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Platform trials evaluate multiple experimental treatments under a single master
protocol, where new treatment arms are added to the trial over time. Given the
multiple treatment comparisons, there is the potential for inflation of the over-
all type I error rate, which is complicated by the fact that the hypotheses are
tested at different times and are not necessarily pre-specified. Online error rate
control methodology provides a possible solution to the problem of multiplicity
for platform trials where a relatively large number of hypotheses are expected
to be tested over time. In the online multiple hypothesis testing framework,
hypotheses are tested one-by-one over time, where at each time-step an analyst
decides whether to reject the current null hypothesis without knowledge of
future tests but based solely on past decisions. Methodology has recently been
developed for online control of the false discovery rate as well as the familywise
error rate (FWER). In this article, we describe how to apply online error rate
control to the platform trial setting, present extensive simulation results, and
give some recommendations for the use of this new methodology in practice. We
show that the algorithms for online error rate control can have a substantially
lower FWER than uncorrected testing, while still achieving noticeable gains in
power when compared with the use of a Bonferroni correction. We also illustrate
how online error rate control would have impacted a currently ongoing platform
trial.
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1 INTRODUCTION

There is a strong need to conduct high-quality evaluations of new interventions aimed at improving the health of patients.
The highest quality of evidence comes from randomized controlled trials (RCTs). However, the cost of RCTs is high
and increasing, leading to the very high costs of bringing new drugs to market1 and evaluation of other types of inter-
vention.2 This has led to focus on methods that can improve the operational and statistical efficiency of conducting
clinical trials.

One important class of efficient approaches are platform trials.3-5 Platform trials set up an infrastructure that allows
evaluation of multiple intervention arms under a single master protocol. Platform trials may use an adaptive design to
drop non-promising intervention arms early and can add new interventions as they become available for evaluation. Some
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interventions can also be evaluated only within particular patient subgroups if warranted. These properties all can lead
to increased efficiency.3,6,7 However, they also introduce challenges, both operational8 and statistical.9

One statistical challenge, given the multiple treatment comparisons, is control of type I error rates. Although the need
for formal control of type I error rates in trials of distinct treatments is controversial,10-16 it may be required in some regula-
tory settings and desirable in other situations where the treatments are related in some way. In a platform trial, controlling
type I error rates is complicated by the fact that the hypotheses are tested at different times and are not all pre-specified.

Online error rate control methodology provides a possible solution to the problem of multiplicity for platform trials
where multiple treatments are tested over time.17,18 In the online multiple hypothesis testing framework, hypotheses are
tested one-by-one over time, where at each time-step a decision is made whether to reject the current null hypothesis
without knowledge of future hypothesis tests but based solely on past decisions. Methodology has recently been developed
for online control of the false discovery rate (FDR)19-24 as well as the familywise error rate (FWER),25 so that the relevant
error rate is controlled at all times throughout the trial.

In order to apply online error rate control methodology to platform trials and evaluate its performance, there are
some general features specific to this setting that need to be explored. First, one key consideration is the total number of
hypothesis tests that is reasonable to envisage for a platform trial. Thus far, most of the literature on online testing has
tended to focus on applications with a very large (≥1000) number of hypotheses. Second, many existing algorithms19-22,25

for online FDR or FWER control assume independence between the P-values (or equivalently, the test statistics). However,
in the platform trial setting there is a positive dependence induced by shared control arm information, and so potential
inflation of the relevant type I error rate needs to be considered. Lastly, in the clinical trial setting the usual error rate
considered (at least for confirmatory trials) is the FWER.26,27 Hence, it would be useful to see how the FWER is impacted
when using methods that control the FDR.

Our aim in this article is to demonstrate the advantages and disadvantages of using online error rate control method-
ology in the platform trial setting through an extensive simulation study looking at varying numbers of treatment arms,
patterns of expected treatment responses and arm entry times, as well as assumptions about the upper bound on the total
number of experimental treatments to be tested.

In Section 2, we introduce the different algorithms for online error rate control that we will explore, and then in
Section 3 we describe the idealized platform trial set-up that we use for the simulations and the different simulation
scenarios. Section 4 provides the simulation results, focusing on testing treatments one-by-one (Section 4.1) as well as
in batches (Section 4.2). In Section 5, we present a case study based on the STAMPEDE platform trial28 of therapies for
prostate cancer. We conclude with recommendations and discussion in Section 6.

2 ALGORITHMS FOR ONLINE ERROR RATE CONTROL

We now briefly introduce the online multiple hypothesis testing algorithms that we consider, classified into those for
fully online testing (ie, where each hypothesis is tested one after another) and those for online batched testing (ie, where
groups of hypotheses are available to be tested at the same time). An illustration of the difference is given in Figure 1. All
of the algorithms require a pre-specified significance level 𝛼, as well as a sequence of non-negative numbers 𝛾i that sum
to 1. We provide references giving further details of the algorithms for the interested reader. The algorithms described
below are also available to use via the onlineFDR R package.29

2.1 Fully online testing

The algorithms for fully online testing output an adjusted testing level 𝛼i for testing the null hypothesis Hi, that is, Hi is
rejected if the associated P-value pi satisfies pi ≤ 𝛼i.

• LOND: One of the first online testing algorithms proposed, LOND (levels based on number of discoveries) provably
controls the FDR for independent19 and positively dependent P-values.23 In LOND, the 𝛼i are calculated by simply
multiplying the sequence 𝛼𝛾i by the number of discoveries (ie, the number of rejected hypotheses) that have been made
thus far.

• LORD: Another early online testing algorithm, LORD (levels based on recent discovery) provably controls the FDR
for independent P-values.19,20 LORD takes advantage of so-called “alpha-investing,” in which hypothesis tests costs
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F I G U R E 1 Illustration of fully online testing and online batched testing for a platform trial testing experimental treatments Ti against
a common control. For the online testing procedures, a hypothesis test can be conducted whenever new results become available
(ie, whichever treatment arm is the ith one to be analysed is tested at level 𝛼i). For offline methods (eg, the Benjamini-Hochberg procedure),
testing can only occur when all the trial data are available.

some amount from the error budget (or “alpha-wealth”), but a discovery earns some of the error budget back.
The 𝛼i in LORD depend not only on how many discoveries have been made but also on the timing of these discoveries.
The more recent discoveries there are, the higher the alpha-wealth will be.

• SAFFRON: Proposed as an improvement to LORD, the SAFFRON (serial estimate of the alpha fraction that is futilely
rationed on true null hypotheses) algorithm provably controls the FDR for independent P-values.21 Intuitively, SAF-
FRON focuses on the stronger signals in an experiment (ie, the smaller P-values). By never rejecting weaker signals
(ie, larger P-values), SAFFRON preserves alpha-wealth. When a substantial fraction of null-hypotheses are false,
SAFFRON will often be more powerful than LORD.

• ADDIS: Proposed as an additional improvement to both LORD and SAFFRON, the ADDIS (ADaptive algorithm that
DIScards conservative nulls) algorithm provably controls the FDR for independent P-values.25 Intuitively, ADDIS
builds on the SAFFRON algorithm by potentially investing alpha-wealth more effectively through the discarding of
the weakest signals (ie, the largest P-values) in a principled way. This procedure can gain appreciable power if the null
P-values are conservative, that is, stochastically larger than the uniform distribution.

• ADDIS-spending: Unlike all of the algorithms mentioned above, ADDIS-spending provably controls the FWER (in the
strong sense) for independent P-values.22 ADDIS-spending shares similarities with ADDIS in setting thresholds based
on the size of the P-values for hypotheses to be selected for testing.

2.2 Online batched testing

The algorithms for online batched testing use well-known offline procedures for FDR control (ie, procedures that require
all of the P-values to be known before testing) for each batch, in such a way that the FDR is controlled across all of the
batches over time. Three related algorithms were proposed by Zrnic et al:24

• BatchBH: Provably controls the FDR when the P-values are independent within and across batches. BatchBH runs
the Benjamini-Hochberg (BH) procedure at level 𝛼i on each batch, where the values of 𝛼i depend on the number of
previous discoveries.

• BatchPRDS: A modification of BatchBH, which provably controls the FDR when the P-values in one batch are positively
dependent, and independent across batches.
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• BatchStBH: Provably controls the FDR when the P-values are independent within and across batches. BatchStBH runs
the Storey Benjamini-Hochberg (StBH) procedure at level 𝛼i on each batch, where the values of 𝛼i depend on the
number of previous discoveries. The StBH procedure can potentially make more rejections than BH by adapting to the
(estimated) number of non-nulls.

3 SIMULATION STUDY

We now describe the platform trial set-up (Section 3.1) used in our simulation study, as well as the simulation scenarios
(Section 3.2) that we explore.

3.1 Platform trial set-up

Consider an idealized platform trial that eventually tests a total of K experimental treatments T1, … ,TK against
a common control T0 (see Figure 13 for a graphical example). Let 𝜇i denote the expected response for treatment
Ti, and define the treatment effect 𝜃i = 𝜇i − 𝜇0 for i ∈ {1, … ,K}. The null hypotheses of interest are given by H0i ∶ 𝜃i ≤ 0
with corresponding alternatives H1i ∶ 𝜃i > 0, which we test at error level 𝛼 (for either FWER or FDR control). Let
ni denote the pre-specified sample size for each experimental treatment, and for simplicity assume that an equal
number of patients are eventually allocated to each experimental arm (ie, n1 = · · · = nK = n). We use the simplify-
ing assumption that an experimental treatment continues in the trial until n patients have been allocated to that
arm and their outcomes observed. The experimental treatment is then formally tested for effectiveness by compar-
ing with concurrent controls (ie, only the outcomes from patients allocated to the control group during the time
that the experimental treatment was active in the trial). We return to the issue of conducting interim analyses
in Section 6.

We assume that the observation Xij from patient j on treatment Ti is distributed (at least asymptotically) as
Xij ∼ N(𝜇i, 𝜎

2), where 𝜎 is known. The mean response for patients on experimental treatment Ti (i > 0) is then given
by Xi = 1

n

∑n
j=1Xij, with corresponding concurrent control mean X
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0 = 1

N0(i)
∑
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where Xi − X0 is the observed difference in means. The corresponding one-sided P-value for treatment Ti is given by
pi = 1 − Φ(Z), where Φ is the standard normal cdf.

We assume for simplicity that experimental treatment Ti enters the trial at time ti, and remains in the trial until time
(ti + r). The platform trial starts at time 0 and finishes once all K experimental treatments have been tested. Hence the
temporal structure of the platform trial can be described by the value of r and the vector t = (t1, … , tK). Without loss of
generality, we impose the restriction that t1 ≤ · · · ≤ tK . We assume that n∕r patients are allocated to each arm (including
the control) per unit time, where r is chosen so that n∕r is an integer.

3.2 Simulation scenarios

In our simulation study, we consider K ∈ {5, 10, 15, 20}, and set 𝛼 = 0.025, n = 50, 𝜇0 = 0, 𝜎 = 1 and r = 10. Table 1 gives
an overview of the scenarios, algorithms and performance metrics used in the simulation study, with further details given
below.
We consider the following scenarios for the treatment means 𝜇i, i ∈ {1, … ,K}:

1. Global null: 𝜇1 = · · · = 𝜇K = 0



ROBERTSON et al. 2479

T A B L E 1 Overview of simulation scenarios and performance metrics.

Treatment means Arm entry times Algorithms Performance metrics

Global null All arms at once Bonferroni, ADDIS-spending FWER and FDR

Fixed means Batches of size 5 ADDIS, LORD, SAFFRON, BH Disjunctive power

Staircase scenario Staggered starts One-by-one BatchBH, BatchPRDS, BatchStBH Sensitivity

2. Fixed means: m effective treatments which are either all tested at the start or the end of the platform trial, or are tested
in a random order. We set 𝜇i = 0.5 for i ∈ I and 𝜇i = 0 otherwise, where

I = {i ∶ 1 ≤ i ≤ m} (early).
I = {i ∶ K −m + 1 ≤ i ≤ K} (late).
I is a set of m values drawn randomly from {1, … ,K} without replacement (random) for
m ∈ {1,K∕5 + 1, 2K∕5 + 1}.

3. Staircase scenario:
𝜇i = (i − ⌈K∕2⌉)∕K (increasing).
𝜇i = (⌈K∕2⌉ − i + 1)∕K (decreasing).
𝜇i is drawn randomly from the set {(i − ⌈K∕2⌉)∕K ∶ 1 ≤ i ≤ K} without replacement (random).

We also consider the following patterns of arm entry times t:

1. All arms at once (offline testing): ti = 0.
2. Batches of size b: ti = r(j − 1) for i ∈ {b( j − 1) + 1, … , bj} and j ∈ {1, … ,K∕b}, where b = 5.
3. Staggered starts: ti = r(i − 1)∕s for s ∈ {2, 5}.
4. One-by-one (fully online): ti = r(i − 1).

Finally, we explore different assumptions about the upper bound, Nbound, on the total number of experimental treatments
to be tested. We consider Nbound ∈ {K, 2K, 5K}, that is, considering the impact of more conservative choices of Nbound. Note
that Nbound should be chosen before the start of the platform trial. We return to the issue of what happens if Nbound < K
in Section 6.

For each of the simulation scenarios described above, we compare the following algorithms for FWER and FDR
control:

FWER: Bonferroni and ADDIS-spending.
FDR: ADDIS, SAFFRON, and LOND. For batched entry times, we consider the BatchBH, BatchPRDS, and BatchStBH
procedures. We also use the standard Benjamini-Hochberg (BH) procedure as a comparator.

We give more details about the exact implementation of these algorithms in Section A of the Supporting web materials.
Note that Bonferroni tests each hypothesis at level 𝛼∕Nbound (as opposed to 𝛼∕K), and the BH procedure is an offline
procedure that requires all hypotheses to be tested at once (and hence could not be used in practice for a platform trial).

For each simulation scenario, we report the following performance measures:

Type I error rates: FWER and FDR.
Power metrics: Disjunctive power (probability of rejecting at least one non-null hypothesis) and sensitivity
(proportion of non-null hypotheses that are rejected).

The use of disjunctive power in our comparisons reflects how it is the power analog of FWER. However, as pointed
out by a reviewer, arguably the most relevant definition of “power” when making multiple comparisons is the power to
detect a given treatment effect and hence sensitivity may be a more relevant metric to use. We note that for simplicity we
have kept type I error and power metrics separate in the results that follow. Alternatively, it could be useful to consider a
metric that simultaneously incorporates both power and type I error rates. However, to combine both metrics in this way
would require the specification of the relative costs of making type I and type II errors, which would vary across different
stakeholders.
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4 SIMULATION RESULTS

To start with, we consider the type I error rate of the different algorithms, in particular checking whether the FDR is
controlled. This is of interest because apart from LOND, all of the online testing algorithms only provably control the FDR
under independence of the P-values. Figure B1 in Section B.1 of the Supporting web materials shows the FDR under the
global null (and hence the FDR=FWER), for varying patterns of arm entry times and Nbound = K. Note that the global null
maximizes the FWER for multi-arm multi-stage (MAMS) designs.30 Using uncorrected testing leads to a highly inflated
FDR/FWER above the nominal 2.5%, which can be as high as 40% when K = 20. In contrast, the online testing algorithms
have a FDR/FWER which is equal to or below the nominal level. The one exception is SAFFRON, which has a slight
inflation of the FDR/FWER to around 3%.

4.1 Fully online setting

Continuing with the FDR and now focusing on the fully online setting, Figure B2 in Section B.2 of the Support-
ing web materials shows the worst and best case FDR (corresponding to all the effective treatments appearing early
and late, respectively) for fixed means and different numbers of effective treatments, with Nbound = K. Again we see
how uncorrected testing can lead to a highly inflated FDR, although this inflation reduces as the number of effec-
tive treatments increases. This time, all the online testing procedures control the FDR at or below the nominal
2.5%, but they can be noticeably conservative. This is the case for LORD, as well as ADDIS-spending for (K∕5 + 1)
and (2K∕5 + 1) effective treatments. Note though that the Bonferroni correction is also highly conservative in these
settings.

We now move on to examining the FWER for the different procedures. Of course, the FDR-controlling algo-
rithms would not be expected to also control the FWER in general, but it is of interest to see how large any
inflation in the FWER can be. In general, the magnitude of the inflation depends critically on the effect sizes cho-
sen for the alternative hypotheses. Figure 2 shows the FWER under the early and late scenarios, as well as the
FWER under the random ordering of the effective treatments, all with Nbound = K. When there is only 1 effective
treatment the FWER is controlled by all the online testing algorithms, but (apart from LOND) they are even more
conservative than Bonferroni. A possible explanation for this observation is that the test statistics are independent in
the fully online setting, and the Bonferroni correction is not as highly conservative under independence. Under the
global null (eg,) the probability of at least one error when using Bonferroni is 1 − (1 − 𝛼∕K)K and this is close to 𝛼

for small 𝛼.
When there are (K∕5 + 1) effective treatments, the FWER is inflated above 2.5% for all the online testing proce-

dures (apart from ADDIS-spending) when K > 5 in the early scenario and K > 15 in the random scenario. The LOND
algorithm has the largest inflation in the early scenario, which is similar to the inflation seen using the BH procedure.
Finally, when there are (2K∕5 + 1) effective treatments, there is FWER inflation for all the online algorithms (except for
ADDIS-spending) when K > 5 in the early scenario and K > 10 in the random scenario. This time, SAFFRON has the
highest inflation, which can be higher than BH in the early scenario, although still noticeably lower than uncorrected
testing. Note that in the random setting, for both (K∕5 + 1) and (2K∕5 + 1) effective treatments, when K = 15 the FWER
of the online testing procedures (apart from SAFFRON) is controlled at 5%.

The other side of the story is the power of the trial, and to start with we focus on sensitivity as a measure of the
proportion of the truly effective treatments that are declared efficacious. Figure 3 shows the sensitivities for the early,
late, and random scenarios, again with Nbound = K. For ease of reference, we also include plots showing the sensitivity
and FWER together in Figures B3–B5 in Section B.2 of the supporting web materials. With only 1 effective treatment,
the sensitivity of all of the online algorithms apart from LOND is substantially lower than using Bonferroni. Even in the
best case (early scenario), only SAFFRON and ADDIS-spending have a higher sensitivity than Bonferroni when K ≥ 10.
When there are (K∕5 + 1) effective treatments, again the sensitivities of all of the online algorithms apart from LOND are
lower than Bonferroni in the late and random scenarios. LOND maintains a sensitivity roughly halfway that between the
Bonferroni and BH procedures. In the best case (early scenario), SAFFRON has a higher sensitivity than Bonferroni for
K > 5 (and even BH for K ≥ 15), while the other online algorithms also achieve a higher sensitivity for K > 10. Finally,
with (2K∕5 + 1) effective treatments, we again see that LOND maintains a sensitivity roughly halfway that between the
Bonferroni and BH procedures. Under the random scenario, SAFFRON, ADDIS and LORD have a higher sensitivity
than Bonferroni for K > 5, K > 10, and K ≥ 15, respectively. In the worst case (late scenario), the equivalent values of K
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F I G U R E 2 FWER for fixed means and different numbers of effective treatments, with Nbound = K.

are K ≥ 10, K > 10, and K > 15, respectively. Finally, in the best case (early scenario), all the online testing algorithms
outperform Bonferroni for K ≥ 10.

Thus far we have used an upper bound Nbound = K, that is, exactly equal to the number of treatments that are tested. In
practice, this is unlikely to be known prior to the platform trial starting, and a more conservative (ie, higher) value of Nbound
would be used. Figure 4 shows the effect of increasing the value of Nbound on the sensitivity of the algorithms, where there
are (2K∕5 + 1) effective treatments. The key takeaway here is that as Nbound increases, the sensitivity of Bonferroni, LOND
and LORD noticeably decreases, with Bonferroni having the largest relative decrease, whereas the sensitivity of all the
other algorithms remains virtually unchanged. This means that there is a greater advantage in using online algorithms (in
terms of sensitivity) compared with Bonferroni as Nbound increases. For example, in the extreme case where Nbound = 5K,
then under a random ordering of treatment means, all of the online algorithms outperform Bonferroni, with the relative
advantage increasing with K. The same is seen for the more realistic scenario of Nbound = 2K, apart from LORD for K < 10.
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as the number of effective treatments vary for readability.

In terms of the effect of Nbound on the FWER, Figure 5 shows the trade-off between sensitivity and the FWER under
a random ordering of treatment means (the results for the early and late scenarios are given in Figures B6 and B7 in
Section B.2 of the Supporting web materials). We see that as Nbound increases, the FWER of Bonferroni, LOND and LORD
decreases, whereas the FWER of the other algorithms remain virtually unchanged. Hence, when Nbound = 2K, LOND
controls the FWER at 2.5% while still having substantial gains in power over Bonferroni. Meanwhile, the power gains of
SAFFRON (and to a lesser extent, ADDIS) come at the cost of a large inflation of the FWER. However, we note that in order
to be conservative it may still be useful to consider the FWER when Nbound = K since it represents a sort of “worst-case”
scenario where the assumed upper bound on the total number of treatments is actually reached.

Figure 6 shows the disjunctive power for 1 and (K∕5 + 1) effective treatments, with Nbound = 2K (results for
(2K∕5 + 1) effective treatments are not shown since most methods have a disjunctive power very close to 1). Using this



ROBERTSON et al. 2483

Nbound = K Nbound = 2K Nbound = 5K

5 10 15 20 5 10 15 20 5 10 15 20

0.6

0.7

0.8

0.9

Se
ns

iti
vi

ty
Early

Nbound = K Nbound = 2K Nbound = 5K

5 10 15 20 5 10 15 20 5 10 15 20

0.6

0.7

0.8

0.9

Se
ns

iti
vi

ty

Random

Nbound = K Nbound = 2K Nbound = 5K

5 10 15 20 5 10 15 20 5 10 15 20

0.6

0.7

0.8

0.9

K

Se
ns

iti
vi

ty

Late

Algorithm
Uncorrected

BH

ADDIS

SAFFRON

LORD

LOND

ADDIS−spending

Bonferroni

F I G U R E 4 Sensitivity for fixed means and (2K∕5 + 1) effective treatments, with varying Nbound.

power metric, the online algorithms all have substantially lower power than Bonferroni in the random and late scenarios,
apart from LOND (and ADDIS-spending for randomly ordered means). Only in the early scenario do we see advantages
for ADDIS-spending and (to a lesser extend) ADDIS, particularly when there is only 1 effective treatment.

Finally, we consider the impact of conservative nulls (ie, the staircase scenario) in the fully online setting. A-priori
we would expect ADDIS and ADDIS-spending to perform better here. Due to the treatment means used, the sensitivity
of all algorithms is low (<50%) and hence we only focus on the disjunctive power (the results for sensitivity are available
in Section B.2 of the Supporting web materials, Figure B8). Figure 7 shows the results for the staircase scenario, where
Nbound = 2K for the disjunctive power plots and Nbound = K for the FWER plots. In this setting and for this power metric,
ADDIS-spending performs particularly well with comparable disjunctive power to Bonferroni in the worst case (ascend-
ing) and noticeable increases in power under the random and descending staircase scenarios. Note that the FWER of all
the procedures (except uncorrected testing) control the FWER below the nominal 2.5% level.
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In summary, we have seen that the performance of the fully online testing algorithms strongly depends on the number
of effective treatments, the order in which they are tested in the trial, and the assumed upper bound Nbound on the total
number of treatment arms. As would be expected, the power of the online algorithms increases when there is a relatively
large number of effective treatments which appear early on in the trial. However, as is the case for offline FDR controlling
procedures, the online FDR algorithms do not control the FWER, although the FWER is still noticeably lower than with
uncorrected testing.

Overall, LOND is a robust choice across the scenarios considered, since it provably always make at least as many
rejections as Bonferroni, which can sometimes translate into substantial sensitivity gains, while maintaining a reasonable
FWER for all but the most extreme cases. For example, under (arguably) the most plausible setting of a random ordering
of the truly effective treatment, when Nbound = 2K even when Nbound = 2K the FWER on LOND is below the nominal
2.5%. Even when Nbound = K, the FWER is still below 5% for K ≤ 15. In the staircase scenario though, ADDIS-spending
performs surprisingly well in terms of disjunctive power, with a noticeably higher power than LOND and Bonferroni in
the random and descending scenarios (while still maintaining FWER control). We return to our general recommendations
in the discussion (Section 6).

4.2 Online batched algorithms

We now turn our attention to the batched setting (with a batch size of 5) in order to assess how the online batched
algorithms (BatchBH, BatchPRDS and BatchStBH) compare with the fully online algorithms. Starting with the FDR,
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F I G U R E 6 Disjunctive power for fixed means and different numbers of effective treatments, with Nbound = 2K.

Figure 8 shows the worst and best case FDR (corresponding to the early and late scenarios, respectively) of the online
batched algorithms when Nbound = K. We see that while BatchBH and BatchPRDS control the FDR below the nominal
2.5% in all the scenarios, BatchStBH has an inflated FDR when there is 1 effective treatment which approaches 5% in the
worst case when K = 20. This inflation of the FDR of BatchStBH is theoretically justified, since BatchStBH only controls
the FDR under independence of the P-values both within and across batches.

Figures 9–11 compares the sensitivity and FWER for fully online and online batched algorithms, with Nbound = 2K for
the sensitivity and Nbound = K for the FWER. Starting first with 1 effective treatment (Figure 9), there is no advantage in
terms of sensitivity when using the online batched algorithms compared to LOND under the late and random scenarios,
or ADDIS-spending and SAFFRON in the early scenario. In all scenarios, BatchStBH has a noticeably inflated FWER,
particularly under the early scenario. In contrast, BatchBH and BatchPRDS are reasonably close to the nominal 2.5% level.

When there are (K∕5 + 1) effective treatments (Figure 10), there is a slight sensitivity advantage in using BatchBH
and BatchStBH over LOND in the random scenario for K > 10, with similar or lower FWER. In the early scenario,
BatchBH and BatchPRDS have similar sensitivity to SAFFRON but substantially lower FWER (of approximately
2.5%). Meanwhile, BatchStBH has a higher sensitivity than SAFFRON for K > 10, but at the cost of an even more
inflated FWER. Finally, in the late scenario, BatchBH and BatchPRDS have a slightly lower sensitivity than SAF-
FRON, whereas BatchStBH has a substantially higher sensitivity but at the cost of a noticeable inflation of the
FWER.

When there are (2K∕5 + 1) effective treatments (Figure 11), BatchPRDS has similar sensitivity to LOND but with a
substantially lower FWER that is below the 2.5% level. BatchBH and BatchStBH have similar sensitivity to SAFFRON and
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F I G U R E 7 Disjunctive power and FWER for the staircase scenarios. Here Nbound = 2K for the disjunctive power plots and Nbound = K
for the FWER plots.

ADDIS respectively when K ≥ 10, but BatchStBH has substantially lower FWER (approximately 2.5%) while BatchBH has
similar FWER to ADDIS. In the early scenario, BatchBH and BatchPRDS have a roughly similar sensitivity to SAFFRON,
but with a substantially lower FWER (which as at or below 2.5% for BatchPRDS). BatchStBH has a higher sensitivity than
SAFFRON (in fact approaching the level of uncorrected testing) but with a similarly highly inflated FWER. Lastly, in the
late scenario BatchPRDS has a lower sensitivity than LOND for K ≥ 10 although still noticeably higher than Bonferroni.
BatchBH has a slightly higher sensitivity than LOND with a similar FWER. Meanwhile BatchStBH has a substantially
higher sensitivity than LOND (or any of the other fully online algorithms) but again at the cost of a noticeably higher
FWER.

In terms of disjunctive power, Figure B9 in Section B.3 of the Supporting web materials shows that all of the
online batched algorithms have fairly similar power to ADDIS-spending across the different scenarios. However, as
already seen this comes at the cost of a (potentially highly) inflated FWER for BatchStBH and to a lesser extent
BatchBH.

Finally, Figure 12 gives the results for the staircase scenario with conservative nulls, in terms of disjunctive
power and FWER. We again see that the online batched algorithms tend to have similar disjunctive power to
ADDIS-spending, although BatchStBH has slightly higher values in the ascending and descending scenarios and
all the online batched algorithms have slightly lower values in the random scenarios. As for the FWER, all the
online batched algorithms control the FWER below the nominal 2.5%, except for BatchStBH under the descending
scenario.



ROBERTSON et al. 2487

1 effective treatment (K/5 + 1) effective treatments (2K/5 + 1) effective treatments

5 10 15 20 5 10 15 20 5 10 15 20

0.00

0.05

0.10

0.15

FD
R

Early

1 effective treatment (K/5 + 1) effective treatments (2K/5 + 1) effective treatments

5 10 15 20 5 10 15 20 5 10 15 20

0.00

0.05

0.10

0.15

K

FD
R

Late

Uncorrected

BH

BatchStBH

BatchPRDS

BatchBH

Bonferroni

F I G U R E 8 FDR for the online batched algorithms, with Nbound = K.

Looking at the results for online batched testing as a whole, we see that the BatchPRDS algorithm is competitive when
compared to LOND (and hence also Bonferroni) by having similar or higher power, in terms of sensitivity and disjunctive
power, while still controlling the FWER at 2.5% across all the scenarios considered.

Finally, an alternative strategy to try to control the FDR (or FWER) in the batch setting is to apply the BH or Holm
procedure to each batch. However, a repeated application of the BH (Holm) procedure each at level 𝛼 will not in general
control the FDR (FWER) at level 𝛼 across batches. For example, in the extreme case of all batches being of size 1, then
such a strategy using the Holm procedure would be identical to using uncorrected testing at level 𝛼. Nonetheless, we have
evaluated the use of a repeated BH and a repeated Holm procedure for the batch setting, with the results found in Section
B.3 of the Supporting information. There can be a highly inflated FDR and FWER for this strategy but also a substantial
increase in sensitivity in some scenarios.

5 CASE STUDY: STAMPEDE TRIAL

The STAMPEDE (Systemic Therapy for Advancing or Metastatic Prostate Cancer) trial is a flagship platform trial for
research into the effect of systemic therapies for prostate cancer28 on overall survival. The trial opened to accrual in Octo-
ber 2005 with 6 arms (A-F), including the control arm A, which was standard-of-care (SOC) hormone therapy. Figure 13
shows a schematic of the treatment comparisons that have already been reported from STAMPEDE. Two additional arms
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(G and H) were added to the trial in 2011 and 2013, respectively. Three arms (B, C, and E) reported main analyses in
2015,31 with two additional arms (D and F) reporting in 2015/2016.32 Arm G reported main analyses in 201733 and Arm H
reported results in 2018.34

Table 2 shows the reported P-values (unadjusted for multiplicity) when comparing arms B to H with the SOC (arm A),
as given in References 31-34. The dashed lines denote the 4 batches in the trial.

We now apply the offline and online testing algorithms to the observed P-values given above in Table 2, keeping the
alphabetical ordering of P-values within the three batches. As a sensitivity analysis, we show what happens if the ordering
of the P-values in the first batch changes in Table C2 in Section C of the Supporting web materials. We set the upper bound
on the number of treatments Nbound = 20, that is, twice as many arms that have already entered the STAMPEDE trial as
of the end of 2021.

Table 3 shows which of the hypotheses corresponding to each trial arm can be rejected at level 𝛼 ∈ {0.025, 0.05, 0.1},
as well as the current significance level 𝛼8 that would be used to test the next treatment arm after the 7 already evaluated
in the trial. We consider larger values of 𝛼 since this has been a suggestion for multi-arm trials35 as a compromise between
not correcting for multiplicity at all (as would be the case when running a series completely independent two-arm trials)
and strict FWER control at 2.5%.

When 𝛼 = 0.025, uncorrected testing rejects hypotheses C, E, and G, but only BH and BatchStBH reject more than
one hypothesis (C and G). All the other online algorithms as well as Bonferroni only reject hypothesis G, except
for ADDIS and LORD which reject no hypotheses. When 𝛼 = 0.05 the rejections made by the various algorithms
remain the same, except now SAFFRON, BatchBH and BatchPRDS reject hypotheses C and G, while BatchStBH
rejects hypotheses C, E, and G. Finally, when 𝛼 = 0.1 we see that BH, SAFFRON, BatchBH, BatchPRDS, and Batch-
StBH all make the same rejections as uncorrected testing. In terms of the current adjusted testing level 𝛼8, we see
that ADDIS-spending, ADDIS, and LORD have a smaller value than even Bonferroni. SAFFRON, LOND, BatchBH,
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F I G U R E 13 Schematic of the STAMPEDE trial. ab, abiraterone; rt, radiotherapy.

T A B L E 2 Reported results for the STAMPEDE trial.

Trial arm P-value

B: SOC + zoledronic acid 0.450

C: SOC + docetaxel 0.006

E: SOC + zoledronic acid + docetaxel 0.022

D: SOC + celecoxib 0.847

F: SOC + zoledronic acid + celecoxib 0.130

G: SOC + abiraterone 0.001

H: SOC + radiotherapy 0.266

Abbreviation: SOC, standard-of-care.

T A B L E 3 Rejections and current significance level 𝛼8 of different algorithms using the results of the STAMPEDE trial, with the
ordering as in Table 2.

Hypotheses rejected 𝜶8

Algorithm 𝜶 = 0.025 𝜶 = 0.05 𝜶 = 0.1 𝜶 = 0.025 𝜶 = 0.05 𝜶 = 0.1

Uncorrected C, E, G C, E, G C, E, G 0.0250 0.0500 0.1000

Bonferroni G G G 0.0013 0.0025 0.0050

ADDIS-spending G G G 0.0005 0.0011 0.0021

BH C, G C, G C, E, G – – –

ADDIS – G G 0.0003 0.0016 0.0031

SAFFRON G C, G C, E, G 0.0041 0.0165 0.0412

LORD – – – 0.0001 0.0002 0.0003

LOND G G G 0.0025 0.0050 0.0100

BatchBH G C, G C, E, G 0.0019 0.0057 0.0151

BatchPRDS G C, G C, E, G 0.0019 0.0057 0.0151

BatchStBH C, G C, E, G C, E, G 0.0381 0.1015 0.1238
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and BatchPRDS have a larger value of 𝛼8 than Bonferroni, but only BatchStBH has a higher value than uncorrected
testing.

6 DISCUSSION

In this article, we have shown how online multiple hypothesis testing can be applied to the platform trial setting to achieve
overall control of type I errors. In many of the simulation scenarios, there were noticeable gains in sensitivity compared
with using Bonferroni, although this has to be considered carefully with respect to the potential inflation of the FWER
and how acceptable that may be to stakeholders (particularly from a regulatory viewpoint). However, in all cases the
FWER was lower than uncorrected testing, and so from that perspective, any of the online algorithms would offer an
improvement.

We have focused on trial settings that ultimately test N ≤ 20 hypotheses, which is a relatively small number of
hypotheses compared with most previous simulation results in the online testing literature. Our results show that the
online testing framework offers a smaller advantage in terms of power properties in this small N setting compared to
when a very large number (≥1000) of hypotheses are tested. However, in some clinical trial settings (eg, testing for inter-
action with genomic data) there can be a large number of hypotheses and a desire for FDR control (as opposed to FWER
control), and so online error rate control may be especially applicable.

As noted in Section 4, the relative performance of the online algorithms compared with Bonferroni and uncorrected
testing crucially depends on the number of effective treatments, the order in which they are tested in the trial, as well as
the assumed upper bound Nbound. Hence, the “best” online algorithm to use may be quite different depending on the trial
context and goals. In general, across the simulation scenarios for the fully online setting, we see that LOND seems to offer
quite a good compromise by guaranteeing at least as many rejections as Bonferroni and often seeing noticeable increases
in sensitivity, while still maintaining (depending on the trial context) reasonable FWER levels. In the online batched
setting however, BatchPRDS seems to be preferable to LOND as it has a similar or higher sensitivity and disjunctive power,
while maintaining FWER control below the nominal level.

As seen in the case study results, in practice the online testing algorithms may not be “competitive” in terms of the
number of rejections when compared with uncorrected testing unless a more relaxed 𝛼 is used. However, the potential
inflation on top of that relaxation for many of the online algorithms also needs to be taken into account. In that sense,
BatchPRDS is particularly appealing due to the lack of further FWER inflation.

We have started with the simplifying assumption that each experimental treatment is tested exactly once, as soon as
the outcomes from a pre-specified number of patients have been observed. A useful extension would be to allow multiple
looks (stages) for each treatment arm, with early stopping for futility and efficacy. Indeed, the STAMPEDE trial included
interim analyses that we did not take into account in our analysis in Section 5. A complicating factor is that to directly
apply the online testing algorithms, we have only assigned the adjusted testing level 𝛼i to hypothesis Hi at the point of
testing. To allow repeated testing of hypothesis Hi and early stopping, we would require 𝛼i to be determined in advance. For
further discussion and proposals for this setting, we refer the interested reader to Zrnic et al,23 who proposed a framework
for asynchronous online testing. As well, recent work by Zehetmayer et al36 shows how to use LOND specifically for
group-sequential platform trials.

Another assumption that we have made is that Nbound ≥ K, that is, that we never test more treatment arms than
originally planned for. In the case where Nbound < K, then a simple method of accommodating this change has been
proposed by Robertson and Wason,17(p. 10) but the power properties have not been explored in the context of platform
trials. We could also make further comparisons of online testing with existing methodologies for controlling the FWER
when adding treatment arms to a platform trial.37,38 Finally, one limitation of our investigation is that in practice, future
comparisons depend on results of past trials, which in turn depend on which online testing algorithm is being used. We
did not account for this in our simulations. Taking this into consideration would be highly complex, but may be a useful
avenue for future research.

Alternative type I error rates to the FWER and FDR have been proposed in the literature. One example is the Error
Rate per Family (ERpf) proposed by Tukey.39 The ERpF is defined as the number of type I errors divided by the number
of families of hypotheses. As pointed out by an anonymous reviewer, while the FWER may be appropriate for multiplicity
within a study, the ERpF is meant for multiplicity control across studies. Hence, if one can view a platform trial as a series
of distinct studies (eg, corresponding to a change to the standard-of-care), the ERpF may be a more appropriate metric to
control. The ERpF can be controlled exactly across studies by using what is called an additive multiplicity correction.40
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As future research, it would be interesting to compare online control of the FWER or FDR with ERpF control. It would
also be interesting to explore whether recently proposed methods of FDR control using e-values41 could be applied to the
platform trial setting.

As mentioned in the introduction, the need for multiplicity adjustments for platform trials is controversial, and there
are some platform trial contexts where applying such adjustments may be difficult and/or undesirable. For example,
platform trials often involve multiple pharmaceutical sponsors and a natural question to ask is why a sponsor would
participate in a platform trial that uses any multiplicity adjustment, given that they can conduct their own two-arm trial
with no multiplicity adjustment. To help address this issue, one partial solution is to adjust for multiplicity (using online
testing or otherwise) at a level 𝛼 that is higher than the usual 2.5% (one-sided). As shown in the case study in Section 5,
this can result in adjusted testing levels above 2.5%. More generally, the efficiencies that a platform trial bring (eg, in terms
of time and cost of recruiting control patients) may still mean that a sponsor would be willing to join a trial even if there is
a price to be paid in terms of multiplicity adjustment. Meanwhile, in the context of emerging infectious diseases, there is
a real need to quickly find a treatment that works and it is unclear how the use of multiplicity adjustment may affect that
time. A fuller discussion around multiplicity adjustment (and online testing more specifically) for platform trials would
be useful, but is out of scope of this article.
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