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Abstract

This study examines the instrument selection strategies currently employed throughout the type-2 

diabetes and HbA1c MR literature. We then argue for a more integrated and thorough approach, 

providing a framework to do this in the context of HbA1c and diabetes. We conducted a literature 

search for Mendelian randomisation studies that have instrumented diabetes and/or HbA1c. We 

also used data from the UK Biobank (N=349,326) to calculate instrument strength metrics that are 

key in MR studies (the F-statistic for average strength and R2 for total strength) with two different 

methods (‘Individual-level data regression’ and Cragg-Donald formula). We used a 157-SNP 

instrument for diabetes and a 51-SNP instrument (as well as partitioned into glycaemic and 

erythrocytic) for HbA1c. Our literature search yielded 48 studies for diabetes and 22 for HbA1c. 

Our UKB empirical examples showed that irrespective of, the method used to calculate metrics of 

strength and whether the instrument was the main one or was partitioned by function, the HbA1c 

genetic instrument is strong in terms of both average and total strength. For diabetes, a 157-SNP 

instrument was shown to have good average and total strength, but these were both substantially 

smaller than those of the HbA1c instrument. We provide a careful set of five recommendations 

to researchers who wish to genetically instrument type-2 diabetes and/or HbA1c. MR studies of 

glycaemia should take a more integrated approach when selecting genetic instruments and we give 

specific guidance on how to do this.
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Introduction

Mendelian randomisation (MR) has markedly enhanced our ability to determine true causal 

nature of associations between states of diabetes (1–45) /hyperglycaemia (46–59) and 

presumed consequences. MR uses genetic variants as unconfounded instruments for the 

exposure (60). As MR has come of age in recent years alongside the advent of large-scale 

genome-wide association studies (GWAS), numerous genetic instruments for glycaemic 

traits have become available (61–65). Choosing the most appropriate instrument is one of the 

most important decisions when designing an MR study(66) as an ill-informed choice may 

lead to misleading or conflicting findings.

Broadly, criteria for instrument selection (which are intrinsically linked to the core 

assumptions underlying MR - Fig. 1) include: i) ensuring that there is no sample overlap 

between the samples used in the discovery genome-wide association study (GWAS) and 

the data under analysis, as this helps minimise bias arising from “winner’s curse” and 

the use of weak instruments - (67); ii) selecting independent variants from the latest and 

largest GWAS for the exposure (at a threshold of p<5*10-8); iii) choosing variants based on 

the amount of variance explained in the exposure (R2); iv) selecting variants on the basis 

of biology and function; and v) deciding whether variants for a continuous, or a binary 

exposure are more appropriate. However, often prioritised in glycaemic MR studies are i), 

ii) and perhaps iii), but the remainder are not always taken into consideration. In relation to 

ii, we argue that bigger is not always better, as the greater the number of genetic variants, 

the more we increase our chances of including pleiotropic variants. This directly violates a 

core MR assumption (no horizontal pleiotropy: that variants for the exposure should not be 

associated with common confounders or directly with the outcome under study but should 

only associate with the outcome via the exposure being instrumented)(60). A balance is 

needed between including sufficient genetic variants to enable well-powered analyses, but 

not so many that pleiotropy is inevitable.

Currently few, if any journals, demand a clear explanation for choice of genetic instrument. 

While some determinants of choice, such as overlap with genetic instrument derivation 

GWAS, variant function and whether the trait is continuous or binary, may be gleaned from 

the manuscript without being explicit, key statistical characteristics, specifically R2 and F, 

which may make a major contribution to the power of an MR analysis, are not. Here the 

R2 is the amount of variance in the exposure that is accounted for by the selected genetic 

variants and generally when it comes to the R2, the larger the better, as this will directly 

contribute to the power of an MR analysis. The F-statistic provides information about the 

average strength of a genetic variant for the exposure of interest. An F of >10 indicates that 

substantial weak instrument bias is unlikely (1/F of the bias from the observational estimate) 

(68). Weak instrument bias is of concern in MR studies, as weak instruments can bias MR 

estimates towards the confounded observational estimate (68) and thus, results are not as 

robust as with a strong instrument.

Therefore, our overall objectives were to understand instrument selection approaches 

currently used in MR studies of diabetes and HbA1c, to present why we need integrated 
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approaches (described below) for this and provide a framework for how this can be done in 

practical terms. Our specific aims were:

1. Conduct a literature search for MR studies that have instrumented type-2 

diabetes and/or HbA1c to understand which exposure is instrumented more 

frequently and whether they report metrics of instrument strength.

2. Argue for the use of integrated approaches for the selection of HbA1c and type-2 

diabetes genetic instruments, with recent examples from the MR literature.

3. Use empirical examples to compare the total and average strength of an HbA1c 

genetic instrument (including partitioned by function) with a type-2 diabetes 

instrument to show that an HbA1c instrument may be superior.

4. Provide an overall framework for how to best select instruments for HbA1c and 

type-2 diabetes in an MR setting, considering 1 and 2.

Making the Case for Integrated Approaches When Selecting Hba1C and 

Type-2 Diabetes Instruments for Use in Mr Studies

Here we highlight recent examples from the MR literature which have used HbA1c and/or 

diabetes genetic variants in MR studies, in what we are naming “an integrated approach”. 

An integrated approach to genetic instrument selection is one that considers factors which 

are sometimes overlooked in MR studies of glycaemic traits. These include: the use of 

novel approaches, such as for example that of Burgess and colleagues(57) described here; 

more careful consideration of which exposure GWAS is used; where possible prioritising 

instrumentation of a continuous rather than a binary exposure; and finally, ensuring that 

both the variance explained (R2) and measures of instrument strength (F-statistic) are always 

calculated and presented.

Example A. Published MR study of glycaemia and coronary heart disease using an 
integrated approach to HbA1c genetic instrument selection

A recent MR study by Burgess and colleagues (57) used HbA1c genetic variants to 

investigate associations between genetically-instrumented glycaemic status and incident 

coronary heart disease. The authors used a novel approach to genetic instrument selection: 

they took 40 independent HbA1c SNPs based on their associations with diabetes at genome-

wide significance from a recent GWAS (64) and their association with HbA1c in the 2017 

MAGIC GWAS by Wheeler et al.(61). They then calculated a weighted allele score for each 

individual in their data (UK Biobank) whereby they multiplied each diabetes risk-increasing 

allele dosage by the SNP’s HbA1c beta coefficient from the MAGIC GWAS. By doing so, 

the authors ensured that their allele score reflected average blood glucose levels, as opposed 

to only HbA1c or risk of diabetes. This also relates to our earlier point about selecting 

instruments based on biological function. Corresponding metrics for their instrument were 

F=144.5 and R2=0.018, indicating that although they had fewer variants, this was a strong 

instrument, both in terms of total (R2) and average strength (F-statistic) and thus, carried a 

low risk of weak instrument bias.
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Example B. Published MR study of glycaemia and cognitive/brain health

As mentioned earlier, an assumption that is often made when approaching genetic 

instrument selection in MR studies is that ‘bigger is better’. Therefore, researchers are 

likely to take as many SNPs (genome-wide significant and independent) as possible from 

the largest and latest GWAS. However, our own recently published MR study shows that 

this is not necessarily the case(69). We instrumented diabetes using both a 157- and 77-SNP 

genetic instrument, as we needed to try to mitigate issues of sample overlap between the 

GWAS for the exposure and the data under study (both UKB). Therefore, we took the 

157 diabetes SNPs included in our instrument and looked them up in an older diabetes 

GWAS from 2014 (70). We found 77 of the diabetes SNPs (reduced number could be due 

to differences in coverage of imputation panels, for example) and observed that although 

this was an older GWAS in a different and smaller sample, the log(betas) for each SNP 

were comparable, even though most of the variants did not reach conventional genome-

wide significance (p<5*10-8). When we calculated the average strength (F-statistic) of our 

77-SNP instrument and compared this with the 157-SNP F-statistic they were 31 and 27, 

respectively. This indicates that an instrument with more genetic variants is not necessarily 

better in terms of average strength and the greater the number of variants, the greater the 

likelihood of including pleiotropic variants.

That a greater number of SNPs is not always better is also supported by recent MR studies 

that have instrumented body mass index (BMI)(71). The authors used an ‘older’ instrument 

containing 96 BMI SNPs performs well and therefore, it is perhaps unnecessary to always 

use an instrument with hundreds of SNPs. Larsson and colleagues showed that this BMI 

instrument explained 1.6% of the variance in BMI and had an F-statistic of 61 (71), while 

another recent MR study that instrumented BMI to understand its association with chronic 

kidney disease (CKD) used a 773-SNP instrument, which explained ~6% of the variance in 

BMI but only had an F-statistic of 23.6 (72). It is important to note that when selecting a 

genetic instrument for an MR study we need to balance these metrics against one another. 

This is because an instrument with more genetic variants has a larger R2 (total strength) 

and more power but is also more likely to include pleiotropic variants which could lead 

to violation of a core MR assumption. An instrument with a larger R2 usually has a lower 

F-statistic (average strength) which, if <10 will carry a greater risk of weak instrument bias.

Methods

Literature search for Mendelian randomisation studies that instrument type-2 diabetes 
and/or HbA1c

We were interested in how many studies have instrumented HbA1c and type-2 diabetes 

to date, whether there is a preference for one over the other and whether they report 

metrics of instrument strength. Thus, we conducted a literature review in PubMed up until 

March 2021 (for details of our search terms and strategy see Supplemental Material S1) 

of MR studies that instrumented these exposures. We excluded anything that was not a 

research article, i.e., conference abstracts, letters, editorials, reviews, opinion pieces and 

commentaries. Studies that evidently did not instrument HbA1c or type-2 diabetes were not 
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included. Supplementary Material Tables 1 and 2 list all the studies for diabetes and HbA1c, 

respectively, that were included.

Empirical examples in UK Biobank (UKB): Calculation of total (R2) and average strength 
(F-statistic) metrics for HbA1c and type-2 diabetes instruments

The aim of these empirical examples was to show the reader that, a) calculating (R2 and) 

F-statistic metrics as part of an MR study is important to understand both the total and 

average strength of the instrument of choice and b) irrespective of whether individual- 

or summary-level data are used for an MR study, options for obtaining these metrics are 

available. We chose two approaches as there has not been any quantitative comparison of 

how they perform for glycaemic instruments when considering both the R2 and F-statistic. 

These methods are: ‘Individual-level data regression’ and Cragg-Donald F-statistic.

Sample—The UKB is a cohort of ~500,000 adults recruited across the UK general 

population, aged 40-69 years at baseline (2006-2010) for which more details are published 

elsewhere (73). For the empirical examples in the ‘Individual-level data regression’ and 

the Cragg-Donald method we used individual-level data from 349,326 UKB participants of 

white European ancestry, who had complete genotype (quality-controlled) and phenotype 

data (type-2 diabetes and HbA1c). Details of the genotype QC can be found in our previous 

MR paper (69). The UKB received ethical approval from the North West Multicentre 

Research Ethics Committee and obtained informed consent from participants.

Statistical analyses—Selection of type-2 diabetes and HbA1c genetic instruments For 

both phenotypes, we used previously-described genetic instruments (69). Briefly, for type-2 

diabetes the genetic instrument comprised 157 single nucleotide polymorphisms (SNPs) 

from a 2018 GWAS of European ancestry (74), while the 51-SNP HbA1c instrument 

came from a 2017 trans-ethnic GWAS (61). We filtered SNPs on minor allele frequency 

(>0.01), used LD clumping in PLINK and p<5*10-8 (69). For HbA1c we also partitioned 

the instrument into 16 glycaemic SNPs and 19 erythrocytic SNPs (the remainder are 

unclassified, as per the 2017 GWAS) separately with the aim of testing whether the HbA1c 

instrument is strong in terms of both average (measured by the F-statistic) and total strength 
(measured by the R2) when using all the SNPs, as well as when we partition it by biological 

function. Similarly to our previously published MR study of glycaemia and brain health/

cognition/dementia outcomes, we suggest that it is worth doing three things when using an 

HbA1c genetic instrument: i) perform MR using all of the HbA1c SNPs, ii) perform MR 

using only the glycaemic SNPs, iii) perform MR using only the erythrocytic SNPs.

Calculation of the F-statistic as a measure of average instrument strength 
and the R2 as a measure of total strength—‘Individual-level data regression 
approach’: this approach involves fitting a multivariable linear regression between SNPs 

and the exposure (treated as an outcome y here), where the relationship between the j-th 

SNP and the outcome y is evaluated while holding all the other SNPs constant. In the 

regression equation below β0 represents the constant and ε the residual or error term. 

As with any multivariable regression the output includes the F-statistic and R2, which 

conventionally indicate the model fit and, in this case, we are likely to not be concerned with 
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the interpretation of the coefficients of each SNP on the exposure. Linear regression can 

also be used when the exposure is binary (e.g., in this case, we used it for genetic liability 

to diabetes), whereby the coefficients and statistics represent associations on an absolute 

scale rather than a relative risk or odds ratio scale. Therefore, here we calculated R2 and the 

F-statistic for liability to diabetes using linear regression.

The formula is thus:

y = ∑
j = 1

J
xjβj + β0 + ε

Cragg-Donald F-statistic formula: this method uses the Cragg-Donald F-statistic formula 

provided in the paper by Burgess and colleagues (68) which requires a value for R2 

(previously calculated R2 values were 0.028 and 0.030 for HbA1c, and 0.015 for diabetes), 

k (number of SNPs= 51,275 and 157) and n (349,326). For consistency and comparability, 

we kept the R2, k and n the same as in the ‘Individual-level data regression’ approach above. 

Above, we were able to calculate the R2, but it is sometimes the case that GWAS authors 

provide the R2 for the top SNPs which could then be used in this formula.

The Cragg-Donald formula, as outlined in Burgess 2011 (68) is:

F = n−k − 1
k

R2

1 − R2

Results

Literature search results

Our searches yielded a total of 657 studies for diabetes, of which 609 did not instrument 

this phenotype and thus 48 remained. For HbA1c, we found a total of 77 articles, of which 

55 did not instrument HbA1c and were excluded, leaving 22 articles. From this literature 

search it was clear that many more studies currently choose to instrument type-2 diabetes 

over HbA1c.

Results of F-statistic (average instrument strength) and R2 (total instrument strength) 
HbA1c 51- and 275-SNP instrument and partitioned glycaemic/erythrocytic instruments

As per Table 1 below, using 51 and 275 HbA1c SNPs in UKB, the ‘Individual-level data 

regression’ and Cragg-Donald formulae gave similar F-statistics (using the same R2 values 

of 2.8% and 3%). The two methods yielded somewhat different F-statistics for the 16-SNP 

glycaemic instrument, but both were substantially larger than 10, indicating no cause for 

concern (Table 1). For the 19-SNP erythrocytic instrument the F-statistics obtained using 

both methods were comparable (Table 1).
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Type-2 diabetes 157-SNP instrument in UKB

Table 1 presents F-statistics and R2 metrics using both methods. Results were comparable 

irrespective of which formula was used (with the same R2 of 1.5%).

Which approach should I use in my study?

The ‘Individual-level data regression’ approach naturally requires individual-level data for 

the exposure of interest, which are not always available to researchers. The Cragg-Donald 

formula, however, relies on having information about the R2 which could come from the 

published GWAS for the exposure, yet this is not always included in GWAS papers. The 

‘t-statistic’ approach can be used to calculate the F-statistic when the R2 is not known if 

betas or log(betas) and standard errors are provided in the summary-level GWAS exposure 

dataset. Thus, if individual-level data are available then the ‘Individual-level data regression’ 

may be recommended, but if this is not the case then the Cragg-Donald formula can be used.

Discussion

Consideration of total and average instrument strength for HbA1C and type-2 diabetes

Across our empirical examples in the UK Biobank, the HbA1c instrument outperformed that 

for type 2 diabetes, in terms of total strength (R2) and average strength (F-statistic) even 

though it contained markedly fewer SNPs. Specifically, the 16-SNP glycaemic instrument 

had the highest average strength and explained 1% of the variance in HbA1c, which is lower 

than the 2.8% variance explained for the 51-SNP instrument, but certainly still appropriate 

for use in MR. The type-2 diabetes 157-SNP instrument had a much smaller F-statistic 

(F<30) in UKB overall and explained around 1.5% of the variance in diabetes in UKB. 

On the other hand, the HbA1c erythrocytic instrument also demonstrated that it is more 

than adequate for use in MR studies, with a similar R2 to the glycaemic variants and an F 

value of just under 200. Therefore, whether it is partitioned into glycaemic and erythrocytic 

or not the HbA1c genetic instrument with 51 SNPs is overall, a strong instrument for use 

in MR studies, as indicated by both R2 and F-statistic metrics, even in comparison to the 

newer 275-SNP HbA1c instrument. However, the type-2 diabetes instrument appears to be 

somewhat weaker both in terms of total and average strength, when compared to the HbA1c 

genetic instrument(s).

Potential recommendations for MR studies instrumenting diabetes and/or HbA1c

First, as demonstrated in our empirical examples and argued above, ‘bigger is not always 

better’ when it comes to selection of instruments for glycaemic MR studies. Above we 

show that in some cases glycaemic instruments with fewer SNPs may be stronger and 

thus, more robust for use in MR when it comes to trying to minimise the important issue 

of ‘weak instrument bias’. This is the case for both HbA1c and diabetes, with the HbA1c 

instrument being superior. We therefore recommend that researchers do not assume that the 

latest and largest GWAS will always yield the best genetic instrument for these exposures 

and that careful consideration should be given to which GWAS is selected for the exposure. 

Genetic variants identified in older GWA studies may of course also be pleiotropic. Thus, 

researchers might choose to empirically test this in their MR study by for example, 
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performing a Phenome-Wide Association Study (PheWAS). However, it is important to 

note that instrument selection will likely have to balance choosing an instrument with a 

larger number of genetic variants (greater R2=total strength), but potentially with smaller 

average strength (lower F-statistic). When prioritising the former, it is more likely that the 

instrument will include pleiotropic variants, which violates a core MR assumption. If the 

latter is prioritised it is possible that the total instrument strength may be weakened, as fewer 

variants often yield a larger F-statistic, but with lower variance explained in the exposure 

(R2). However, it is also important to note that more variants provide opportunities to run 

more robust methods, including common sensitivity analyses such as the MR-Egger test. For 

the HbA1c instrument exemplified above in the UKB cohort, however, when we partitioned 

by glycaemic vs. erythrocytic variants the R2 remained at 1% for a small number of SNPs. 

Therefore, this example is a demonstration of an integrated approach that considers the 

total and average strength of the instrument, alongside biological function of the variants. 

In addition, another way to avoid pleiotropy is to use an approach such as that of Luo and 

colleagues (75), who adjusted for erythrocytic properties to control for unknown sources of 

pleiotropy.

Second, to reiterate the recommendation made by Boef and colleagues in 2015, and the 

more recent STROBE-MR guidelines (66), authors of MR studies should calculate and 

report the F-statistic for the association between their genetic instrument and the exposure 

of interest in their study. As demonstrated earlier, this can be calculated using one of three 

approaches, depending on whether researchers have access to individual-level data or not. If 

individual-level data are available for the exposure of interest, then researchers should likely 

prioritise calculating the F-statistic using the ‘Individual-level data regression’ approach. 

If individual-level data are not accessible, but the exposure GWAS paper provides the R2 

for the (exact) instrument that is being used, then we recommend using the Cragg-Donald 

F-statistic method. An additional method exists, namely the ‘t-statistic’ method, which we 

did not implement here. This is because the ‘t-statistic’ method (F= β2/SE2) can be used 

when the R2 is not known (i.e., not provided in the paper for the GWAS for the exposure). 

In this equation, β represents the coefficient for each SNP’s association with the exposure 

and SE its standard error. Using the ‘t-statistic’ method the obtained F-statistic will be more 

of an approximation because it uses the discovery GWAS (usually for the exposure) sample 

size, rather than that of the outcome dataset.

Third, and related to our earlier point, there are some complex issues surrounding genetic 

instrumentation of binary disease exposures such as diabetes (76,77). When instrumenting 

these types of disease exposures, it is important to note that we are modelling an underlying 

continuous measure where liability thresholds are used to separate individuals into different 

categories (76,78) and we should thus, interpret MR using binary exposures in terms of 

genetic liability (78). If MR instrumental variable assumptions are met for the underlying 

continuous exposure which is used to categorise individuals, then we assume that we can 

infer causality using the binary exposure (76). However, there may be circumstances in 

which researchers feel the need to genetically instrument diabetes itself as it may prove 

to be clinically informative. We would still recommend that researchers interested in 

how hyperglycaemia might causally impact a range of important health outcomes, take 

advantage of what is evidently a strong HbA1c instrument. This instrument is currently 
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underused, as we found only 22 studies that used it as an exposure in MR studies and 

thus, we recommend that researchers exploit this instrument to a much greater extent. Also, 

the MAGIC Consortium GWA studies do not include UKB making this instrument very 

attractive for use in two-sample MR studies of HbA1c and important health outcomes. In 

terms of instrument metrics, our applied example in UKB data clearly showed that the 

HbA1c instrument completely outperformed the diabetes instrument. The HbA1c instrument 

can also be split by biological function, into erythrocytic and glycaemic SNPs, as shown 

above in our examples. Genetic instrumentation of a continuous exposure such as HbA1c 

also enables the application of non-linear MR methods (79), which are also somewhat 

underused in MR. Using non-linear MR methods can help define levels of risk and may also 

aid in understanding that it is both low and high levels of HbA1c that are associated with 

risk. While understanding the causal impact of disease status (e.g., diabetes) on a range of 

outcomes is both interesting and important, it is well established that continuous measures 

are superior and should be used where possible.

Fourth, we recommend that where plausible, researchers may adopt an instrument selection 

approach such as that of Burgess et al(57) which we described earlier (Example A) with 

the aim of illustrating a novel line of thinking to integrate both diabetes and HbA1c into an 

MR study. This study used a method which exploited properties of each of these exposures 

and this yielded an instrument with good average strength (F=144) and total strength (2.8% 

variance explained). An alternative form of biological integration is illustrated in the work of 

Yeung and colleagues (80), and Yuan et al (81) who integrated expression of relevant genes 

and HbA1c in their instrument selection process.

Fifth, another example of an integrated approach to instrument selection is provided in 

Example B above, in which we sought to bypass the issue of sample overlap in our previous 

MR study. To try to mitigate this we took as many of the newer diabetes variants as possible 

(from a more recent GWAS, but that contained overlap with our data under study) and 

used the effect estimates from the earlier GWAS. The most popular approach to instrument 

selection is to naturally take the most recent, largest GWAS (which often includes UKB), 

due to assumptions that the benefits (e.g., large number of genetic variants) outweigh the 

risks (e.g., sample overlap). However, we show that a diabetes instrument with 77 SNPs had 

a larger F-statistic (average strength) indicating that if anything, this instrument carried a 

lower risk of weak instrument bias compared to our original 157-SNP instrument.

While our paper focuses on genetic instrument selection for MR studies of HbA1c and/or 

liability to diabetes, we acknowledge that as a method, MR has limitations and is not 

a panacea for causality. As such, triangulation of findings is crucial whereby different 

study designs are employed to be enable robust causal statements. Key limitations of MR 

include confounding by ancestry, confounding by linkage disequilibrium (LD), confounding 

by horizontal pleiotropy and canalisation (82). Confounding by ancestry, or population 

stratification, refers to the fact that allele frequencies of common genetic variants, as well 

as disease frequencies, may differ by population. However, it is now common to adjust 

for genetic principal components in MR studies to correct for residual confounding by 

population structure. Confounding by LD refers to when the selected genetic variant(s) is/are 

in LD (i.e., correlated with) another genetic variant associated with the outcome under study, 
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which may produce a confounded causal estimate. Confounding by horizontal pleiotropy is 

when a single genetic variant influences the outcome under study directly, rather than via the 

exposure being instrumented. However, numerous methods have been developed to detect 

and correct for horizontal pleiotropy (83). Canalisation is when an individual develops a 

compensatory mechanism for disruptive genetic or environmental influences, as a response 

to higher or lower levels of a risk factor (e.g., higher, or lower body mass index).

Conclusions

In summary, we recommend that MR studies of glycaemia take a more integrated approach 

when it comes to selection of genetic instruments. Therefore, careful consideration should 

be given to the following: i) whether novel approaches such as those described here from the 

literature might be used; ii) which GWAS is used to select the instrument for the exposure; 

iii) whether a continuous, as opposed to a binary exposure can be instrumented; iv) inclusion 

of both variance explained (R2=total strength of the instrument) and the F-statistic (average 

strength).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research In Context

What is already known about this subject?

• Mendelian randomisation studies of glycaemia have become particularly 

popular in recent years.

• Genetic instrument selection strategies are often suboptimal and poorly 

reported in studies seeking to understand causality of HbA1c/diabetes and 

important outcomes.

What is the key question?

• What strategies are currently employed in glycaemic MR studies when it 

comes to genetic instrument selection?

What are the new findings?

• Far more MR studies instrument diabetes, as opposed to HbA1c, as revealed 

by our literature search.

• However, our empirical examples in the UK Biobank showed that an HbA1c 

genetic instrument is likely superior to a diabetes one in terms of total and 

average strength, even when partitioned by biological function.

• Importantly, though, the diabetes genetic instrument performed well and we 

are aware that in certain scenarios researchers prefer to instrument a binary 

exposure, such as diabetes.

How might this impact on clinical practice in the foreseeable future?

• MR studies to date may have had discrepant findings, due to a suboptimal 

instrument selection approach and our careful set of guidelines provided here 

will help prevent this in future studies.
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Fig. 1. Summary of genetic instrument selection criteria in MR studies
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Table 1
Instrument strength metrics in UKB (N=349,326)

Trait Variance explained (R2) F-statistic Method

Diabetes (157 SNPs) 0.015 (1.5%)
0.015 (1.5%)

27.43
27.9

ILDR
CD

HbA1c main instrument (51-SNPs). 0.028 (2.8%)
0.028 (2.8%)

164.6
164.8

ILDR
CD

HbA1c main instrument (275 SNPs) 0.030 (3%)
0.030 (3%)

33.24.
38.08

ILDR
CD

HbA1c 16-SNP glycaemic instrument 0.011 (1.1%)
0.011 (1.1%)

201.1
182.3 ILDR CD

HbA1c 19-SNP erythrocytic instrument 0.012 (1.2%)
0.012 (1.2%)

187.5
184.3

ILDR
CD

Note. ILDR=‘individual-level data regression’, CD=Cragg-Donald.
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