

the cluster structure. (B) Fraction of contralateral a-d presynaptic sites per neuron. (C) 

Morphology of ipsilateral, bilateral, and contralateral axon neurons with a-d synaptic 

distribution (right-side neurons depicted to make contralateral arbors visible). (D) Most 

bilateral axon neurons synapsed onto homologous neurons in both hemispheres, as indicated 

by the high cosine similarity of their a-d connectivity to ipsilateral and contralateral 

downstream partners (left). Three bins of cosine similarity values and the cell type 

memberships of the downstream partners are displayed (right). (E) Connection probability 

between left and right cell types using a-d edges. The highest connection probabilities were 

observed between contralateral neurons in opposite brain hemispheres. (F) Reciprocal loops 

were observed between homologous left- and right-hemisphere neurons. (G) Sensory signal 

lateralization per cell class. Blue, neurons that received signals from both hemispheres; 

orange, neurons that received signals from only one hemisphere. Notably, 46% of DNsSEZ 

were lateralized (using either 8-hop or 5-hop cascades).
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Fig. 6. Comprehensive recurrent pathways through the brain.
(A) Schematic of signal cascades starting from each cluster. (B) Signal cascades originating 

at each level-7 cluster (along the diagonal) travel in both forward (above the diagonal) 

and backward (below the diagonal). Signal cascades were based on a-d connectivity and 

contained 2 hops maximum to restrict analysis to the lower bound of backward signals. 

(C) Number of clusters or single cells that received cascade forward or backward signals 

from clusters or single cells within clusters, respectively. (D) Recurrence in brain neurons. 

Polysynaptic downstream partners of each brain neuron were identified with a-d cascades 

(up to 5 hops). Recurrent partners sent multihop signal back to the source neuron, forming 

a recurrent loop (left), and 41% of brain neurons engaged in at least one such recurrent 

loop (right). (E) Quantification of recurrent pathways of different length between individual 

neurons. (F) Recurrence was quantified for each cell class. (Right) a schematic of the 

most recurrent cell types in the brain and their relation to conditioned stimulus (CS) and 

unconditioned stimulus (US) during associative learning. The MBIN category was split into 

OANs and DAN/MBIN, as they displayed different distributions of recurrence. Note that KC 

recurrence is so low that the violin plot is not visible. (G) Recurrent partners of individual 

MBINs are reported (i.e., all downstream partners, using 5-hop cascades, that send recurrent 

signals back), including those of dopaminergic neurons (DANs), octopaminergic neurons 

(OANs), and MBINs expressing unknown neurotransmitters. (H) Recurrent or parallel 

efference copy signals from DNsVNC or DNsSEZ using 1- or 2-hop a-d connectivity.
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Fig. 7. Investigation of brain-nerve cord interactions revealed direct connectivity between 
ascending and descending neurons.
(A) Schematic of the Drosophila larva CNS (i) and how this topology corresponds to 

different body segments (ii), involved in a diverse set of behaviors (iii). (B) Each row 

represents an individual DNVNC pair with its associated upstream and downstream a-d 

connectivity in the brain and its projections to the rest of the CNS. Upstream and 

downstream partner plots (i, iii) depict the fraction of cell types 1 and 2 hops from each 

DNVNC (color legend, bottom). **, indicates one DNVNC pair had no strong 2nd-order 

partners in the brain. The projectome plot (ii) reports the number of DNVNC presynaptic 

sites in each CNS region. Candidate behaviors are suggested based on known behaviors 
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described in (A, iii). DNsVNC were grouped either by candidate behavior or level 7 

clusters (iv). These independent groupings were highly correlated (Cramer's V Correlation 

Coefficient = 0.58). (C) Schematic of common recurrent and efference copy a-d pathways 

observed in the brain with a focus on DNVNC connectivity. (D) Avenues of interaction 

between the brain and VNC, DNsVNC, and ANs, focused on the A1 segment. (E) Premotor 

neuron layers in A1. Layers are identified based on a pairwise 1% a-d input threshold (left). 

Number of interneurons and ANs in each layer are reported (right). DNVNC targets refer to 

A1 neurons postsynaptic to a DNVNC. (F) Sensory layers in A1. Number of interneurons 

(green) and ANs (blue) are reported for each sensory layer and location of DNVNC targets 

(red). (G) Connection probability (a-d) between DNsVNC and A1 cell types, and between 

ANsA1 and brain output neurons. (H) A-d motifs involving DNsVNC and ANs in A1. The 

simplest version of each motif is depicted above, but motifs involving 3, 4, and 5 nodes 

were also assayed, which contained additional A1 interneurons or preoutput neurons in the 

brain. (I) All zigzag motifs observed. Each bar represents the number of neurons in each 

type and lines represent paths originating and ending at individual cells in each category. 

(J) A zigzag motif with previously characterized DNsVNC on either side. This motif starts 

at PDM-DN, whose acute stimulation elicits a stopping behavior, and ends at MDN, whose 

acute stimulation causes animals to back up. Stop-backup is a common behavioral sequence 

observed in the Drosophila larva.
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