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Longitudinal observational data on patients can be used to investigate causal
effects of time-varying treatments on time-to-event outcomes. Several meth-
ods have been developed for estimating such effects by controlling for the
time-dependent confounding that typically occurs. The most commonly used
is marginal structural models (MSM) estimated using inverse probability of
treatment weights (IPTW) (MSM-IPTW). An alternative, the sequential trials
approach, is increasingly popular, and involves creating a sequence of “trials”
from new time origins and comparing treatment initiators and non-initiators.
Individuals are censored when they deviate from their treatment assignment at
the start of each “trial” (initiator or noninitiator), which is accounted for using
inverse probability of censoring weights. The analysis uses data combined across
trials. We show that the sequential trials approach can estimate the parameters
of a particular MSM. The causal estimand that we focus on is the marginal risk
difference between the sustained treatment strategies of “always treat” vs “never
treat.” We compare how the sequential trials approach and MSM-IPTW estimate
this estimand, and discuss their assumptions and how data are used differently.
The performance of the two approaches is compared in a simulation study. The
sequential trials approach, which tends to involve less extreme weights than
MSM-IPTW, results in greater efficiency for estimating the marginal risk differ-
ence at most follow-up times, but this can, in certain scenarios, be reversed at
later time points and relies on modelling assumptions. We apply the methods to
longitudinal observational data from the UK Cystic Fibrosis Registry to estimate
the effect of dornase alfa on survival.
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1 INTRODUCTION

Longitudinal observational data on patients can allow for the estimation of treatment effects over long follow-up
periods and in diverse populations. A key task when aiming to estimate causal effects from observational data is to
account for confounding of the treatment-outcome association. With longitudinal data on treatment and outcome, the
treatment-outcome association may be subject to so-called time-dependent confounding. Such confounding is present
when there are time-dependent covariates affected by past treatment that also affect later treatment use and outcome. It
presents particular challenges for estimation of the effects of longitudinal treatment regimes, such as those that involve
comparing sustained treatment or no treatment over time. Over the last two decades a large statistical literature has built
up on methods for estimating causal treatment effects in the presence of time-dependent confounding, and their use in
practice is becoming more widespread.

In this paper we focus on estimating the causal effects of longitudinal treatment regimes on a time-to-event outcome,
using longitudinal observational data on treatment and covariates obtained at approximately regular visits, alongside
the time-to-event information. When there is time-dependent confounding, standard methods for survival analysis, such
as Cox regression with adjustment for baseline or time-updated covariates, do not generally enable estimation of such
causal effects directly. Several methods have been described for estimating the causal effects of longitudinal treatment
regimes on time-to-event outcomes. Marginal structural models (MSMs) estimated using inverse probability of treatment
weighting (IPTW) were introduced by Robins et al1 and extended to survival outcomes by Hernan et al2 through marginal
structural Cox models. A review by Clare et al in 20193 found this approach to be by far the most commonly used in
practice, and we refer to this as the MSM-IPTW approach. An alternative but related approach, which we refer to as the
“sequential trials” approach, was described by Hernan et al in 20084 and Gran et al in 2010.5 With the sequential tri-
als approach, artificial “trials” are created from a sequence of new time origins which could, for example, be defined by
study visits at which new information is recorded for each individual who remains under observation. At each time ori-
gin individuals are divided into those who have just initiated the treatment under investigation and those who have not
yet initiated the treatment. Within each trial, individuals are artificially censored at the time at which their treatment
status deviates from what it was at the time origin, if such deviation occurs. Inverse probability of censoring weight-
ing is used to account for dependence of this artificial censoring on time-dependent characteristics. The overall effects
of sustained treatment versus no treatment, starting from each time origin, can then be estimated using, for example,
weighted pooled logistic or Cox regression. The sequential trials approach was originally proposed as a simple way of
making efficient use of longitudinal observational data, as it enables use of a larger sample size than if an artificial
trial were formed from a single time origin.4 Hernan et al4 did not discuss time-dependent confounding directly, but
focused on the more general concept of emulating a sequence of hypothetical randomized trials from observational data.
Their initial focus was on estimation of intention-to-treat effects, which does not require censoring of individuals when
they deviate from their initial treatment status. However, they also considered estimation of per protocol effects, which
focus on sustained treatment vs no treatment, using censoring and weighting, and they referred to these as “adherence
adjusted” effects. Gran et al5 focused on per protocol effects, and assumed that individuals who started treatment always
continued it, but that noninitiators of treatment at the start of each trial could start treatment at later time, which they
addressed using censoring and weighting. In this paper we focus on per protocol effects, that is, on sustained treatment
strategies.

The sequential trials approach is closely related to several other methods for estimation of treatment effects
using longitudinal data. Thomas et al6 reviewed such methods, referring to them collectively as “longitudinal match-
ing methods.” In addition to the sequential trials approach, these include the sequential stratification approaches
suggested by Schaubel et al in 2006 and 20097,8 and considered in a number of subsequent papers such as that
of Gong and Schaubel.9 In their discussion, Thomas et al6 noted that most methods they reviewed, including the
sequential trials approach, had not been connected with the counterfactual outcomes framework for defining causal
estimands of interest. They did not include MSM-IPTW in their review, but implied in the discussion that the
MSM-IPTW and sequential trials approaches address different questions. In this paper, we show how the MSM-IPTW
approach and the sequential trials approach can be used to estimate the same causal estimand for sustained treatment
regimes.

There have been several applications of the sequential trials approach. Danaei et al10 applied it to electronic
health records data to estimate the effect of statins on occurrence of coronary heart disease. Clark et al11 studied
whether onset of impaired sleep affects health related behavior. Bhupathiraju et al12 investigated the effect of hormone
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therapy use on chronic disease risk in the Nurses’ Health Study. Caniglia et al13 estimated the effects of statin use on
risk of dementia up to 10 years using data from a prospective cohort study. Both Danaei et al10 and Caniglia et al13

considered per protocol effects, while the other examples referenced above focused on intention-to-treat effects. Some
papers have also used the sequential trials approach alongside other methods and compared the results empirically.
Suttorp et al14 studied the effect of high dose of a particular agent used in kidney disease patients on all-cause mor-
tality with both a sequential trials approach and MSM-IPTW using data from a longitudinal cohort. In their review
paper, Thomas et al6 illustrated the sequential trials approach together with sequential stratification and time-dependent
propensity score matching to study the effect of statins on cardiovascular outcomes using the Framingham Off-
spring cohort. Several papers in recent years have advocated the benefits of explicitly emulating a “target trial”—the
hypothetical randomized controlled trial that one would ideally like to conduct—in investigations of causal effects
using observational data.15-19 The use of target trials provides a structured framework that guides the steps of an
investigation, with the target trial protocol including specification of eligibility criteria, time origin, and the causal
estimand of interest. This framework has been used in conjunction with the sequential trials approach, for example
by Caniglia et al.13

In most applications of the sequential trials approach the target causal parameters have been informally stated using
the language of emulating hypothetical randomized trials. However, a more formal description of such parameters using
counterfactuals has been lacking. Gran and Aalen20 highlighted the need for further work to establish the causal esti-
mands that were being estimated in the sequential trials approach. This is important both to clarify the interpretation
and to inform simulation studies to study the properties of the estimators. Karim et al21 compared the sequential trials
approach with MSM-IPTW based on Cox models using simulations, but did not account for the fact that in their imple-
mentation the two analyses were used to estimate different quantities, which were therefore not directly comparable.20

The aim of this paper is to establish connections between the MSM-IPTW approach and the sequential trials approach,
and outline where they can both be used to estimate the same causal estimand, focusing on a marginal risk difference. We
show that the causal parameter estimated from the sequential trials approach can be described in terms of the parameters
of a particular MSM using the counterfactual framework. We also establish more broadly what estimands the MSM-IPTW
and sequential trials approaches are suitable for identifying, what assumptions are needed, and how the data are used
differently. We compare the MSM-IPTW and sequential trials approaches in a simulation study, in which we assess their
relative efficiency for estimation of the same quantities.

In most of the literature on the sequential trials approach, including the papers of Hernan et al4 and Gran et al,5
the primary focus has been on estimation of hazard ratios using Cox proportional hazard models, or the approx-
imately equivalent pooled logistic regression model. This has traditionally also been the case for the MSM-IPTW
for time-to-event outcomes. The Aalen additive hazard models for hazard differences have also become increasingly
popular, both to avoid the proportional hazards assumption and due to their useful property of being collapsible.22

However, hazard ratios, and generally also hazard differences, have been shown not to have a straightforward causal
interpretation.23-25 By focusing on the marginal risk difference we avoid this issue. While other studies4,13,18,26 have pre-
sented estimated survival curves under the treated and untreated regimes, and corresponding risk differences, it has
not been described in detail how such survival curves have been or can be obtained, or what population they refer
to. In this paper we demonstrate how our causal estimand of interest, a marginal risk difference, can be estimated
under both the sequential trials and MSM-IPTW approaches by using an empirical standardization procedure. This is
similar to the standardization approach described by Young et al.27 We consider both proportional and additive haz-
ards models and our simulation comparison of the two approaches makes use of the properties of additive hazards
models.28

The paper is organized as follows. In Section 2 we describe a motivating example, in which the aim is to estimate
the effect of long term use of the treatment dornase alfa on the composite outcome of death or transplant for people
with cystic fibrosis (CF), using longitudinal data from the UK Cystic Fibrosis Registry.29 This section also sets out the
notation used throughout the paper. In Section 3 we define the causal estimand of interest, which is a marginal risk
difference. The estimand is defined using counterfactual notation. In Section 4 we consider how the causal estimand can
be identified using the longitudinal observational data, and outline estimation using the MSM-IPTW approach and the
sequential trials approach. We show how the sequential trials approach can also be understood as fitting a particular MSM.
In Section 5 we discuss in detail the similarities and differences between the two approaches. The two approaches are then
compared in a simulation study in Section 6, and applied to the motivating example in Section 7. Accompanying R code for
performing the simulation is provided at https://github.com/ruthkeogh/sequential_trials. We conclude with a discussion
in Section 8.

https://github.com/ruthkeogh/sequential_trials
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2 MOTIVATING EXAMPLE AND DATA STRUCTURE

2.1 Investigating treatment effects in CF

As a motivating example we will investigate the long-term impacts of a treatment used in CF on the composite
time-to-event outcome of death or transplant. CF is an inherited, chronic, progressive condition affecting around 10 500
individuals in the United Kingdom and over 100 000 worldwide.30-33 Survival in CF has improved considerably over recent
decades and the estimated median survival age in the UK is 51.6 for males and 45.7 for females.30,34,35

One of the most common consequences of CF is a build up of mucus in the lungs, which leads to an increased preva-
lence of bacterial growth in the airways and a decline in lung function.36 Therefore, it is common for people with CF to
routinely use aerosolized mucoactive agents, which help to break down the layer of mucus in the lungs making clear-
ance easier. Recombinant human deoxyribonuclease, commonly known as dornase alfa (DNase), is one such mucolytic
treatment which was authorized for use in 1994. DNase is the most commonly used treatment for the pulmonary conse-
quences of CF in the United Kingdom, used by 67.6% of CF patients in 2019.30 It is a nebulized treatment, administered
daily on a long term basis. The efficacy of DNase for health outcomes in CF has been studied in several randomized
controlled trials.37 Most trials had short-term follow-up and focused on the impact of DNase on lung function. Seven
trials from the 1990s investigated mortality as a secondary outcome but follow-up was short and findings inconclusive;
a meta-analysis based on these studies gave a mortality risk ratio estimate of 1.70 (95% CI 0.70-4.14) comparing users
vs nonusers.37

The effect of DNase use on lung function and requirement for intravenous antibiotics has previously been investi-
gated using observational data from the UK Cystic Fibrosis Registry.38,39 We now use the UK Cystic Fibrosis Registry to
investigate the impact of DNase on the composite outcome of death or transplant. The majority of transplants in people
with CF are lung transplants, however, we consider any transplant here. The UK Cystic Fibrosis Registry is a national,
secure database sponsored and managed by the Cystic Fibrosis Trust.29 It was established in 1995 and records demo-
graphic data and longitudinal health data on nearly all people with CF in the United Kingdom, to date capturing data on
over 12 000 individuals. Data are collected in a standardized way at designated (approximately) annual visits on over 250
variables in several domains, and have been recorded using a centralised database since 2007. In this study we use data
from 2008 to 2018, plus some data on prior years to define eligibility for inclusion in the analysis according to criteria
outlined below. At each annual visit it is recorded whether or not an individual had been using DNase in the past year.
We identified potential confounders of the association between DNase use and death or transplant based on expert clin-
ical input, and these include both time-fixed and time-dependent variables—see Section 2.2. We focus on the impact of
initiating and continuing use of DNase on the risk of death or transplant up to 11 years of follow-up compared with not
using DNase.

2.2 Notation and data structure

We assume a setting in which individuals are observed at regular “visits” (data collection times) over a particular calendar
period (2008-2018 in the example), reflecting the type of data that arise in our motivating example and in similar data
sources. Let k = 0 denote the start of follow-up for a given patient, which we define in our context as the first time in the
analysis dataset at which they are first observed to meet some specified eligibility criteria and at which they could initiate
a treatment strategy of interest. This is discussed further below and in Table 1. Time k = 0 can be at different points in
calendar time for different individuals.

Information on treatment status and other covariates is observed at visits k = 0, 1, … . Without loss of generality, we
assume that visit k occurs at time k, for k ≥ 0. We consider a binary treatment A (treatment or control). At each visit k
we observe binary treatment status Ak and a set of time-dependent covariates Lk. A bar over a time-dependent variable
indicates the history, that is Ak = {A0,A1, … ,Ak} and Lk = {L0,L1, … ,Lk}. An underline indicates the future, so that
Ak = {Ak,Ak+1, …} denotes treatment status from time k onwards. In a slight abuse of standard notation we let ⌊k⌋
denote the time of the most recent visit before time k (so ⌊k⌋ is always < k), and A⌊k⌋ denotes the treatment pattern up to
the most recent visit prior to k. Individuals are followed up from time k = 0 until the time of the event of interest (death or
transplant) or the time of censoring, whichever occurs first. Censoring could be due to loss-to-follow-up or administrative
censoring at the date of data extraction.



KEOGH et al. 2195

T A B L E 1 Summary of the protocol of a target trial for studying the effect of DNase use on survival in people with cystic fibrosis (CF),
and summary of how the target trial is emulated using UK CF Registry data.

Protocol component Target trial Emulation of the target trial using UK CF Registry data

Eligibility criteria People with CF aged 12 or older and who
have not used DNase for at least 3 years.

The target trial is emulated using data on people who were
included in the UK CF registry between 2008 and 2018. The
emulation is performed using the MSM-IPTW and sequential
trials approaches. At a given annual visit from 2008 to 2017, a
person is defined as meeting the trial emulation eligibility
criteria if they meet the following conditions: aged 12 or
older; have at least three preceding visits, at least one in the
prior 18 months, and were recorded as not using DNase at
each of those visits; have observed measurements of FEV1%
and BMI z-score at the current and previous visits. The first
visit at which the trial emulation eligibility criteria are met in
the available data is denoted k = 0 and subsequent visits
times are k = 1, 2, … . The maximum number of visits is 11,
with k = 10 corresponding to 2018.

Treatment strategies (i) Do not start using DNase during
follow-up. (ii) Start using DNase and
continue to use it throughout follow-up.

The treatment strategies of interest are as in the target trial.
However, in the observational data individuals do not
necessarily follow either of these strategies.

Assignment procedures Patients randomly assigned to either
treatment strategy. Patients and their
health care teams are aware of the
patient’s treatment status.

At each visit an individual is a DNase user or non-user, and
individuals can switch on or off treatment. Treatment use is
assumed to be informed by the following covariates, which
are also assumed to affect the outcome: sex, genotype class,
age, FEV1%, BMI z-score, chronic infection with
Pseudomonas aeruginosa or use of nebulized antibiotics,
infection with Staphylococcus aureus or MRSA, infection
with Burkholderia cepacia, infection with Non-tuberculous
mycobacteria (NTM), CF-related diabetes, pancreatic
insufficiency, number of days on intravenous (IV) antibiotics
at home or in hospital, other hospitalization (yes or no), use
of other mucoactive treatments (hypertonic saline, mannitol
or acetylcysteine), use of oxygen therapy, use of CFTR
modulators (ivacaftor, lumacaftor/ivacaftor, or
tezacaftor/ivacaftor), and past DNase use. Patients and their
health care teams are aware of the patient’s treatment status.

Follow-up period Starts at randomization and ends at death
or transplant, loss-to follow-up, or 11
years of follow-up, whichever occurs
first.

MSM-IPTW approach: Follow-up starts at k = 0 and ends at
death or transplant, loss-to follow-up, or the end of 2018,
whichever occurs first.

Sequential trials approach: A trial is formed from each visit
k = 0, 1, … . Trial k includes individuals meeting the trial
emulation eligibility criteria at visit k (k = 0, 1, ..., 9). In trial
k follow-up starts at time k and ends at switching away from
the treatment status at visit k, death or transplant, loss to
follow-up, or the end of 2018, whichever occurs first.

Outcome Death or transplant. As in the target trial.

Causal contrasts Per protocol treatment effect. Marginal
survival curves up to 11 years under the
two treatment strategies, and
corresponding marginal risk differences.
For the marginal probabilities, the
population of interest is individuals
meeting the target trial eligibility criteria
in 2018.

The causal contrasts of interest are as in the target trial.
Estimation is using the MSM-IPTW approach and the
sequential trials approach—see Section 4. The emulation of
the target trial makes use of data from 2008 to 2018, however,
for the marginal probabilities in the causal estimand, we
target the population meeting the trial emulation eligibility
criteria in 2018.
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F I G U R E 1 Directed acyclic graph (DAG) illustrating relationships between treatment A, time-dependent covariates L, discrete time
outcome Y , and unmeasured covariates U. Time-fixed covariates Z are omitted from the diagram but are assumed to potentially affect all
other variables.

The assumed data structure is illustrated in the directed acyclic graph (DAG) in Figure 1, using a discrete-time setting
where Yk = I(k − 1 < T ≤ k) is an indicator of whether the event occurs between visits k − 1 and k. One can imagine
extending the DAG by adding a series of small time intervals between each visit, at which events are observed (but not A
or L, which are assumed constant between visits). As the time intervals become very small we approach the continuous
time setting. From the DAG, we can see that Lk are time-dependent confounders. Time-dependent confounding occurs
when there are time-dependent covariates that predict subsequent treatment use, are affected by earlier treatment, and
affect the outcome through pathways that are not just through subsequent treatment. The DAG also includes a variable U,
which has direct effects on Lk and Yk but not on Ak. U is an unmeasured individual frailty and we include it because it is
realistic that such individual frailty effects exist in practice. Because U is not a confounder of the association between Ak
and Yk (after controlling for the observed confounders), the fact that it is unmeasured does not affect our ability to estimate
causal effects of treatments. The DAG represents the assumed data structure and informs which variables, measured at
what time points, are confounders of the association between treatment at a given time point and the outcome. The DAG
could be extended in various ways, for example, we could incorporate long term effects of L on A and vice versa by adding
arrows from Lk to Ak+1 and from Ak to Lk+2. Long term effects of A and L on survival could also be added, for example by
adding arrows from Lk and Ak to Yk+2. The DAG could also include time-fixed confounders, which we denote as Z.

In the UK CF Registry data, DNase use (Ak) is recorded at each visit and refers to whether the patient has been
prescribed DNase over the past year. The time-dependent confounders (Lk) that we consider are: age (in years), lung
function measured using forced expiratory volume in 1 second as percentage predicted (FEV1%), body mass index
(BMI) z-score, chronic infection with Pseudomonas aeruginosa or use of nebulized antibiotics, infection with Staphy-
lococcus aureus or Methicillin-resistant Staphylococcus aureus (MRSA), infection with Burkholderia cepacia, infection
with Non-tuberculous mycobacteria (NTM), CF-related diabetes, pancreatic insufficiency, number of days on intra-
venous (IV) antibiotics at home or in hospital (categorized as 0, 1-14, 15-28, 29-42, 43+), other hospitalization, use
of other mucoactive treatments (hypertonic saline, mannitol or acetylcysteine), use of oxygen therapy, use of CFTR
modulators (ivacaftor, lumacaftor/ivacaftor, or tezacaftor/ivacaftor). Of the time-dependent variables, FEV1% and BMI
are measured on the day of the visit, whereas all of the other variables refer to information in the time since the
previous visit, that is, in the past year. We also include two time-fixed covariates (Z): sex (male/female) and geno-
type class (a marker of the severity of the CF-causing mutation—low, high, not assigned, missing).40 The covariates
are binary yes/no variables except where indicated. For individuals who are not observed to have the event of inter-
est (death or transplant) the censoring date was the earlier of December 31, 2018 and the date of the last visit plus
18 months.
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3 THE CAUSAL ESTIMAND

3.1 The general case

In this section we specify the causal estimand, meaning the quantity that we wish to estimate. We consider the estimand
in general terms first, and then in the context of our example introduced in Section 2. Our interest lies in comparing
outcomes under two treatment strategies: (1) to start and continue treatment (to the time horizon of interest); (2) not to
start treatment up to the time horizon of interest. We refer to strategy (1) as “always treated” and strategy (2) as “never
treated.” The time scale on which the causal estimand is defined is denoted t, with t = 0 denoting the time at which an
individual could initiate strategy (1) or (2). Let us define Ta0=1 as the counterfactual event time had an individual received
the treatment from t = 0 onwards (“always treated”) and Ta0=0 as the counterfactual event time had an individual not
received the treatment from t = 0 onwards (“never treated”). We can then define our causal estimands of interest as
contrasts between functions of the distributions of Ta0=1 and Ta0=0.

Effects of treatments on time-to-event outcomes can be quantified in a number of ways. We let hTa0 (t) denote the coun-
terfactual hazard at time t under the possibly counter-to-fact treatment strategy a0. A common estimand is the ratio of
hazards between the treatment and control strategies, hTa0=1(t)∕hTa0=0(t). However, as hazard ratios do not have a straight-
forward causal interpretation, it is recommended to consider causal contrasts between risks.23-25 In this paper we will
focus on the risk difference as the primary estimand of interest:

Pr(Ta0=1
≤ 𝜏) − Pr(Ta0=0

≤ 𝜏) = Pr(Ta0=0
> 𝜏) − Pr(Ta0=1

> 𝜏). (1)

This risk difference contrasts the risk of the event by a time horizon 𝜏, under the conditions of being “always treated” vs
“never treated” up to time 𝜏. There may be several time horizons of interest, that is, different values of 𝜏, and we let 𝜏max
denote the maximum time horizon for which the risk difference is to be obtained. Alternative quantities with a causal
interpretation are the risk ratio Pr(Ta0=1

< 𝜏)∕Pr(Ta0=0
< 𝜏), the survival ratio Pr(Ta0=1

> 𝜏)∕Pr(Ta0=0
> 𝜏) and contrasts

between restricted mean survival times E(min(Ta0 , 𝜏)).41

The causal estimand in (1) corresponds to a per protocol effect because it involves comparisons between outcomes
if treatment level a (a = 0, 1) were sustained from t = 0 up to time 𝜏. The estimand is expressed in terms of marginal
probabilities (risks) and it is important to make clear what population the marginal probabilities refer to, for example, in
terms of age and clinical characteristics. If the causal estimand were to be estimated from a randomized trial then t = 0
would be the time of randomization and the population to which the marginal risks refer would be the population from
which the trial participants were drawn.

The probabilities in (1) can be written as a function of the counterfactual hazard, which we make use of later for
estimation:

Pr(Ta0=a
> 𝜏) = exp

(

−
∫

𝜏

0
hTa0=a(t)dt

)

. (2)

The counterfactual hazard function could also be considered as a function of the covariate history at t = 0, denoted V ,
hTa0=a(t|V). In this case we can write

Pr(Ta0=a
> 𝜏) = EV

{
Pr(Ta0=a

> 𝜏|V)
}
= EV

{

exp
(

−
∫

𝜏

0
hTa0=a(t|V)dt

)}

, (3)

where the expectation is over the distribution of V in the population of interest.

3.2 Application in the UK CF Registry: causal estimand

In our motivating example, “always treated” means sustained use of DNase for the follow-up period of interest and
“never treated” means not using DNase for the follow-up period of interest. We are interested in risk differences up
to 11 years of follow-up (0 < 𝜏 ≤ 11), standardized to the underlying population of individuals meeting some specified
eligibility criteria in 2018, this being the most recent year for which data were available for this study, and therefore
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considered the population of most relevance to the current CF population. The characteristics of this population could be
summarised by their distribution of time-fixed covariates Z and their history of time-dependent variables L up to 2018.

The causal estimand can be linked to a target trial.15 Arguably a precise specification of the causal estimand using
counterfactual notation, as in (1), encompasses all elements of the target trial. However, by specifying the target trial
alongside the causal estimand, we can help ensure that our aims and findings are clear and accessible by different audi-
ences. Table 1 outlines the components of the target trial for studying the effect of DNase on survival on people with
CF, and summarizes how the target trial is emulated using the available data, following examples in the literature.13,18

There are differences in the way that the MSM-IPTW and sequential trials approaches use the observed data for the trial
emulation, which is incorporated in the description of the trial emulation.

The target trial protocol specifies the population to which the causal estimand of interest refers, which is individuals
meeting the target trial eligibility criteria in 2018. The eligibility criteria for the trial emulation using the UK CF Registry
data (“trial emulation eligibility criteria”) extend the target trial eligibility criteria as they take into account features of
the data and how the data are to be used in the analysis. The emulation of the trial makes use of data from 2008 to 2018.
For the marginal probabilities in the causal estimand the population of interest is people meeting the trial emulation
eligibility criteria in 2018. For the trial emulation we identify individuals meeting the trial emulation eligibility criteria at
visits recorded in the UK CF Registry data between 2008 and 2017. To do this also requires data from three visits prior to
2008 to ascertain whether the person had been taking DNase in the three previous years. Individuals who may have used
DNase in the more distant past were included to increase sample size and because it was considered reasonable that the
effect of restarting DNase in this group would be similar to that for individuals who had never used DNase in the past.
The trial emulation eligibility criteria also include that an individual is eligible at a given visit if they have at least three
preceding visits, with the patient recorded as not using DNase at each of those visits, and with at least one visit being
in the prior 18 months. To be eligible at a given visit, individuals were also required to have observed measurements of
FEV1% and BMI z-score at that visit and the previous visit.

4 ESTIMATION USING LONGITUDINAL OBSERVATIONAL DATA

4.1 Assumptions and MSMs

This section focuses on the estimation of the causal estimand in (1) using longitudinal observational data of the type
described in Section 2.2 and as illustrated in the DAG in Figure 1. In the observational data, individuals who are untreated
initially (A0 = 0) can subsequently start treatment (ie, Ak = 1 for some k ≥ 1) and vice versa. As illustrated in the DAG
in Figure 1, a change in a person’s treatment status can depend on time-dependent patient characteristics that also affect
the outcome. Therefore, individuals who follow the treatment patterns of interest from time k = 0 (ie, A0 = 1 [“always
treated”] and A0 = 0 [“never treated”]), differ systematically in their characteristics at time k = 0. Furthermore, some
individuals follow other patterns of treatments, for example, {Ak−1 = 0,Ak = 1}. To identify the causal estimand of interest
from the observational data requires the four key assumptions of no interference, positivity, consistency, and conditional
exchangeability (ie, no unmeasured confounding).1,42,43 Details on these assumptions are provided in Supplementary
Material (Section 1). We did not depict censoring in the DAG, but it is also assumed that any censoring of individuals in the
observational data is uninformative conditional on observed time-fixed and time-dependent covariates and treatments,
and handling of censoring is discussed further below.

The causal estimand in (1) involves marginal risks, which we expressed in (2) in terms of the counterfactual hazard
function. For estimation, we assume a particular model for these hazard functions, with the model specifying how the
counterfactual hazard at a given time depends on the treatment history up to that time. Such models are referred to as
MSMs. In the time-to-event setting, the MSM for a hazard is usually assumed to take the form of a Cox proportional
hazards model44

hTa0 (t) = h0(t)eg(a⌊t⌋;𝛽A)
, (4)

where h0(t) is the baseline counterfactual hazard, a⌊t⌋ denotes the treatment pattern up to the most recent visit prior
to t, g(a⌊t⌋; 𝛽A) is a function of a⌊t⌋ to be specified, and 𝛽A is a vector of log hazard ratios. However, the hazard could
take various other forms and we will also consider MSMs based on Aalen’s additive hazard model,45,46 which have
the form

hTa0 (t) = 𝛼0(t) + g(a⌊t⌋; 𝛼A(t)), (5)
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where 𝛼0(t) is the baseline counterfactual hazard and 𝛼A(t) is a vector of time-dependent coefficients. In both hazard
models the g(⋅) function is chosen to equal zero when a⌊t⌋ = 0. In (3) we also showed that the causal estimand can be
expressed in terms of a conditional hazard. For this the MSM for the conditional hazard includes conditioning on (some
components of) the covariate history at time t = 0, which we denote V . Proportional hazards and additive hazards forms
for the conditional hazard are

hTa0 (t|V) = h0(t)eg(a⌊t⌋;𝛽A)+𝛽⊤L V
, (6)

and

hTa0 (t|V) = 𝛼0(t) + g(a⌊t⌋; 𝛼A(t)) + 𝛼

⊤

L (t)V . (7)

The hazard models in (4) to (7) are generic forms for the MSM. They could be extended to include interactions
between a⌊t⌋ and V . Below we consider specific forms for the MSM that are used in the MSM-IPTW and sequential trials
approaches, and we specify V in terms of Z and L. Both methods involve specification of an MSM for the hazard hTa0 (t)
or the conditional hazard hTa0 (t|V), followed by estimation using observational data under the assumptions stated above.

For the Cox MSM in (4) the survival probabilities required for the estimand in (1) can be written

Pr(Ta0
> 𝜏) = exp

{

−eg(a0;𝛽A)
∫

1

0
h0(v)dv − eg(a1;𝛽A)

∫

2

1
h0(v)dv · · · − eg(a⌊𝜏⌋;𝛽A)

∫

𝜏

⌊𝜏⌋

h0(v)dv
}

. (8)

For the Aalen MSM in (5) we have

Pr(Ta0
> 𝜏) = exp

{

−
∫

𝜏

0
𝛼0(v)dv −

∫

1

0
g(a0; 𝛼A(v))dv −

∫

2

1
g(a1; 𝛼A(v))dv · · · −

∫

𝜏

⌊𝜏⌋

g(a⌊𝜏⌋; 𝛼A(v))dv
}

. (9)

Similar expressions can be used to write the conditional probabilities Pr(Ta0=a
> 𝜏|V) in terms of the conditional MSM

in (6) or (7), which can then be used to estimate the marginal probabilities Pr(Ta0=a
> 𝜏) using (3). Further details on

estimation are discussed below.

4.2 Estimation using MSM-IPTW

4.2.1 Specifying and estimating the MSM

In the MSM-IPTW approach, the data used for the analysis includes individuals followed-up from the first time at
which they met the trial emulation eligibility criteria, denoted k = 0 (see Table 1). This is the time at which the deci-
sion to initiate the “always treated” or “never treated” strategy could have been made, and t denotes follow-up time
(ie, t corresponds to k). Individuals are assigned time-dependent weights to address time-dependent confounding and
the MSM is fitted to the observed weighted data. Consider first the MSM that does not condition on any covariate his-
tory at time t = 0. In a simple version of the MSM, the hazard at time t is assumed to depend only on the current level of
treatment: g(a⌊t⌋; 𝛽A) = 𝛽Aa⌊t⌋ (model (4)) or g(a⌊t⌋; 𝛼A(t)) = 𝛼A(t)a⌊t⌋ (model (5)). Other options include that the hazard
depends on duration of treatment, g(a⌊t⌋; 𝛽A) = 𝛽A

∑⌊t⌋
k=0ak or g(a⌊t⌋; 𝛼A(t)) = 𝛼A(t)

∑⌊t⌋
k=0ak; or on the history of treatment in

a more general way, g(a⌊t⌋; 𝛽A) =
∑⌊t⌋

k=0𝛽Akak or g(a⌊t⌋; 𝛼A(t)) =
∑⌊t⌋

k=0𝛼Ak(t)ak. The choice of the way in which the hazard
depends on the treatment history could be informed by subject matter knowledge. In practice, however, it may be diffi-
cult to elicit this information and the choice could depend to some extent on the sample size, with larger sample sizes
permitting more flexible forms for the hazard without too much loss of precision. The weight at time t for a given indi-
vidual is the inverse of the product of conditional probabilities of them having had their observed treatment pattern up
to time t given their past treatment status and time-dependent covariate history, L⌊t⌋,Z. These weights can be large for
some individuals, which induces large uncertainty in estimates from the MSM, and stabilized weights are typically used
instead. Details on the weights are provided in the Supplementary Material (Section 2).

Next we consider the MSM that conditions on the covariate history at time t = 0. In this case V in Equations (6)
and (9) is L0,Z. In this case we also need to correctly specify how L0,Z impact on the hazard, including consideration
of any interaction terms between a⌊t⌋ and L0,Z. Inclusion of interactions with L0,Z may also be informed by subject
matter knowledge and could in theory be assessed using statistical tests, which should be based on an appropriate
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method for estimating standard errors such as bootstrapping (see below). If stabilized weights are estimated by includ-
ing the covariate history at time t = 0, that is, L0,Z, in the model in the numerator of the stabilized weights then
L0,Z must also be included in the MSM, that is, the MSM should be for a conditional hazard hTa0 (t|L0,Z). An MSM
based on a conditional hazard can also be used in combination with unstabilized or partially stabilized weights. In
that case, however, the conditioning variables are not being used to control confounding, as that is achieved via the
weights.

In the data there is likely to be censoring of individuals due to loss-to-follow-up or for other reasons. Censoring that
depends on time-updated covariates, or on baseline covariates that are not conditioned on in the MSM (ie, not included
in the set of baseline adjustment variables in the MSM, if any), is informative, and this should be accounted for in the
analysis to avoid bias. Inverse probability of censoring weights (IPCW) can be used to address this. The total weight at a
given time is the product of the IPTW and IPCW at that time.

4.2.2 Estimating the causal estimand

Having fitted a MSM using a Cox model for the marginal hazard as in (4), we use the expression in (8) to obtain esti-
mates of the marginal probabilities of interest. In (8) the integrated (cumulative) baseline hazards can be estimated using
an IPTW Breslow’s estimator (see Section 2 in the Supplementary Material). Alternatively, having fitted a MSM using
an Aalen additive model for the marginal hazard (5), we use the expression in (9), where the integrals are estimated
as the cumulative coefficients estimated in the Aalen additive hazard model fitting process. When using an MSM for
a marginal hazard the resulting marginal survival probabilities refer to the population at time zero. If using an MSM
with conditioning on L0,Z we can use the fitted MSM to estimate conditional survival probabilities Pr(Ta0=a

> 𝜏|L0,Z).
These conditional estimates can then be used to obtain estimates of marginal probabilities Pr(Ta0=a

> 𝜏) for a popu-
lation of interest using empirical standardization. Here we have a choice about the population to which the marginal
probabilities refer, in terms of their distribution of L0,Z. In the motivating example, we let  denote the set of indi-
viduals meeting the trial emulation eligibility criteria in 2018, and the number of individuals in  is denoted n . We
let li, zi denote the observed values of the covariate history for individual i ∈  in 2018. The empirical standardization
formula is

̂Pr(Ta0=a
> 𝜏) = 1

n

∑

i∈

̂Pr(Ta0=a > 𝜏|L0 = li,Z = zi) =
1

n

∑

i∈
exp

{
−̂HTa0=a(𝜏|L0 = li,Z = zi)

}
. (10)

where ̂HTa0=a(𝜏|L0 = li,Z = zi) is the estimate of the conditional cumulative hazard at time 𝜏. In practice, the empirical
standardization can be done by creating two copies of each individual in  (sometimes called “cloning”) and setting
A0 = A1 = … = A⌊𝜏⌋ = 1 for one copy and A0 = A1 = … = A⌊𝜏⌋ = 0 for the other copy. The covariate values li, zi are the
same for both copies. The estimated conditional survival probabilities are then obtained for each individual under both
treatment regimes (ie, for both copies), and then the average calculated across individuals under both treatment regimes.
A similar empirical or ‘plug-in’ approach for estimating risks based on MSMs was described by Young et al.27 See also
Chen and Tsiatis47 and Daniel et al.48

If it is of interest to estimate the causal risk difference in (1) for several time horizons 𝜏, it is recommended
to fit the MSM using all event times up to 𝜏max to obtain risk difference estimates for all horizons 𝜏 ≤ 𝜏max, rather
than fitting separate MSMs for different time horizons. This is to guarantee that estimated survival curves are
monotone.

Confidence intervals for the estimated causal risk difference can be obtained by bootstrapping. The weights models
and the MSM are fitted in each bootstrap sample, so that the bootstrap confidence intervals capture the uncertainty in
the estimation of the weights as well as in the MSM.

4.3 Estimation using the sequential trials approach

4.3.1 Creation of trials and use of MSMs

The sequential trials approach takes advantage of the fact that individuals can meet the trial emulation eligibility
criteria at more than one visit during their follow-up, and therefore have data consistent with initiating the
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“always treated” or “never treated” strategy at more than one visit k (Table 1). This is the key difference
between the MSM-IPTW approach and the sequential trials approach. Another important difference is that the
sequential trials approach focuses only on two sustained treatment regimes of interest—“always treated” and
“never treated”—whereas the MSM-IPTW approach permits estimation of risks under any longitudinal treatment
regime. The two methods are compared in detail in Section 5. Here we focus on describing the sequential trials
approach.

In the sequential trials approach the trial emulation eligibility criteria are applied at each visit k = 0, 1, … to form a
sequence of “trials.” An individual can contribute to a “trial” starting from any visit k = 0, 1, 2, … at which they meet the
criteria. The time t = 0 in a given trial denotes the time since the start of the trial. In typical applications of the sequen-
tial trials approach, individuals who have previously used the treatment are not eligible for inclusion in a given trial,
and so all individuals included in the kth trial have Ak−1 = 0. Those included in the kth trial therefore include “initia-
tors” who start treatment at visit k (Ak = 1) and “non-initiators” who remain untreated at visit k (Ak = 0). Noninitiators
in trial k can appear as initiators in a later trial (k + 1, … ). Individuals can appear as initiators in only one trial, but
as noninitiators in several trials. In our motivating example we relax this slightly and only require individuals not to
have been treated for three prior years in order to be included in a given trial according to the trial emulation eligibil-
ity criteria, that is, a person is eligible at visit k if Ak−1 = Ak−2 = Ak−3 = 0. In the example, therefore, an individual could
appear as a new initiator in more than one trial, and also as a new initiator in one trial and a noninitiator in a trial
more than 3 years later. To simplify the notation below we assume that individuals meeting the trial emulation eligibility
criteria for the kth trial have Ak−1 = 0, but the details are unchanged in the slightly relaxed situation of the motivating
example.

Previous descriptions of the sequential trials approach have described the analysis models used but have not expressed
these in terms of MSMs using the counterfactual framework.4,5 Here we consider MSMs for use in the sequential tri-
als approach, focusing on MSMs that condition on the covariate history at the start of the trial, hTa0 (t|V), where V
corresponds to Lk,Z for trial k. First consider the trial starting at visit k = 0. Let h0,Ta0=a(t|L0,Z) denote the hazard
at time t after visit 0 under the possibly counter-to-fact regime of being “always treated” (a = 1) or “never treated”
(a = 0) from visit 0 onwards, conditional on L0,Z. MSMs for this hazard using a Cox model and Aalen’s additive hazard
model are

h0,Ta0=a(t|L0,Z) = h00(t) exp
{

f (t; 𝛽A0)a + 𝛽

⊤

L0L0 + 𝛽

⊤

Z0Z
}
, (11)

and

h0,Ta0=a(t|L0,Z) = 𝛼00(t) + 𝛼A0(t)a + 𝛼

⊤

L0(t)L0 + 𝛼

⊤

Z0(t)Z. (12)

We extend this to a trial starting at any visit k and let hk,Ta0=a(t|Ak−1 = 0,Lk,Z) denote the hazard at time t after visit k
under this possibly counter-to-fact treatment regime, conditional on the time-fixed covariates Z and the characteristics Lk
at the start of trial k. We note that the subscript 0 on a0 in the counterfactual event time Ta0

refers to time t = 0 (the start
of a given trial) rather than to visit k = 0. MSMs for this hazard using a Cox model and Aalen’s additive hazard model are
therefore

hk,Ta0=a(t|Ak−1 = 0,Lk,Z) = h0k(t) exp
{

f (t; 𝛽Ak)a + 𝛽

⊤

LkLk + 𝛽

⊤

ZkZ
}
, (13)

and

hk,Ta0=a(t|Ak−1 = 0,Lk,Z) = 𝛼0k(t) + 𝛼Ak(t)a + 𝛼

⊤

Lk(t)Lk + 𝛼

⊤

Z (t)Z. (14)

The conditioning on Lk,Z is included to control for confounding by covariates at the start of the trial. Such confounding
could alternatively be controlled using weights, but conditioning on covariate history at the start of the trial is a feature
of the previously-described sequential trials analysis methods, which we discuss further below. In the Cox MSM (13)
the hazards in the treated and untreated could be assumed proportional, f (t; 𝛽Ak) = 𝛽Ak, or we could allow the hazard to
depend on duration of treatment, for example, f (t; 𝛽Ak) = 𝛽Ak,0 + 𝛽Ak,1t. The additive hazards MSM in (14) naturally incor-
porates a flexible time-dependent effect of treatment on the hazard. Both models could be extended to include interactions
between a and Lk,Z.
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4.3.2 Estimation using inverse probability of artificial-censoring weights

The MSMs in (13) and (14) cannot be estimated directly from the observational data because not all individuals meet-
ing the trial emulation eligibility criteria at visit k are then “always treated” (Ak = 1) or “never treated” (Ak = 0). In
the approach as described by Hernan et al4 (their “adherence-adjusted” approach) and Gran et al5 individuals are
artificially censored at the visit at which they switch from their treatment group at the start of the trial. That is, in
the trial starting at visit k, individuals are censored at the earliest visit m (m > k) such that Am ≠ Ak. We refer to
this as artificial censoring. It results in a modified dataset in which, in trial k, all individuals have either Ak = 0 or
Ak = 1 up to the earliest of their event time, their actual censoring time, or their artificial censoring time. Treatment
switching is expected to depend on time-dependent covariates that are also associated with the outcome, as illus-
trated in the DAG in Figure 1, meaning that the artificial censoring is informative. This is addressed using weights,
which we refer to as inverse probability of artificial-censoring weights (IPACW). The IPACW at times 0 < t < 1 (in
each trial k) is 1. The IPACW at times l ≤ t < l + 1 (l ≥ 1) is the inverse of the product of conditional probabilities
that the individual’s treatment status up to time l remained the same as their treatment status at the start of the
trial (time t = 0), conditional on their observed covariates up to time l. After estimating the IPACW, the MSMs in
(13) and (14) can then be fitted using weighted regression using the time-dependent IPACW, with a in the hazard
model replaced by the observed treatment status at the start of the trial, that is, Ak in trial k, noting that treatment
status is forced to be the same at all times t due to the artificial censoring. The conditioning on Lk,Z controls for
confounding of the association between treatment initiation at time 0 and the hazard. Estimating the MSMs in this
way is valid under the same assumptions of no interference, positivity, consistency and conditional exchangeability, as
are required for the MSM-IPTW analysis. Further details on the IPACW are provided in the Supplementary Material
(Section 2). Hernan et al4 used logistic regression to estimate the IPACW, whereas Gran et al5 used Aalen’s additive
hazard model.

4.3.3 A combined analysis across trials

The MSMs in (13) and (14) could be fitted separately in each trial starting at times k = 0, 1, … . However, the
strength of the sequential trials approach comes from the potential for a combined analysis across trials. Some or
all parameters of the MSMs in (13) and (14) could be assumed common across trials (ie, the same for all k). The
common parameters can then be estimated by fitting the hazard models using the observed data combined across
trials. When the MSMs are fitted combined across trials, the MSM for each trial k preferably conditions on the
same amount of history of Lk. For example, we may wish to allow the hazard for each trial k to depend on Lk
and Lk−1. The amount of history to condition on should be based on what is considered to be needed to control
for confounding, which can be encompassed in a DAG. We let Lk−k∗,k = {Lk−k∗ , … ,Lk} denote the extent of the
history of Lk that we wish to condition on in the MSM. If we allowed the MSMs for the conditional hazards for
different trials to depend on different amounts of history of Lk then justification for a combined model may be
challenging.

It may be reasonable in many settings to assume that the impact of the treatment on the hazard at a given time
post-initiation of the treatment does not depend on the visit k at which treatment was initiated, that is, 𝛽Ak = 𝛽A in model
(13) and 𝛼Ak(t) = 𝛼A(t) in model (14) for all k. Similarly the coefficients for Lk−k∗,k and Z could be assumed constant across
trials. Often the observation time scale k will be in a sense arbitrary. In our motivating example we define time k = 0 as
the first time during the period 2008 to 2017 that an individual is observed in the UK CF Registry and first meets the
trial emulation eligibility criteria. For many individuals this is 2008 (see Section 7). Provided any elements of time (eg,
age, calendar year) that affect the hazard are included in the set of covariates Lk−k∗,k, the baseline hazard may also be
assumed common across trials, that is, h0k(t) = h0(t) or 𝛼0k(t) = 𝛼0(t). The models used to obtain the IPACW could be
fitted separately in each trial or combined across trials.

As in the MSM-IPTW approach, censoring of individuals due to loss-to-follow-up or for other reasons, and which
depends on time-updated covariates, can be handled using IPCW. In the sequential trials analysis these weights are
distinct from the IPACW used to address the artificial censoring, and the total weight at a given time is given by the
product of these two types of weight. Gran et al5 did not distinguish between artificial censoring in data set-up for the
sequential trials approach and censoring due to drop-out in their analysis, and used a single weight to account for both
of these.
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4.3.4 Estimating the causal estimand

After estimating the MSM using the sequential trials data the expression in (3) can be used to obtain estimates of condi-
tional survival probabilities Pr(Ta0=a

> 𝜏|Ak-1 = 0,Lk−k∗,k,Z). These conditional probabilities can then be used to obtain
the marginal probabilities used in the causal estimand in (1). As in the MSM-IPTW approach when using an MSM that is
conditional on L0,Z, we have some choice here about the population for which the marginal probabilities are obtained.
Suppose we decided to fit a Cox MSM of the form

hk,Ta0=a(t|Ak−1 = 0,Lk−k∗,k,Z) = h0(t) exp
{
𝛽Aa + 𝛽

⊤

L Lk−k∗,k + 𝛽

⊤

Z Z
}
, (15)

and that this is fitted combined across all trials, therefore giving combined estimates of the model parameters and
the baseline hazard. As in Section 4.2 we let  denote the observed sample from the population of interest, that is, indi-
viduals meeting the trial emulation criteria in 2018 in our motivating example. We let li, zi denote the observed values
of time-dependent covariates Lk−k∗,k,Z for individual i ∈ . Using the Cox MSM in (15) the empirical standardization
formula is

̂Pr(Ta0=a
> 𝜏) = 1

n

∑

i∈0

̂Pr(Ta0=a
> 𝜏|Ak-1 = 0,Lk−k∗,k = li,Z = zi) =

1
n

∑

i∈
exp

{
−exp

{
̂
𝛽Aa + ̂

𝛽

⊤

L li + ̂
𝛽

⊤

Z zi

}
̂H0(𝜏)

}
. (16)

where ̂H0(𝜏) is the estimated cumulative baseline hazard, which is obtained using an IPACW Breslow’s estimator
(see Section 2 in Data S1). A similar expression can be written if the model in (15) is replaced by an additive hazards
model. The standardized probability estimate in (16) targets the same probability as the corresponding expression for
the MSM-IPTW approach in (10). They both refer to a population . Both also involve a baseline hazard. The baseline
hazards are themselves marginal with respect to covariates not included in the MSM for the conditional hazards, and
will refer to different populations in the MSM-IPTW and sequential trials approaches. However, provided that impor-
tant aspects of “time” such as age and calendar time are included in the covariate set, we argue that these differences
are likely to have negligible impact on estimates. In (15) the baseline hazard is assumed the same across trials. We could
alternatively allow the baseline hazard to differ across trials, while assuming that the model coefficients are the same
across trials. For this the MSM would be fitted using data combined across trials, but allowing the baseline hazard to
differ by trial (ie, using a stratified baseline hazard). When allowing different baseline hazards across trials, care should
be taken over which baseline hazard is then used to obtain the marginal risk estimates. In this paper we focus on a
sequential trials approach in which the length of possible follow-up decreases for trials starting at later visits. The base-
line hazard corresponding to the trial starting at k = 0 may be used to obtain the marginal risk difference estimates for
all time horizons 𝜏 ≤ 𝜏max. The baseline hazard from the trial starting at k = 1 could only be used to estimate marginal
risk difference estimates for time horizons 𝜏 ≤ 𝜏max − 1. An alternative would be to use a sequence of trials that all
have equal length of follow-up. In our motivating example, which uses data from 2008 to 2018, there are a maximum
of 11 years of follow-up (from 2008). If we did not use a combined analysis across trials, the parameters in (16) would
be trial dependent, and one would then have to consider which set of parameters to use to obtain the marginal risk
estimates.

In their descriptions of the sequential trials approach Gran et al (2010)5 used the Cox proportional hazards model,
and Hernan et al (2008)4 used pooled logistic regression across visits, which is equivalent to a Cox regression as the
times between visits gets smaller.49 Røysland et al50 used an additive hazards model, though their aim was to estimate
direct and indirect effects, which differs from our aims. Gran et al (2010)5 assumed the hazard ratios for treatment
in the Cox model to be common across the trials, but allowed a different baseline hazard in each trial. Hernan et al
(2008)4 allowed the odds ratio for treatment to differ across trials and also performed a test for heterogeneity, though
it is unclear whether they allowed separate intercept parameters (analogous to our baseline hazards) across trials. If
the coefficient for treatment is assumed the same across trials, it is recommended to assess this assumption using a
formal test.

As in the MSM-IPTW approach, confidence intervals for the estimated causal risk difference can be obtained by boot-
strapping. The formation of the sequential trials, estimation of the weights, fitting of the conditional MSMs, and obtaining
the risk difference are all repeated in each bootstrap sample.
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5 COMPARING MSM-IPTW AND THE SEQUENTIAL TRIALS APPROACH

5.1 An illustrative example using a causal tree diagram

In this section we show how the MSM-IPTW and sequential trials approaches can estimate the same causal estimand
using a simple example and non-parametric estimates. Our aim is to provide insight into how the two approaches use the
data differently to estimate the same quantity.

Consider a situation as depicted in the DAG in Figure 1, but with treatment and covariate information only col-
lected at up to two visits (L0,A0 measured at time 0, and L1,A1 measured at time 1) and survival status observed
at times 1 (Y1 = I(0 < T ≤ 1)) and 2 (Y2 = I(0 < T ≤ 2)). We focus on a single binary time-dependent confounder L
and omit the unobserved variable U and any time-fixed covariates Z. Figure 2 shows a causal tree graph (see for
example Richardson and Rotnitzky (2014)51), representing the different possible combinations of the variables L0,A0,

Y1 up to time 1, and then the different combinations of L1,A1,Y2 among individuals who survive to time 1 (Y1 = 0).
A total of n individuals are observed at time 0. The numbers in brackets on the branches of the tree are the number
of individuals who followed a given pathway up to that branch. The notation is as follows: nl0 denotes the number
with L0 = l0; nl0a0 the number with L0 = l0,A0 = a0; ny1

l0a0
the number with L0 = l0,A0 = a0,Y1 = y1; n0

l0a0,l1
the number

with L0 = l0,A0 = a0,Y1 = 0,L1 = l1; n0
l0a0,l1a1

the number with L0 = l0,A0 = a0,Y1 = 0,L1 = l1,A1 = a1; and n0,y2
l0a0,l1a1

the
number with L0 = l0,A0 = a0,Y1 = 0,L1 = l1,A1 = a1,Y2 = y2.

Our interest is in comparing survival probabilities under the two treatment regimes of “always treated” and “never
treated.” The branches representing these two treatment regimes starting from k = 0 are shown with thick lines in the
causal tree diagram. The MSM-IPTW analysis makes use of the causal tree diagram as depicted in Figure 2. Under the
sequential trials approach, we create a trial starting at time 0 and a trial starting at time 1. In the trial starting at time 0
individuals who survive to time 1 are censored at time 1 if A1 ≠ A0, that is, not all branches after time 1 are used. The
trial starting at time 1 is restricted to individuals with A0 = 0 and Y1 = 0. The sections of the causal tree diagram used for
these two trials are shown in Figure 3.

F I G U R E 2 Causal tree diagram illustrating a study with a binary treatment At and binary covariate Lt, both measured at two time
points (t = 0, 1). Yt is a discrete time survival outcome. Thick lines indicate branches for groups of individuals who were untreated or treated
at both time points.
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F I G U R E 3 Illustration of the sequential trials approach using causal tree diagram from Figure 2. (A) Trial starting at t = 0 . (B) Trial
starting at t = 1. (A) In the trial starting at time t = 0 individuals with Y1 = 0 are censored at time 1 if A1 ≠ A0. (B) The trial starting at time
t = 1 is restricted to individuals with A0 = 0 (and Y1 = 0).

Consider the probability of survival to time 1 with treatment a, Pr(Y a0=a
1 = 0). The MSM-IPTW approach estimates

this using the result that (under the conditions of consistency, positivity and conditional exchangeability)

Pr(Y a0=a
1 = 0) = E

{
I(A0 = a)(1 − Y1)

Pr(A0 = a|L0)

}

. (17)

Based on the tree diagram, a nonparametric estimate of this is

̂Pr(Y a0=a
1 = 0) = 1

n

{

n0
0a

(
n0a

n0

)−1

+ n0
1a

(
n1a

n1

)−1
}

, (18)

where the two contributions within the outer brackets come from individuals with L0 = 0 and L0 = 1. On the other hand,
the sequential trial starting at time 0 estimates Pr(Y a0=a

1 = 0|L0). By consistency and conditional exchangeability we have
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Pr(Y a0=a
1 = 0|L0) = Pr(Y1 = 0|A0 = a,L0). Based on the tree diagram, a non-parametric estimate of this using the trial

starting at time 0 is Pr(Y1 = 0|A0 = a,L0 = l0) =
n0

l0a

nl0a
, l0 = 0, 1. Using the result that Pr(Y a0=a

1 = 0) =
∑

l0
Pr(Y1 = 0|A0 =

a,L0 = l0)Pr(L0 = l0) (assuming consistency and conditional exchangeability) it follows that a nonparametric estimate of
the marginal probability Pr(Y a0=a

1 = 0) based on the trial starting at time 0 is

̂Pr(Y a0=a
1 = 0) =

n0
0a

n0a

n0

n
+

n0
1a

n1a

n1

n
, (19)

which is the same as the estimate obtained using MSM-IPTW (ie, Equation 18). Therefore the MSM-IPTW and sequential
trials approaches (using the trial starting at visit 0) give identical estimates of Pr(Y a0=a

1 = 0). This equivalence between
inverse probability weighted estimates and standardized estimates obtained using the g-formula in the nonparametric
setting is well established (see eg, References 43 and 52). In the sequential trials approach, the trial starting at time 1 (so
that t = 0 corresponds to k = 1) can be used to estimate the probability of survival for 1 year under a given treatment
strategy conditional on survival to time 1 and on A0 = 0. By consistency and conditional exchangeability, and assuming
that conditioning on L1 is sufficient to control for confounding of the association between A1 and Y2, the nonparametric
estimate is

̂Pr(Y a0=a
2 = 0|Y1 = 0,A0 = 0) =

(
n0,0

00,0a + n0,0
10,0a

n0
00,0a + n0

10,0a

)(
n0

00,0 + n0
10,0

n0
00 + n0

10

)

+

(
n0,0

00,1a + n0,0
10,1a

n0
00,1a + n0

10,1a

)(
n0

00,1 + n0
10,1

n0
00 + n0

10

)

, (20)

where the two contributions come from individuals with L1 = 0 and L1 = 1. The marginal probability estimate ̂Pr(Y a0=a
1 =

0) refers to a population in which Pr(L0 = 1) = n1∕n, whereas the marginal probability estimate ̂Pr(Y a0=a
2 = 0|Y1 = 0,A0 =

0) refers to a population with a different distribution of the covariate measured at the start of the trial, L1. The estimate
from the trial starting at time 1 could alternatively be standardized to the distribution of L0 at time 0:

̂PrStd(Y a0=a
2 = 0|Y1 = 0,A0 = 0) =

(
n0,0

00,0a + n0,0
10,0a

n0
00,0a + n0

10,0a

)
(n0

n

)
+

(
n0,0

00,1a + n0,0
10,1a

n0
00,1a + n0

10,1a

)
(n1

n

)
. (21)

Under the assumption that PrStd(Y a0=a
2 = 0|Y1 = 0,A0 = 0) = Pr(Y a0=a

1 = 0), a combined estimate of Pr(Y a0=a
1 = 0) could

be obtained from the two trials, for example, using an inverse-variance-weighted combination of the estimates from the
two trials (Equations 19 and 21).

Considering again the trial starting at time 0, we can also show that non-parametric estimates of Pr(Y a0=a
2 = 0) from

the two methods are the same. The MSM-IPTW approach uses

Pr(Y a0=a
2 = 0) = E

{
I(A0 = a,A1 = a)(1 − Y1)(1 − Y2)

Pr(A0 = a|L0)Pr(A1 = a|Y1 = 0,A0 = a,L0,L1)

}

. (22)

Based on the tree diagram, a nonparametric estimate of this is

̂Pr(Y a0=a
2 = 0) = 1

n

⎧
⎪
⎨
⎪
⎩

n0,0
0a,0a

(
n0a

n0

)−1
(

n0
0a,0a

n0
0a,0

)−1

+ n0,0
0a,1a

(
n0a

n0

)−1
(

n0
0a,1a

n0
0a,1

)−1

+ n0,0
1a,0a

(
n1a

n1

)−1
(

n0
1a,0a

n0
1a,0

)−1

+ n0,0
1a,1a

(
n1a

n1

)−1
(

n0
1a,1a

n0
1a,1

)−1⎫
⎪
⎬
⎪
⎭

, (23)

where the four contributions within the outer brackets come from individuals with the four possible combinations of
(L0,L1).

The sequential trials approach estimates Pr(Y a0=a
2 = 0|L0), which can be written

Pr(Y a0=a
2 = 0|L0) = Pr(Y a0=a

2 = 0|Y a0=a
1 = 0,L0)Pr(Y a0=a

1 = 0|L0). (24)
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The term Pr(Y a0=a
1 = 0|L0) was considered above. The first term, Pr(Y a0=a

2 = 0|Y a0=a
1 = 0,L0), is estimated by IPACW,

because individuals with A1 ≠ A0 are censored at time 1, and the remaining individuals with A1 = A0 are weighted by
Pr (A1 = a|A0 = a,L0,L1)−1. Under the assumptions of consistency, positivity and conditional exchangeability we can
write

Pr(Y a0=a
2 = 0|Y a0=a

1 = 0,L0) = E
{

I(A1 = a)(1 − Y2)
Pr(A1 = a|Y1 = 0,A0 = a,L0,L1)

|Y1 = 0,A0 = a,L0

}

. (25)

Based on the tree diagram, a nonparametric estimate of this is

̂Pr(Y a0=a
2 = 0|Y a0=a

1 = 0,L0 = l0) = ̂Pr(Y a0=a
2 = 0|Y1 = 0,A0 = a,L0 = l0)

= 1
n0

l0a

⎧
⎪
⎨
⎪
⎩

n0,0
l0a,0a

(n0
l0a,0a

n0
l0a,0

)−1

+ n0,0
l0a,1a

(n0
l0a,1a

n0
l0a,1

)−1⎫
⎪
⎬
⎪
⎭

. (26)

Using this result along with the estimate ̂Pr(Y a0=a
1 = 0|L0 = l0) = ̂Pr(Y1 = 0|A0 = a,L0 = l0) = n0

l0a∕nl0a, it can be
shown that the sequential trials estimate of Pr(Y a0=a

2 = 0) =
∑

l0=0,1 Pr(Y a0=a
2 = 0|L0 = l0)Pr(L0 = l0) is the same as the

MSM-IPTW estimate in (23). By comparing (23) and (26) we can see clearly the connection between the weights used in
the MSM-IPTW approach and those used in the sequential trials approach (IPACW).

5.2 Specification and estimation of MSMs

In practice, model-based estimates are typically required instead of nonparametric estimates, as we usually have multi-
ple time-dependent confounders to consider, including continuous variables. In this section we compare in more detail
the forms of the MSMs used in the MSM-IPTW and sequential trials approaches, how they are estimated using inverse
probability weights, and the assumptions made.

A key difference in the MSMs used in the two approaches is that in the MSM-IPTW approach the MSM for the hazard
at time t includes the history of treatment up to time t, a⌊t⌋, whereas the MSM used in the sequential trials approach
involves only the treatment status assigned at the start of the trial, which is equivalent to the treatment at any time after
the start of the trial due to the artificial censoring. The MSM-IPTW approach therefore requires that the relation between
treatment history a⌊t⌋ and the hazard is correctly specified, whereas in the sequential trials approach there are limited
options for the form of the MSM because only two treatment regimes are considered, because after the artificial censoring
all individuals used in the analysis are either “always treated” or “never treated”. In the MSM-IPTW approach, when
covariates L0,Z are excluded from the MSM, the MSM is a fully marginal model—the possibility of interaction between
treatment and these covariates is not ruled out but does not have to be modelled. If the MSM used in the MSM-IPTW
approach includes covariates L0,Z then any interactions that exist between treatment and L0,Z must be included in the
MSM and correctly specified. MSMs that condition on the covariate history at time 0 are therefore more susceptible to
mis-specification than MSMs for a marginal hazard.

The sequential trials approach uses an MSM for the hazard that conditions on the covariate history at the start of each
trial (Lk,Z for trial k). This approach therefore relies on correct modelling of the association between outcome and the
covariate history in each trial. If there are interactions between treatment and the covariate history at the start of each
trial then these must be included in the MSM and correctly specified. When using a combined analysis across trials, each
trial should include the same amount of covariate history in the MSM for the conditional hazard, which we denoted in
Section 4.3 by Lk−k∗,k. If we adjusted for an increasing length of covariate history in successive trials then the hazard model
for each trial would be different. Specifying congenial models across trials for a combined analysis would then be difficult
or impossible. If we are willing to make the assumption that the effect of treatment on the hazard is the same in all trials,
that is, does not depend on the time of treatment initiation, then the sequential trials approach has information about the
effect of treatment initiation from several time origins. Under these assumptions, the re-use of individuals from several
time origins in the sequential trials approach could lead to gains in efficiency in the marginal risk difference estimate at
some time horizons 𝜏 relative to the MSM-IPTW approach. On the other hand, in the MSM-IPTW analysis individuals
who switch their treatment status during follow-up continue to contribute information to the analysis, whereas in the
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sequential trials analysis individuals cease to contribute information when they deviate from their treatment group as
determined at the start of a given trial. This means that in the sequential trials analysis the number of individuals with
longer term follow-up will be smaller than in the MSM-IPTW analysis. To make use of individuals who switch their
treatment status during follow-up, the MSM-IPTW approach makes modeling assumptions which borrows information
across treatment regimes. The sequential trials approach instead borrows information across populations.

The sequential trials approach could use weighting in the first time period instead of adjustment for covariates mea-
sured at the start of the trial, though that is not how the method has been described or used to date. Conditioning on
covariates measured at the start of the trial in the sequential trials approach enables use of empirical standardization to
obtain risk difference estimates for a population with any distribution of the covariates at time 0, though care should be
taken not to extrapolate beyond the observed covariate distribution. We have shown how this enables us to estimate the
same causal estimand in the sequential trials approach as in the MSM-IPTW approach.

To fit the MSMs, both approaches require time-updated weights, and hence the data should be formatted with mul-
tiple rows per individual—one for each visit for MSM-IPTW, and one for each visit within each trial for the sequential
trials approach. In the MSM-IPTW approach without conditioning on L0,Z the IPTW weights are proportional to the
IPACW weights used in the sequential trials approach. Because the MSM-IPTW approach includes individuals follow-
ing any treatment regime (not just “always treated” or “never treated”), we may expect to see more extreme weights with
increasing follow-up, compared with the weights used in the sequential trials approach.

Because the two approaches use the data differently and because the MSM-IPTW approach could make use of more
extreme weights, it is of interest to investigate the relative efficiency of the two approaches for estimating the causal
estimand.

6 A SIMULATION STUDY FOR THE COMPARISON OF MSM-IPTW AND
THE SEQUENTIAL TRIALS APPROACH

6.1 Simulation plan

In this section we use a simulation study to evaluate and compare the performance of the MSM-IPTW approach and
the sequential trials approach. It is only appropriate to consider the relative efficiency of the two approaches when they
target the same causal estimand, and we focus on the estimation of marginal risks and the marginal risk difference as in
(1). In Section 4 we considered MSMs for both methods based on Cox models or on additive hazard models. To enable a
fair comparison of the methods, we wish to simulate data in such a way that the MSMs used in the two approaches are
correctly specified. To ensure this we simulate the time-to-event data under an additive hazards model. In Section 3 of the
Supplementary Material we show that one can use an additive hazard model for the MSM used in the sequential trials
analysis (Equation 14) (with common parameters assumed across trials) and an additive hazard model for the MSM used
in the MSM-IPTW approach (Equation 5 or 7), and that both MSMs can be correctly specified. However, if we use a Cox
model for the MSM for the sequential trials analysis (Equation 13) and a Cox model for the MSM used in the MSM-IPTW
approach (Equation 4 or 6), then both MSMs cannot simultaneously be correctly specified in general. This is because
the parameters of additive hazard models are collapsible, whereas hazard ratios in the Cox model are noncollapsible.
Martinussen and Vansteelandt22 explained the implications of collapsibility for the use of Aalen additive hazards models
and Cox models in the context of estimating the causal effect of a point treatment on survival. Keogh et al28 extended to
a longitudinal setting similar to that considered in this paper.

The simulation study makes use of the data generating simulation algorithm for longitudinal and time-to-event data
described by Keogh et al.28 We follow the general recommendations of Morris et al53 on the conduct of simulation studies
for evaluating statistical methods. R code for replicating the simulation is provided at https://github.com/ruthkeogh/
sequential_trials.

6.1.1 Aim

Our aim is to compare the MSM-IPTW and sequential trials approaches for estimating the effect of a time-varying
treatment on survival, subject to time-dependent confounding, from longitudinal observational data. Our focus is on
a setting in which both approaches target the same causal estimand (see below) and hence it is relevant to assess

https://github.com/ruthkeogh/sequential_trials
https://github.com/ruthkeogh/sequential_trials
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their relative efficiency. Both methods are expected to produce approximately unbiased estimates when the modeling
assumptions are met. We hypothesize that the sequential trials analysis could be more efficient than the MSM-IPTW
analysis in certain settings, depending on the data generating mechanism and time horizon 𝜏. MSM-IPTW is ineffi-
cient when there are extreme weights. The efficiency of the sequential trials approach is expected to depend on the
proportion of individuals always in the treatment group or always in the control group, since when many individuals
switch over time this would result in few people contributing as follow-up time increases, and the potential for large
weights.

6.1.2 Data generating mechanisms

Data are generated according to the DAG in Figure 1 for n = 5000 individuals. Individuals are observed at up to five
visits (k = 0, 1, 2, 3, 4), with administrative censoring at time 5. We consider three simulation scenarios, starting with
a “standard” scenario (scenario 1) and then investigating the performance of the methods when certain aspects of
the data generating mechanism are varied. The simulation scenarios are outlined in detail in Table 2. In all scenar-
ios, once an individual starts treatment they remain on treatment, that is, for any k, there are no individuals that go
from Ak = 1 to Ak+1 = 0. Also in all scenarios there is a single time-dependent confounder L, the model for Lk condi-
tional on Ak−1, Lk−1, k and U is the same, and event times are generated according to the same conditional additive
hazards model

h(k|A⌊k⌋,L⌊k⌋,U) = 𝛼0 + 𝛼AA⌊k⌋ + 𝛼LL⌊k⌋ + 𝛼U U. (27)

In scenarios 1 and 2 the log odds ratio for Lk in the logistic model for the probability of Ak = 1 is 0.5, giving “moderate”
dependence of treatment initiation on Lk. In scenario 3, the log odds ratio for Lk in the logistic model for the probability
of Ak = 1 is increased to 3, meaning that there is strong dependence of treatment initiation on Lk.

In scenario 1 the intercept in the logistic model for the probability of Ak = 1 is such that 25% of individuals have
A0 = 1. In scenario 2 the intercept in the logistic model for the probability of Ak = 1 is reduced so that the proportion of
individuals initiating treatment at a given visit is lower, with approximately 5% having A0 = 1.

In scenarios 1, 2, and 3, respectively, approximately 57%, 62%, and 56% of individuals have the event of interest during
the 5 years of follow-up. We do not include any censoring apart from administrative censoring, though extensions to
include this are straightforward. We generated 1000 simulated data sets.

T A B L E 2 Simulation scenarios: data generating mechanisms.

Data generating mechanism

General data generating mechanism U ∼ N(0, 0.1)

L0 ∼ N(U, 1), Lk ∼ N(𝛿0 + 𝛿LLk−1 + 𝛿AAk−1 + 𝛿Tk + U, 1) (k = 1, 2, 3, 4)

logit Pr(A0 = 1|L0) = 𝛾0 + 𝛾LL0

logit Pr(Ak = 1|Ak−1,Lk) = 𝛾0 + 𝛾AAk−1 + 𝛾LLk, (k = 1, 2, 3, 4)

h(k|A⌊k⌋,L⌊k⌋) = 𝛼0 + 𝛼AA⌊k⌋ + 𝛼LL⌊k⌋ + 𝛼U U

Scenario 1 𝛿0 = 0, 𝛿L = 0.8, 𝛿A = −1, 𝛿T = 0.1

𝛾0 = −1, 𝛾L = 0.5

𝛼0 = 0.2, 𝛼A = −0.04, 𝛼L = 0.015, 𝛼U = 0.015

Scenario 2 𝛿0, 𝛿L, 𝛿A, 𝛿T : as in scenario 1

𝛾0 = −3, 𝛾L = 0.5

𝛼0, 𝛼A, 𝛼L, 𝛼U : as in scenario 1

Scenario 3 𝛿0, 𝛿L, 𝛿A, 𝛿T : as in scenario 1

𝛾0 = −1, 𝛾L = 3

𝛼0, 𝛼A, 𝛼L, 𝛼U : as in scenario 1



2210 KEOGH et al.

6.1.3 Estimand

The estimand of interest is the marginal risk difference in (1), standardized to the underlying population at k = 0 from
which our sample of n individuals arises. We consider time horizons on a continuous scale up to time 𝜏 = 5.

6.1.4 Methods

The data are analysed using the MSM-IPTW approach and the sequential trials approach. In the MSM-IPTW approach
we considered MSMs with and without conditioning on L0. When the conditional additive hazard model is as in (27), it
can be shown28 that the correct form for the MSM used in the MSM-IPTW analysis using the MSM that is not conditional
on L0 is

hTa0 (t) = 𝛼0(t) +
⌊t⌋∑

j=0
�̃�Aj(t)a⌊t⌋−j, (28)

and the correct form for the MSM conditional on L0 is

hTa0 (t|L0) = 𝛼0(t) +
⌊t⌋∑

j=0
�̃�Aj(t)a⌊t⌋−j + 𝛼L(t)L0. (29)

The correct form for the MSM used in the sequential trials analysis, under our data generating mechanism, is

hk,Ta0=a(t|Lk) = 𝛼0(t) + 𝛼A(t)a + 𝛼L(t)Lk, k = 0, … , 4. (30)

The coefficients in the fully conditional hazard model in (27) do not depend on time, and this results in the coefficients
in the MSM for the sequential trials analysis being a function of time since the start of the trial, but being the same across
trials k = 0, … , 4.

We use stabilized weights for all analyses. In the MSM-IPTW approach using the MSM in (28) (without conditioning
on L0) the stabilized IPTW at time t are

⌊t⌋∏

k=0

Pr(Ak|Ak−1)
Pr(Ak|Lk,Ak−1)

, (31)

and in the MSM-IPTW approach using the MSM in (29) (with conditioning on L0) the stabilized IPTW at time t are

⌊t⌋∏

k=0

Pr(Ak|Ak−1,L0)
Pr(Ak|Lk,Ak−1)

. (32)

In the sequential trials approach the stabilized IPACW at time t (for t > 1) after the start of the trial for the trial starting
at visit k are (for t > 1)

⎧
⎪
⎨
⎪
⎩

1 for Ak = 1,
∏⌊t⌋

j=1
Pr(Ak+j=0|Lk ,Ak+j−1=0)

Pr(Ak+j=0|Lk+j,Ak+j−1=0)
for Ak = 0.

(33)

The IPACW are equal to 1 up to time 1 after the start of each trial.
The weights take into account that individuals do not stop treatment once they start. In MSM-IPTW we have Pr(Ak =

1|Ak−1 = 1) = 1, Pr(Ak = 1|Lk,Ak−2,Ak−1 = 1) = 1 and Pr(Ak = 1|Ak−2,Ak−1 = 1,L0) = 1. All other probabilities used in
the weights were estimated using logistic regression models fitted using all visits combined (k = 0, … , 4). The probabil-
ities Pr(Ak|Ak−2,Ak−1 = 0)were estimated using a logistic regression model for Ak with a separate intercept for each k, in
the subset of individuals with Ak−1 = 0. The probabilities Pr(Ak|Ak−2,Ak−1 = 0,L0)were estimated using a logistic regres-
sion model for Ak with L0 as a covariate, and allowing both the intercept and the coefficients for L0 to differ for each
k, fitted using the subset of individuals with Ak−1 = 0. The probabilities Pr(Ak|Lk,Ak−2,Ak−1 = 0) were estimated using
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F I G U R E 4 Simulation results: mean estimated survival curves obtained using the sequential trials analysis and the MSM-IPTW
analysis. The faded lines show the estimates from each of the 1000 simulated datasets and the thick lines are the point-wise averages.

a logistic regression model for Ak with Lk as a covariate in the subset of individuals with Ak−1 = 0, which is the correct
model under our data generating mechanism. Similar models were used to estimate the weights for the sequential tri-
als analysis, but with L0 replaced by Lk in trial k for the model used to estimate the probabilities in the numerator of the
weights in (33). The models were fitted across all trials combined, which was valid under our data generating mechanism.

6.1.5 Performance measures

We assess the performance of the methods in terms of bias and efficiency of the risk difference estimates. To obtain the
bias we need to know the true values. True values for the survival probabilities and the risk difference were obtained by
generating data as though from a large randomized controlled trial, as explained in Keogh et al.28 For this, we first gen-
erated L0 for 1 million individuals, according to the model outlined in Table 1. Two datasets were then created, one in
which the 1 million individuals are set to have Ak = 1 (t = 0, … , 4) (“always treated”) and another in which they are all
set to have At = 0 (k = 0, … , 4) (“never treated”). In each dataset the Lk (k = 1, … , 4) were then generated sequentially
using the model for Lk in Table 1, with Lk being generated conditional on Lk−1, U and Ak. Event times were gener-
ated in each data set according to the conditional additive hazard model in (27). The true survival probabilities, and
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F I G U R E 5 Simulation results: bias in estimation of the risk difference using the sequential trials analysis and the MSM-IPTW analysis.
The black line shows the bias at each time point and the grey area shows the Monte Carlo 95% CI at each time point.

corresponding risk differences, under each treatment strategy (“always treated” and “never treated”) were then obtained
using Kaplan-Meier estimates.

Plots are used to present survival probability estimates and bias and efficiency results for the risk differences at time
horizons 𝜏 in the range from 0 to 5. We also present results for the survival probabilities and risk differences at time
horizons 𝜏 = 1, 2, 3, 4, 5 in tables. Estimates are accompanied by Monte Carlo errors.

6.2 Results

For the MSM-IPTW approach we focus on the results obtained using the MSM conditional on L0. Corresponding results
for the MSM that is not conditional on L0 are shown in the Supplementary Materials (Supplementary Figures 1 and 2).
Figure 4 shows the estimated survivor curves under the “always treated” and “never treated” regimes under the three
simulation scenarios, alongside the true curves. Figure 5 summarizes the corresponding results for bias in risk difference
estimates. The results are summarised numerically at time points 1, 2, 3, 4, and 5 in Table 3. The relative efficiency of
the sequential trials approach compared with the MSM-IPTW approach is illustrated in Figure 6. Figure 7 shows plots
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T A B L E 3 Simulation results: Estimated survival probabilities (“Est”) under the “always treated” (S1) and “never treated” (S0)
regimes and risk difference (RD) (mean over 1000 simulations) at time 𝜏, with corresponding empirical SD (over 1000 simulations).
Corresponding bias in the estimates (×104), accompanied by the MC error (×100).

Time 𝝉

1 2 3 4 5
MSM-IPTW: scenario 1

S1 Est (SD) 0.854 (0.021) 0.738 (0.027) 0.644 (0.030) 0.566 (0.031) 0.498 (0.031)

Bias (MC error) 0.170 (0.066) 0.166 (0.084) 0.229 (0.094) 0.223 (0.097) 0.189 (0.099)

S0 Est (SD) 0.819 (0.015) 0.671 (0.019) 0.547 (0.024) 0.445 (0.029) 0.361 (0.033)

Bias (MC error) 0.002 (0.047) 0.114 (0.061) 0.100 (0.076) 0.137 (0.091) 0.098 (0.105)

RD Est (SD) 0.034 (0.026) 0.067 (0.033) 0.097 (0.040) 0.121 (0.044) 0.138 (0.047)

Bias (MC error) 0.168 (0.082) 0.053 (0.106) 0.129 (0.126) 0.086 (0.139) 0.092 (0.148)
Sequential trials: scenario 1

S1 Est (SD) 0.853 (0.015) 0.736 (0.019) 0.641 (0.022) 0.563 (0.024) 0.496 (0.027)

Bias (MC error) 0.068 (0.047) 0.010 (0.059) −0.068 (0.068) −0.086 (0.076) −0.037 (0.085)

S0 Est (SD) 0.819 (0.010) 0.669 (0.017) 0.544 (0.025) 0.442 (0.033) 0.359 (0.044)

Bias (MC error) −0.043 (0.031) −0.085 (0.054) −0.202 (0.079) −0.191 (0.105) −0.076 (0.140)

RD Est (SD) 0.034 (0.018) 0.067 (0.027) 0.097 (0.036) 0.121 (0.044) 0.137 (0.055)

Bias (MC error) 0.111 (0.058) 0.094 (0.085) 0.134 (0.112) 0.105 (0.140) 0.039 (0.173)
MSM-IPTW: scenario 2

S1 Est (SD) 0.855 (0.049) 0.739 (0.063) 0.648 (0.071) 0.573 (0.072) 0.506 (0.074)

Bias (MC error) 0.333 (0.154) 0.343 (0.199) 0.569 (0.224) 0.934 (0.227) 0.933 (0.233)

S0 Est (SD) 0.819 (0.012) 0.671 (0.015) 0.547 (0.016) 0.445 (0.018) 0.361 (0.018)

Bias (MC error) 0.018 (0.039) 0.123 (0.048) 0.133 (0.052) 0.112 (0.055) 0.077 (0.056)

RD Est (SD) 0.036 (0.050) 0.069 (0.065) 0.100 (0.073) 0.128 (0.075) 0.145 (0.077)

Bias (MC error) 0.315 (0.159) 0.219 (0.206) 0.436 (0.231) 0.823 (0.237) 0.856 (0.243)
Sequential trials: scenario 2

S1 Est (SD) 0.852 (0.026) 0.735 (0.036) 0.640 (0.042) 0.564 (0.048) 0.498 (0.056)

Bias (MC error) −0.032 (0.083) −0.125 (0.112) −0.162 (0.132) 0.038 (0.150) 0.195 (0.178)

S0 Est (SD) 0.819 (0.007) 0.669 (0.012) 0.544 (0.017) 0.442 (0.020) 0.359 (0.024)

Bias (MC error) −0.030 (0.023) −0.088 (0.039) −0.184 (0.052) −0.189 (0.063) −0.128 (0.075)

RD Est (SD) 0.033 (0.027) 0.066 (0.038) 0.096 (0.046) 0.122 (0.053) 0.140 (0.062)

Bias (MC error) −0.001 (0.086) −0.036 (0.122) 0.022 (0.145) 0.227 (0.168) 0.324 (0.197)
MSM-IPTW: scenario 3

S1 Est (SD) 0.852 (0.023) 0.736 (0.034) 0.642 (0.042) 0.564 (0.046) 0.497 (0.049)

Bias (MC error) 0.013 (0.074) 0.044 (0.108) −0.007 (0.134) 0.005 (0.146) 0.001 (0.154)

S0 Est (SD) 0.820 (0.018) 0.674 (0.040) 0.558 (0.056) 0.460 (0.067) 0.382 (0.072)

Bias (MC error) 0.100 (0.056) 0.478 (0.125) 1.165 (0.178) 1.631 (0.213) 2.181 (0.229)

RD Est (SD) 0.032 (0.033) 0.062 (0.065) 0.084 (0.086) 0.104 (0.097) 0.115 (0.103)

Bias (MC error) −0.087 (0.106) −0.434 (0.204) −1.172 (0.271) −1.626 (0.307) −2.180 (0.327)
Sequential trials: scenario 3

S1 Est (SD) 0.853 (0.017) 0.736 (0.027) 0.642 (0.044) 0.564 (0.060) 0.497 (0.060)

Bias (MC error) 0.046 (0.053) 0.005 (0.087) 0.021 (0.138) 0.079 (0.189) 0.077 (0.191)

S0 Est (SD) 0.819 (0.013) 0.672 (0.036) 0.554 (0.063) 0.458 (0.080) 0.383 (0.091)

Bias (MC error) −0.005 (0.041) 0.215 (0.115) 0.775 (0.198) 1.427 (0.254) 2.344 (0.287)

RD Est (SD) 0.033 (0.024) 0.064 (0.058) 0.088 (0.098) 0.106 (0.126) 0.114 (0.133)

Bias (MC error) 0.051 (0.076) −0.211 (0.182) −0.754 (0.309) −1.347 (0.399) −2.267 (0.420)
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F I G U R E 6 Simulation results: relative efficiency of the sequential trials analysis compared with the MSM-IPTW analysis, defined as
the inverse of the ratio of the empirical variances of the risk difference estimates at each time.

F I G U R E 7 Simulation results: Plots of the largest weight (by time period) in each of the 1000 simulated data sets under the sequential
trials analysis (IPACW) compared with the inverse probability weighted estimation of marginal structural model analysis. The weights are
time-dependent and change at event visit k = 0, … , 4. We obtained the largest weight in each time period, where in the sequential trials the
time refers to time since the start of the trial. In the sequential trials analysis, the IPACW are equal to 1 up to time 1.



KEOGH et al. 2215

of the largest weight used in the MSM-IPTW and sequential trials analyses in each of the 1000 simulated datasets, by
time-period (because the weights are time-dependent).

In scenario 1 both methods give unbiased estimates of the risk difference at all time points. The sequential trials
approach is more efficient up to time 4, after which the MSM-IPTW approach is more efficient. The efficiency gain from
the sequential trials approach is greatest at earlier time points and diminishes as time progresses. Figure 7 shows that the
sequential trials approach tends to use less extreme weights (the IPACW) than the MSM-IPTW approach at the earlier
time points, but that by time 4 after potential treatment initiation the IPTW do not appear to be more extreme than than
the IPACW. The relative efficiency results are a function of how the data are used in combination with modeling assump-
tions. Under the assumption that treatment effects on the hazard are the same across trials (which is true under our data
generating mechanism), the sequential trials approach uses information about the treatment effect on the hazard in time
period 0 < t < 1 from five trials, time period 1 ≤ t < 2 from four trials and so on. Only the first trial (starting at k = 0)
provides information about the time period 4 ≤ t < 5. The MSM-IPTW analysis draws information on the impact of treat-
ment in time period 4 ≤ t < 5 from individuals who initiated treatment at times 0,1,2,3,4, Table 1 in the Supplementary
Materials shows the number of individuals observed at times t = 0, 1, 2, 3, 4 under the two approaches. The number of
individuals observed at time 4 is considerably greater under the MSM-IPTW approach compared with the sequential
trials approach.

In scenario 2, the sequential trials approach gives unbiased estimates of the risk difference at all time points. The
MSM-IPTW approach gives unbiased estimates up to around time 3, with the risk difference being slightly biased upwards
after time 3. Figure 4 shows that the survivor curve in the “always treated” group is slightly biased upwards, which we
also see in Table 3. The bias is small in magnitude but statistically significant based on 95% Monte Carlo confidence
intervals. Figure 7 comparing the IPACW to the IPTW shows that the largest weights tend to be considerably higher in
the MSM-IPTW analysis compared with the sequential trials analysis. The difference between the IPACW and IPTW is
much greater in scenario 2 compared with scenario 1, with the IPACW tending to be much less extreme than the IPTW
at all time points. In scenario 2 the proportion of individuals initiating treatment at a given visit is low. Table S1 in the
Supplementary Material shows that in scenario 2 the absolute numbers of individuals in the “always treated” group is
low across all visits. The bias for MSM-IPTW in scenario 2 is therefore attributed to the combination of large weights
and finite sample bias due to small numbers of treated individuals. The relative efficiency plot in Figure 6 shows that the
sequential trials analysis is more efficient than MSM-IPTW at all time points. From Figure 4 and Table 3, we see that the
variation in the estimates of the survival probabilities is much greater in MSM-IPTW for the “always treated” regime. For
the “never treated” regime the variation is smaller using the sequential trials approach up to between times 2 and 3, after
which the variation in the MSM-IPTW estimates is smaller.

In scenario 3, both methods give bias in the risk difference after time 1 (Figure 5). Figure 4shows that the survival
probabilities for the “always treated” regime are estimated without bias, but the survival probabilities for the “never
treated” regime have some upwards bias at later time points. The magnitude of the bias is small and similar under both
methods. Figure 6 shows that the sequential trials analysis is more efficient up to around time 2.5, and the MSM-IPTW
analysis is more efficient thereafter. In this scenario the time-varying covariate Lk is strongly predictive of treatment Ak
(log odds ratio 3). Looking at the distribution of the largest weights in Figure 7 we see that after time 1 there are some very
large weights under both methods. The largest weights tended to be higher in the MSM-IPTW approach. The number of
individuals observed at each time point is greater under scenario 3 than scenario 2. In this case therefore, the bias may
be attributed to near violations of the positivity assumption.

Results are similar from the MSM-IPTW analysis based on the MSM without conditioning on L0 (Supplementary
Material Figures 1 and 2). We also applied the analyses using truncated weights in which both IPTW and IPACW were
truncated at the 95th percentile, which resulted in similar findings—see Supplementary Material Figures 3 and 4.

7 APPLICATION IN THE UK CF REGISTRY

7.1 Analysis

We apply the methods to the motivating application introduced in Section 2. Some initial data set-up steps were taken as
follows. Data are intended to be collected at annual visits. However, there are some visits considerably closer and wider
apart. In order to structure the data into a form with regular visits for each individual, we omitted visits that were less
than 6 months after the previous visit and where the previous and subsequent visit were less than 18 months apart. This
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follows what was done in previous work using the same data source.54 Where there was a period of more than 18 months
after a given visit without the event or another visit being recorded, the individual was censored at the date of that visit
plus 18 months, and any subsequent later visits excluded. There was a small amount of missing data in some of the
time-dependent covariates (∼10% missingness in covariates at the first visit). We used the last-observation-carried-forward
to address this. For the genotype variable “missing” was treated as a separate category.

The causal estimand was specified in Section 3.2, and is accompanied by a specification of the target trial and emulated
trial in Table 1. The MSM-IPTW analysis and the sequential trials analysis were both applied as outlined in Section 4
to estimate survival curves up to 11 years under the two treatment regimes of “always treated” or “never treated” with
DNase, and corresponding risk differences. For the MSM-IPTW analysis an individual’s baseline visit (k = 0) was defined
as the first visit in the period 2008 to 2017 at which an individual meets the trial emulation eligibility criteria. For the
sequential trials analysis individuals were assessed for eligibility at each visit from the baseline visit onwards, resulting
in 10 possible trials.

For each estimation approach we obtained results using a Cox proportional hazards model and an Aalen additive
hazards model (with time-varying coefficients) for the MSMs. In the MSMs used for the MSM-IPTW analysis the MSM
included current treatment and treatment in the three prior years, and was conditional on the time-fixed covariates and
measures of the time-varying covariates at the first visit, except visit year (see below). The MSM used in the sequential
trials analysis included the same set of covariates as used in the MSM-IPTW analysis, that is, the time-fixed covariates
and time-varying covariates as measured at the visit at the start of each trial. The continuous covariates (age, FEV1%, BMI
z-score) were modeled using restricted cubic splines (with three knots) in the MSMs. For the sequential trials analysis,
we performed tests of whether the coefficients for treatment status differed by trial. There was no evidence of this and
so we used a combined analysis across trials. In the analyses using the Cox proportional hazards model we assessed the
proportional hazards assumption for the treatment variable(s). In the sequential trials analysis there was no evidence
against the proportional hazards assumption for the treatment variable, whereas in the MSM-IPTW analysis there was
evidence against the proportional hazards assumption in a joint test for the four treatment variables in the model.

Logistic regression models were used to estimate stabilized weights for use in each analysis method. In the MSM-IPTW
approach the model used for the denominator of the weights included all time-fixed covariates and the current values
of the time-dependent covariates. The model used for the numerator of the weights included the time-fixed covariates
and measures of the time-varying covariates at the first visit (k = 0). In these models, DNase status recorded at visit k is
assumed to depend on FEV1% and BMI z-score recorded at visit k − 1, and on other time-dependent variables as recorded
at visit k. In the sequential trials analysis we estimated separate IPACW for artificial censoring due to switching from
Ak = 0 to Ak+1 = 1 and for switching from Ak = 1 to Ak+1 = 0. In the simulation we assumed that once an individual
initiates treatment they always continue treatment. However, in this application some individuals also stop treatment.
The models for the weights included the same variables as included in the weights for the MSM-IPTW analysis. The
continuous variables (Age, FEV1%, BMI z-score, visit year) were modeled using restricted cubic splines (with three knots)
in the models for the weights.

For both approaches we also estimated stabilized weights for censoring due to loss-to-follow-up. These included the
same variables as used in the treatment-related weights, with the difference that the censoring weights models for the
probability of being censored between visits k and k + 1 included measures of FEV1% and BMI z-score made at visit k,
rather than the measures from the previous visit. This is because the censoring indicator at visit k refers to censoring
before visit k + 1, whereas the treatment indicator at visit k refers to treatment status since the previous visit.

We wished to estimate the same marginal survival probabilities, and hence risk differences, using each analysis
method. Both methods include conditioning on covariates measured at the first visit at the start of each trial. We are
therefore able to standardize to any appropriate population. As discussed above and in Section 3.2, for this analysis we
standardize to the population of individuals meeting the trial emulation eligibility criteria in 2018. Visit year was included
in the weights models but not in the set of variables included in the MSMs. This is because there can only be little infor-
mation about long term follow-up for individuals in the later years, which results in poor convergence in some models if
visit year is included in the MSMs. There are therefore slight differences between the population to which the MSM-IPTW
analyses refer and that to which the sequential trials analyses refer, in terms of the marginal distribution of years at t = 0
from 2008 to 2017. We consider this to be a minor difference that is unlikely to result in clinically important differences
between the results from the two approaches.

Bootstrapping was used to obtain 95% confidence intervals for the estimated survival curves under the two treatment
regimes of “always treated” or “never treated” with DNase and the corresponding risk differences, using 1000 bootstrap
samples and the percentile method.
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7.2 Results

The trial emulation eligibility criteria were met by 3855 individuals at at least one visit during 2008 to 2017. Among these
individuals there were 338 events (266 deaths and 72 transplants). Of the 3517 individuals who did not have the event, 1780
(51%) were administratively censored (defined as having the expected number of visits given their first year of meeting the
trial emulation eligibility criteria, assuming one visit each year) and the remainder were censored due to loss-to-follow-up
(which included individuals censored after a gap of more than 18 months without a visit). The characteristics of the
individuals at the first visit at which the trial emulation eligibility criteria were met (time k = 0) are summarised in Table 4.

Table 5 summarizes the number of individuals contributing to the MSM-IPTW and sequential trials analyses and
their treatment status. The trial emulation eligibility criteria were first met in 2008 (the first year we considered) by 1729
individuals (45%). In the sequential trials approach many individuals contribute to trials starting at multiple time points

T A B L E 4 Application in the UK CF Registry data: Summary of individual characteristics at the first visit at which trial emulation
eligibility criteria were met.

Variable Mean (SD) Median (IQR)

Age (years) 24.32 (11.56) 21.6 (14.39,30.54)

FEV1% 76.12 (21.93) 78.8 (62.2,92.38)

BMI z-score 0.15 (1.22) 0.14 (−0.6,0.96)

N %

Sex

Male 2120 (55%)

Female 1735 (45%)

Genotype class

High 2586 (67%)

Low 596 (15%)

Not assigned 594 (15%)

Missing 79 (2%)

Presence of airway infections in the past 12 months

Staphylococcus aureus or Methicillin-resistant Staphylococcus aureus (MRSA) 1676 (43%)

Pseudomonas aeruginosa (or use of nebulized antibiotics) 2453 (64%)

Burkholderia cepacia 113 (3%)

Non-tuberculous mycobacteria (NTM) 162 (4%)

Presence of complications

CF-related diabetes 707 (18%)

Pancreatic insufficiency 3028 (79%)

Use of other treatments in the past 12 months

Other mucoactive treatments (hypertonic saline, mannitol or acetylcysteine) 554 (14%)

CFTR modulators (ivacaftor, lumacaftor/ivacaftor, or tezacaftor/ivacaftor) 54 (1%)

Oxygen therapy 153 (4%)

Hospitalization (not for IV antibiotics) 145 (4%)

Days receiving IV antibiotics

0 2315 (60%)

1-14 640 (17%)

15-28 329 (9%)

29-42 227 (6%)

>42 344 (9%)



2218 KEOGH et al.

T A B L E 5 Summary of number of individuals contributing to the MSM-IPTW and sequential trials analyses and numbers untreated and
treated: (A) by year, (B) by visit number.

(A) By year

MSM-IPTW Sequential trials

Year Number observed Untreated Treated Number observed Untreated Treated

2008 1729 1452 (84%) 277 (16%) 1729 1452 (84%) 277 (16%)

2009 537 440 (82%) 97 (18%) 1908 1599 (84%) 309 (16%)

2010 352 285 (81%) 67 (19%) 2004 1637 (82%) 367 (18%)

2011 359 310 (86%) 49 (14%) 2039 1731 (85%) 308 (15%)

2012 264 234 (89%) 30 (11%) 2040 1728 (85%) 312 (15%)

2013 179 156 (87%) 23 (13%) 1916 1652 (86%) 264 (14%)

2014 152 127 (84%) 25 (16%) 1866 1601 (86%) 265 (14%)

2015 123 100 (81%) 23 (19%) 1779 1519 (85%) 260 (15%)

2016 90 79 (88%) 11 (12%) 1629 1426 (88%) 203 (12%)

2017 70 60 (86%) 10 (14%) 1529 1325 (87%) 204 (13%)

(B) By visit number k

MSM-IPTW Sequential trials

Visit Number observed Untreated Treated Number observed Untreated Treated

0 3855 3243 (84%) 612 (16%) 18439 15670 (85%) 2769 (15%)

1 3466 2901 (84%) 565 (16%) 16889 14321 (85%) 2568 (15%)

2 3121 2609 (84%) 512 (16%) 12302 10347 (84%) 1955 (16%)

3 2821 2350 (83%) 471 (17%) 8958 7408 (83%) 1550 (17%)

4 2500 2101 (84%) 399 (16%) 6308 5196 (82%) 1112 (18%)

5 2205 1851 (84%) 354 (16%) 4380 3564 (81%) 816 (19%)

6 1870 1565 (84%) 305 (16%) 2929 2335 (80%) 594 (20%)

7 1570 1308 (83%) 262 (17%) 1899 1490 (78%) 409 (22%)

8 1246 1036 (83%) 210 (17%) 1154 882 (76%) 272 (24%)

9 972 824 (85%) 148 (15%) 609 472 (78%) 137 (22%)

10 643 548 (85%) 95 (15%) 241 187 (78%) 54 (22%)

such that 18 439 rows contribute information at the start of trials (Table 5B). At visit k = 10 (ie, 10 years after first meeting
the trial emulation eligibility criteria), there remain 643 individuals in the MSM-IPTW analysis but only 241 rows in the
sequential trials analysis, due to the artificial censoring in the sequential trials approach. At the first visit at which trial
emulation eligibility criteria were met, 612 initiated DNase treatment (16%). Of those who initiated DNase at this first
eligible visit, 69% used DNase at all visits, and of those who did not initiate DNase at the first eligible visit 53% were
non-users at all visits. In the MSM-IPTW analysis the proportion of treated individuals is similar across visits, ranging
from 15% to 17%. In the sequential trials analysis the proportion of treated individuals at a given visit is equivalent to the
proportion “always treated” up to that visit (due to the artificial censoring), and this percentage increases over time from
15% at visit k = 0 to 22% at visit k = 10.

Figure 8 shows the estimated survivor curves from the MSM-IPTW and sequential trials analyses, using Cox pro-
portional hazards models and additive hazards models for the MSMs. The corresponding estimated risk differences are
shown in Figure 9, where a risk difference greater than 1 indicates better survival in the ‘always treated’.

None of the results provide evidence that DNase use affects the outcome, either in the short or long term. In the
MSM-IPTW analysis using a Cox proportional hazards model, the survival curve for the “always treated” regime is
consistently below that for the “never treated” regime, with the differences increasing over time. In the sequential trials
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F I G U R E 8 Estimated survival curves under the “always treated” and “never treated” with DNase strategies from the MSM-IPTW and
sequential trials analyses. The shaded areas show the 95% confidence intervals.

F I G U R E 9 Estimated risk difference (“always treated” vs “never treated” with DNase) from the MSM-IPTW and sequential trials
analyses. The shaded area shows the 95% confidence intervals.
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analysis using the Cox model the survival curves in the two treatment groups are very similar over time. Using the addi-
tive hazards model the survival curve for the “always treated” regime is above that for the “never treated” regime for the
first few years, more so in the MSM-IPTW results, before the curves cross. As we would expect, the 95% CIs from using
the Cox model are narrower than those from the additive hazards model. The 95% CIs are generally narrower under the
sequential trials approach, except when using the additive hazards models in the later part of follow-up. Figure S5 shows
a plot of the distribution of the weights used under the two analysis approaches. This shows that a large number of rows
are assigned a weight of 1 in the sequential trials analysis. This is because in the sequential trials data the first row corre-
sponding to each trial has a weight of 1. There are no extreme weights in the MSM-IPTW analysis, but the distribution is
less highly concentrated around 1.

8 DISCUSSION

In this paper we have focused on estimating the effects of longitudinal treatment regimes on survival, using observa-
tional data subject to time-varying confounding of the treatment-outcome association. We have compared the MSM-IPTW
approach with the sequential trials approach. A key contribution has been to specify causal estimands that can be identi-
fied using the sequential trials approach, and we showed how the previously described implementations can be shown to
estimate underlying MSMs for counterfactual outcomes under certain assumptions. We compared the MSM-IPTW and
sequential trials approaches in terms of how the data are used, the form of the MSMs, how time-dependent confounding
is addressed through the analysis, and when they identify the same parameters.

For time-to-event outcomes, estimands based on contrasts between risks rather than contrasts between hazards have
been shown to have better causal interpretations. We outlined how the outputs from the sequential trials analysis and the
MSM-IPTW analysis can be used to obtain marginal absolute risk estimates using empirical standardization, and hence
to obtain marginal risk differences or ratios. Care should be taken over defining the population to which marginal risk
estimates refer. Applications of the sequential trials approach in the literature have tended to focus on presentation of
hazard ratio estimates. As well as giving hazard ratio estimates, Hernan et al4 presented estimated survivor curves under
the treated and untreated regimes. However, it was not clear how the survival curves were obtained or what population
they referred to. Cole et al,26 Garcia-Albinez et al,18 and Caniglia et al13 also obtained survival curves using the sequential
trials approach but similarly the methods were not described in detail. In this paper, we have provided clear guidance on
how to obtain estimated survival curves from the MSM-IPTW and sequential trials approaches.

A key difference between the MSM-IPTW approach and the sequential trials approach is that the MSM-IPTW
approach enables estimation of risks under any longitudinal treatment regime, whereas the sequential trials approach
focuses only on “always treated” and “never treated” regimes. However, the sequential trials approach could be extended
to consider different longitudinal treatment regimes, with individuals being censored when they deviate from a specified
regime. Conversely, a modified version of the MSM-IPTW approach that focuses only on “always treated” and “never
treated” regimes could also be used. This would involve censoring individuals when they deviate from the “always treat-
ed” or “never treated” strategies, and applying weights as in the sequential trials approach. Such an approach has been
referred to as a “clone-censor-weight” approach, and has more commonly been used in settings in which one of the treat-
ment strategies is implemented within a grace period,55 but has not to our knowledge been explicitly linked to use of
MSMs. If this approach used baseline covariate adjustment instead of weighting, then the difference between this and the
sequential trials approach would only be a matter of the use of several trials from new time origins in the sequential trials
approach, which would typically be accompanied by assumptions about certain parameters being common across trials.

van der Laan et al56 and Petersen and van der Laan57 introduced history-adjusted MSMs (HA-MSM), which are an
extension of MSMs and connected to both approaches considered in this paper. In a HA-MSM, an MSM is used from a
series of new time points (visits) in a study, with the MSM being conditional on covariates and treatment history up to
that time, and assuming a common MSM across time points. Estimation of the MSMs is using IPTW. As well as being an
extension of the MSM-IPTW approach, there is a clear connection between HA-MSMs and the sequential trials approach.
Hernan and Robins15 referenced HA-MSMs in their paper describing the target trial framework when noting that eligibil-
ity criteria could be applied at multiple time points. A distinction between HA-MSMs and the sequential trials approach
is that the sequential trials approach restricts to individuals who have not yet started the treatment at each new time ori-
gin, whereas the HA-MSM approach conditions on past treatment in the MSM. Like in MSMs, the HA-MSM approach
considers all longitudinal treatment regimes, in contrast to the sequential trials approach, which focuses only on two
treatment regimes. An example of the use of HA-MSMs in the context of a survival outcome was given by Bembom et al.58
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However, the HA-MSM approach does not yet appear to have been much used in practice, perhaps due to initial criti-
cisms of the method.59,60 The HA-MSM approach requires assumptions about both how the history of treatment affects
the hazard and how models can be combined across time origins, and therefore stronger assumptions overall than are
required by either the MSM-IPTW approach or the sequential trials approach. As noted in Section 1, the sequential trials
approach is also closely related to the sequential stratification method described by Schaubel et al,7,8 in which individu-
als initiating treatment at a given time point are matched to untreated individuals in a sequential manner over time. The
analysis results in an estimate of the treatment effect on the treated, that is, it targets a different causal estimand than
that which we focus on in this paper. An area for future work is to further discuss the different sequential methods for
causal inference for survival outcomes, including those summarized in the review by Thomas et al.,6 but also extending
to HA-MSMs, in particular to compare the estimands that they focus on and their assumptions.

We focused in this paper on a setting in which the trials used in the sequential trials approach have different lengths
of follow-up, with trials starting at later times having shorter follow-up. It would also be possible to focus only on trials
with the same fixed length of follow-up. This depends on the total length of follow-up available in the data, and on the
time horizons of interest for the risk differences being estimated. For example, in the simulation we consider a situation
with 5 visit times. Had we been interested in a risk difference for a time horizon of 𝜏 = 2, we could have used sequential
trials of equal length starting at times 0, 1, 2, and 3. For the MSM-IPTW analysis, the question would arise as to whether to
focus on an analysis starting from time 0, or starting from time 3, say. Using sequential trials of equal length of follow-up
would make it possible to allow a separate baseline hazard for each trial covering the full length of follow-up needed for
the risks of interest, which would allow a choice as to which baseline hazard could be used to obtain risk estimates.

There are important considerations of timescale in the methods described in this paper. In our motivating example,
the first visit (k = 0) was defined as occurring at the first time during the observation period at which an individual met
the trial emulation eligibility criteria. We included both age and calendar year in the set of covariates controlled for in
the analysis. An alternative in this example would have been to define k = 0 as a particular calendar year (e.g. 2008),
with people then entering the cohort in later years at which they first meet the trial emulation eligibility criteria. In this
example we believe the choice between these two options will not have any important consequences for the findings as
we control for calendar year in the analysis. In the MSM-IPTW approach our definition of k = 0 enables more people to
be included in the analysis than would have been included if we defined k = 0 as 2008. In some other clinical contexts a
person’s time since diagnosis will be another important aspect to consider. In our example a person’s time since diagnosis
was not a major consideration as the majority of people with CF are diagnosed soon after birth. When using longitudinal
data and methods such as those focused on in this paper, different aspects of time should be carefully considered, and the
choice of time scale for the analysis clearly defined.

We compared the MSM-IPTW and sequential trials approaches using a simulation study, focusing on bias and effi-
ciency. We found that the sequential trials approach can be more efficient than the MSM-IPTW approach for estimating
risk differences, but that this is not true at all time points: for risks at time points corresponding to longer follow-up the
MSM-IPTW approach can be more efficient. We linked the efficiency gains from the sequential trials approach to the use
of less extreme weights (IPACW) compared with the IPTW. The efficiency gains from the sequential trials approach at
some time points arise due to assumptions about equality of the treatment effect across different trials and assumptions
about how much covariate history at the start of each trial needs to be conditioned on in the MSM for the hazard in order
to control for confounding. Throughout the paper we discussed the methods in terms of Cox proportional hazard models
or Aalen additive hazard models for the MSM. Previous work in this context has focused on Cox models for the MSM. We
have shown that the additive hazard model can have some advantages in terms of relaxing assumptions—for example, it
naturally allows the hazard to depend on treatment duration in the sequential trials approach. Use of the additive hazard
model was also advantageous in the simulation study as it ensured that the analysis models used in both the MSM-IPTW
approach and in the sequential trials approach could both be correctly specified, enabling a fair comparison of the meth-
ods. There have been few simulation comparisons of causal methods for time-to-event outcomes due to the challenges of
making fair comparisons. As noted earlier, Karim et al21 compared the MSM-IPTW and sequential trials approaches but
focused on estimation of hazard ratios and compared efficiency of marginal and conditional hazard ratios, which are not
the same quantity. In further work it would be of interest to use a similar simulation approach to compare other methods,
including the other sequential methods noted above. It would also be of interest to compare the two approaches when
the MSMs used are mis-specified, and to investigate the impacts of model mis-specification.

The methods were applied to investigate the effect of the treatment DNase for people with CF on the composite out-
come of death or transplant using longitudinal observational data from the UK CF Registry. We did not find any evidence
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of a causal treatment effect using either the MSM-IPTW approach or the sequential trials approach. In recent work, longi-
tudinal data from the UK CF Registry was used to estimate the longer term causal effect of DNase on the non-time-to-event
outcomes of lung function and number of days of intravenous antibiotic medication using MSM-IPTW, g-computation
and g-estimation.38,39 This work found evidence of a benefit of DNase for people with low lung function, but not for those
whose lung function was higher. Seaman et al54 illustrated the structural nested cumulative survival time approach with
an investigation of the effect of DNase use on survival using UK CF Registry data, and also did not find evidence of a
treatment effect. Sawicki et al61 used longitudinal data from the US Cystic Fibrosis Foundation patient Registry to inves-
tigate the effect of DNase treatment on the risk of death in the next year using pooled logistic regression analyses, finding
evidence of a reduced risk of death with DNase use. Limitations of our analysis include that DNase is used by a large pro-
portion of the population from a young age, and we focused on individuals initiating DNase aged 12 and older, as there
are few deaths in younger individuals. It is possible that patients initiating DNase at older ages have particular charac-
teristics that are also associated with survival, and which we did not fully capture in the set of adjustment variables used
in our analysis. The number of events in our data was relatively low, which at least in part explains the wide uncertainty
on our estimates. Our analysis included a relatively large number of adjustment variables compared to the number of
events, which included several continuous variables, and we did not include any interaction terms in the weights mod-
els or the MSMs. In further work it would be of interest to investigate data-adaptive methods for flexible adjustment for
the time-dependent confounders. Another important consideration in interpreting our results is that the UK CF Registry
records DNase prescription, but adherence to the treatment is unknown and may be low and dependent on individual
characteristics. The target trial we considered was pragmatic and did not specify the treatment dose or regimen, as reliable
information on this is not available in the observational data used to emulate the trial. Under both treatment strategies
use of other treatments was not specified, and people with CF typically use a number of treatments. Therefore the total
effect of DNase may be partly through its effect on use of other treatments. In further work it would be of interest to
use Registry data to investigate the impact of DNase in combination with other commonly used treatments and also the
impact removing DNase treatment, particularly in light of new disease-modifying treatments that have been introduced
for CF in recent years. The MSM-IPTW and sequential trials methods as described in this paper assume that information
on treatment use and time-dependent confounders is observed at regular visit times. This was the foundation of the data
structure in the motivating example, which is based on annual review clinic visits conducted approximately 12 months
apart. However in many settings, for example, in routinely collected data, data are not collected at a regular frequency,
and dates of exact treatment initiation (and cessation) may be recorded. Such treatment data are now available for the UK
CF Registry. An important area for further research is to consider the extension of the methods discussed in this paper to
accommodate data in which information on treatment and/or confounders are not recorded at regular visit times.

In Section 3 we linked the causal estimand, a marginal risk difference, to a target trial and we outlined a protocol for
a target trial for our motivating example. It could be said that using the target trial framework is not needed if the causal
estimand is precisely defined. However, we found that specifying a target trial alongside the causal estimand helps to
clarify its interpretation, particularly what the treatment strategies are and which population the estimand refers to. Use
of the target trial framework also makes the aims and methods accessible to audiences unfamiliar with the counterfactual
framework. The concept of linking causal inference investigations using observational data to a hypothetical trial has
a long history, for example summarised by Hernan and Robins (section 3.6),52 and includes Robins’62 extension of this
concept to longitudinal treatment strategies. There is strong link between the target trial framework of Hernan and Robins
(2016)15 and the general roadmap for causal inference proposed by Petersen and van der Laan,63 though the latter places
an emphasis on formal specification of the causal estimand using counterfactual notation.

In summary, the MSM-IPTW and sequential trials approaches can both be used to estimate causal effects of
time-varying treatments using observational data, controlling for time-dependent confounding. The sequential trials
approach is appealing in that it enables partial regression adjustment for time-varying confounders, thereby lessening
reliance on possibly highly variable inverse probability of treatment weights. It is important to recognise that this comes
at the price of needing to make certain modelling assumptions that are not required when using MSM-IPTW. Both
approaches rely on modeling assumptions. The MSM that is used in the MSM-IPTW approach considers all treatment
patterns, which makes it prone to mis-specification. The sequential trials approach focuses only on two regimes, meaning
that fewer assumptions need to be made about how the hazard depends on the history of treatment. However, the sequen-
tial trials approach is prone to model misspecification due to the use of a combined analysis across trials and the need
to model treatment effects conditional on the covariate history, though the latter is also required in MSM-IPTW using
stabilized weights that conditional on baseline covariates. The assumptions made in a sequential trials analysis com-
bined across trials are arguably stronger than those required in the MSM-IPTW approach and the consequences of model
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mis-specification could be more severe. The difference between the two approaches could be considered in terms of the
sequential trials approach borrowing information or smoothing across populations, whereas the MSM-IPTW approach
borrows information across treatment regimes. Even if the MSM used in the MSM-IPTW approach is mis-specified, it is
unlikely to induce an impression of treatment effect when there is none, and the results may be interpreted as an aver-
age effect over multiple regimes. The assumptions made in the sequential trials approach can be assessed by inclusion
of interaction terms between trial and treatment status. A number of variations on, or extensions to, the two approaches
were noted above, including of the sequential trials approach to consider more than two treatment regimes, and of
the MSM-IPTW approach to restrict focus to just the “always treated” and “never treated” regimes. The potential to
use the MSM-IPTW and sequential trials approaches in different ways presents areas for future investigation, including
comparisons of their assumptions and performance.
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