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Mendelian randomization (MR) is a term that applies to the use of genetic variation to address 

causal questions about how modifiable exposures influence different outcomes. The principles of 

MR are based on Mendel’s laws of inheritance and instrumental variable estimation methods, 

which enable the inference of causal effects in the presence of unobserved confounding. In this 

Primer, we outline the principles of MR, the instrumental variable conditions underlying MR 

estimation and some of the methods used for estimation. We go on to discuss how the assumptions 

underlying an MR study can be assessed and give methods of estimation that are robust to 

certain violations of these assumptions. We give examples of a range of studies in which MR 

has been applied, the limitations of current methods of analysis and the outlook for MR in the 

future. The difference between the assumptions required for MR analysis and other forms of 

non-interventional epidemiological studies means that MR can be used as part of a triangulation 

across multiple sources of evidence for causal inference.

Introduction

Mendelian randomization (MR) uses genetic variation to address causal questions 

about whether modifiable exposuresinfluence health, developmental or social outcomes.1 

Exposures can be any factor robustly associated with genetic variation in individuals; for 

example, exposures could include measurable characteristics of an individual such as body 

mass index or less directly observable traits such as the expression of a particular gene in a 

specific tissue.

The statistical methodology for MR is generally based on instrumental variable (IV) 

analysis. IV analysis was first proposed a century ago and is an approach to causal inference 

that uses an IV, or “instrument” — which is related to the exposure but not the outcome 

of interest other than through its association with the exposure — to make causal effect 

estimates in the presence of unobserved confounding of the exposure and the outcome. 

IV analyses can be applied to any source of variation in an exposure that is unrelated 

to the outcome, including investigator-initiated treatment randomization in a randomized 

controlled trial (RCT) or when a natural experiment [g] provides a plausible source of 

exogenous or unconfounded variation.2–4 MR is based on the assumption that genetic 

variants provide a source of such exogenous variation in the exposure and can therefore act 

as an instrumental variable.1 MR can be applied using any genetic variation that satisfies 

the requirements of an IV,5 although it is most often implemented using single nucleotide 

polymorphisms (SNPs). Box 1 further outlines the principles of MR.

Using genetic variants in this way, MR avoids bias from unobserved confounding of the 

exposure and outcome. However, there are important additional assumptions required for 

causal inference and effect estimation that are different to those used in other causal 

effect estimation methods. Causal effect estimates from MR can be evaluated within a 

triangulation of evidence framework, which involves interpreting findings alongside results 

from complementary approaches that rely on different assumptions. When using this 

approach, it is important that sources of bias in different study modalities are unrelated 

to each other and thus the magnitude and direction of the bias in one study will not predict 

the size and direction of bias in the others.6–8
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MR studies — especially two-sample studies using previously published summary-level 

genetic association data — provide a rapid and affordable approach to evaluating causal 

questions. There is an urgent need for these tools as many causal questions in health 

research cannot be adequately answered with conventional observational study designs or 

are not amenable to evaluation with RCT’s for logistical or ethical reasons. MR is especially 

appealing because it relies on different assumptions to conventional observational studies 

and therefore circumvents some of their common biases.8 The range of applications of MR 

and closely related methods for understanding causal mechanisms has increased rapidly in 

the last 20 years. The increasing availability of data and the vast expansion of IV methods 

have overcome some of the original barriers to MR due to lack of data, or the inability 

to assess the robustness of results obtained.1 Major investments in collecting genetic 

data within large research studies has enabled numerous applications of MR and allowed 

for increased statistical power and more precise effect estimates. Further, methodological 

innovation to enhance MR analyses is flourishing and innovations aim to allow for correct 

estimation with more plausible assumptions and estimate more complex effects, which 

include independent effects of multiple phenotypes or age-sensitive exposures. We therefore 

focus on the principles of MR and detail a few core MR estimation methods. The methods 

for MR listed here should not be taken as a definitive list of all potential methods available.

In this Primer, we provide guidance on the underlying principles of MR, discuss the 

information necessary to decide whether an MR approach is appropriate and feasible, and 

review best contemporary practices for MR. We outline the principles and assumptions 

underlying MR, along with the data required. Next, we detail the core methods for 

estimation of causal effects and explain how the assumptions underlying MR can be verified. 

We then describe a range of studies that have applied MR in different settings, detail the 

importance of triangulating MR results with findings using other study designs and discuss 

steps to improving the openness of research involving MR. Finally, we outline sources of 

bias that may affect MR studies that cannot be corrected for with current methods and 

discuss some of the challenges and opportunities for MR in the future.

Experimentation

The essence of an MR design is that the association between a genetic variant (G) and an 

outcome (Y) can be used to test whether and by how much the exposure of interest (X) 

influences the outcome, provided that the genetic variant is associated with the exposure 

of interest and has no other source of association with the outcome.1,9 Bias originating 

from confounding of the exposure and outcome should not influence the MR estimate. 

The rationale of MR studies parallels that of RCTs in which randomization influences the 

treatment received by participants, is not associated with any confounders of the treatment 

and outcome and has no other plausible mechanism to influence health outcomes other than 

through treatment (see Fig. 1). In RCTs, randomly assigned treatment therefore evaluates the 

effect of treatment on the outcome, whereas in MR, a genetic variant is treated as a naturally 

occurring form of randomization.

As an example, Fig. 2a shows a directed acyclic graph (DAG) for an RCT aimed at 

estimating the causal effect of lowering levels of the inflammatory marker C-reactive protein 
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(CRP) circulating in the blood on systolic blood pressure (SBP), in which participants are 

randomized to receive a CRP-lowering medication or placebo. Alternatively, the effect of 

long-term differences in circulating CRP could be estimated with MR by considering a 

genetic variant that is known to alter CRP levels (Fig. 2b). The DAGs for both studies are the 

same as long as certain assumptions are satisfied (discussed below).

In our hypothetical RCT, an intention-to-treat (ITT) analysis can be conducted to determine 

whether the treatment influences the outcome by comparing SBP among individuals 

randomly assigned to the CRP-lowering medication to SBP in participants randomly 

assigned to placebo.10,11 ITT analysis estimates the effect on the outcome of being assigned 

to the group allocated to treatment, rather than receiving that treatment. A commonly 

used approach for analysis is comparing the mean SBP among individuals randomized to 

treatment to the mean SBP among individuals randomized to control:

β1 = E(SBP ∣ G = 1) − E(SBP ∣ G = 0) (1)

Where, β1 is the effect on SBP of being assigned to the treatment group, G is an indicator 

of randomization and SBP is measured systolic blood pressure. Alternatively, a linear 

regression can be used:

E(SBP ∣ G) = β0 + β1G (2)

Where β0 is a constant. As there are no confounders of randomization and SBP, there is 

no need to control for any variables to derive an unconfounded estimate of the effect of 

randomization. Therefore, in a setting where G is binary, β1 estimated in equation (1) is 

identical to β1 estimated in equation (2) and both estimate the causal effect of randomized 

treatment groups on SBP. Being randomized to CRP-lowering medication should only affect 

SBP if there is a causal effect of CRP on SBP.

A potential disadvantage of the ITT estimate, for many questions of substantive interest, 

is that it does not give the magnitude of the effect of the exposure on the outcome — 

for example, of CRP on SBP in the above example. It only determines whether or not 

there is a causal effect. To estimate the size of that causal effect, the degree to which the 

instrument affects the exposure must be taken into account. IV analyses are an alternative 

estimation method that can be used to derive an estimate of the causal effect of the treatment 

(here, CRP) on the outcome (SBP) by accounting for the size of the association between 

randomization and CRP.3,4,12–15 In this scenario, randomization becomes the instrument for 

the estimation. In its simplest form, IV analysis takes the ratio of the effect of randomization 

on SBP to the effect of randomization on CRP:

γ1 = E[SBP ∣ G = 1] − E[SBP ∣ G = 0]
E[CRP ∣ G = 1] − E[CRP ∣ G = 0]# (3)

Where γ1 is known as the Wald ratio estimator and CRP is the level of circulating C-reactive 

protein. The numerator of equation (3) is simply equation (1), but here the association is 
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scaled by the effect of randomization on CRP. Under the IV conditions described in Box 2, 

this estimator provides a test of whether there is a causal effect of CRP on SBP.

IV analyses can be applied to any potential source of randomization, including intentionally 

designed RCTs or quasi-randomization in natural experiments.15,16 The term MR is applied 

when the randomization arises from genetic variation and a phenotype influenced by the 

genetic variant is the exposure of interest.17,18 The genetic variant is referred to as the 

genetic instrument. For example, naturally-occurring genetic variants in the gene encoding 

CRP regulate blood levels of CRP and such variants have been used to estimate the effects of 

circulating CRP levels on SBP.19,20

The above example highlights an important difference between RCTs and MR: RCTs 

estimate the effect of a particular intervention or treatment over the timeframe of the study, 

whereas MR estimates the lifetime effects.21 This can lead to substantial differences in the 

effect estimates obtained owing to the differences in the time period over which the effects 

are estimated. There are a number of other differences between RCTs and MR. MR was first 

proposed using the family data where the difference in alleles between siblings is random, 

however data limitations mean most MR is conducted using data on unrelated individuals.22 

In MR using unrelated individuals, the similarity between the allele groups is not guaranteed 

as with a well-conducted RCT. Further, associations between allele distribution and traits 

can exist at a population level owing to population stratification or assortative mating. The 

particular genetic variants used in the MR may also have effects on the outcome that are 

not due to the exposure received by the individual.23 These issues all represent violations of 

the conditions required for IV estimation, which are described in detail below. How these 

violations may occur in MR studies and potential mechanisms to detect such violations are 

discussed in the Results and Limitations and optimizations sections of this primer.

Conditions required for MR estimation

Interpretation of results from MR studies relies on four conditions.12,24 The first three of 

these conditions are commonly referred to as the conditions for a valid instrumental variable 

and are required for any IV analysis to test whether the exposure has a causal effect on 

the outcome. These are described in Box 2. In our simplified example of CRP and SBP, 

we imagine only a single instrumental variable; however, MR is easily extended to take 

advantage of multiple genetic variants that influence the same exposure.25 When multiple 

genetic variants can be identified that fulfill the IV conditions, they can be used to improve 

the statistical power of MR analyses.26,27

The three IV conditions described in Box 2 are sufficient to test the exact null hypothesis 

as they can determine the presence or lack of a causal effect of the exposure on the 

outcome. However, they are not sufficient to derive a point estimate of the size of the 

effect of the exposure on the outcome.28,29 This requires an additional condition 28 known 

as a point-estimate identifying condition or fourth IV condition. Several alternative point-

estimate identifying conditions — which permit subtly different interpretations of the IV 

estimate — have been described and researchers can adopt the version of the condition 

which seems most plausible for the setting at hand.17,29 Box 3 outlines the most popular 

of these alternative point-estimate-identifying conditions and the effect estimate obtained 
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from each one. Additionally, the vast majority of MR estimation methods (with non-linear 

MR30 being the notable exception) impose the assumption that the relationship between the 

exposure and the outcome is linear across different values of the exposures.

Biases that compromise the interpretation of an RCT can also undermine MR studies. 

For example, if random assignment in an RCT influences who participates in follow-up 

assessments, typical analyses of the RCT are biased. Similarly, if the genetic variants used 

in MR influence who has available outcome data — either owing to differential survival or 

study participation — the MR study will be biased.31

Finally, data used in MR additionally require the assumption that changes in genetic 

variation are equivalent in their effects to changes in the exposure through environmental 

or pharmaceutical manipulation — a concept known as gene-environment equivalence.32 As 

genetic variants will influence the developing human from conception, the interpretation is 

applied to the influence of the variants from that time onwards. These particular MR-related 

issues are discussed in Box 4.

Data used for MR estimation

MR studies can be conducted using individual level data — including genetic and phenotype 

measures for each individual in the study — or summary data on the association between 

each genetic instrument and the exposure and the outcome phenotypes of interest. Summary 

data are often obtained from genome-wide association studies (GWAS), which estimate the 

association between SNPs and the exposure and SNPs and the outcome traits.

When individual-level data are used for estimation, the statistical power of an MR analysis 

(or equivalently, the precision of the estimate that can be derived) increases in proportion 

to the sample size and the variance in the exposure explained by the genetic instruments. 

When summary data are used, the precision of the MR estimate depends on how precisely 

the associations between the genetic variants and the outcome have been estimated — in 

other words, how large the standard error of the estimated association is. Genetic variants 

typically only explain a small proportion of the variation in the relevant phenotype; as 

a result, low statistical power and imprecise effect estimates are common in MR studies 

and well-powered studies usually require large datasets. Power calculators are available for 

simple MR studies to determine whether a particular sample size is sufficient for estimation 

to give reasonably precise results.33–36 Simulation studies to determine power are also 

commonly used to accommodate unique data features.37

The association of the proposed genetic instrument with the exposure can be estimated in 

a sample other than that used to estimate the effect of the proposed genetic instrument on 

the outcome.38 MR conducted in this way is referred to as ‘two-sample MR’. The capacity 

to use two different samples for MR analyses has dramatically broadened the scope of MR 

studies because when either the desired exposure or outcome of a study is rare or expensive 

to measure, it can be difficult to identify a dataset with data on the genetic instrument, 

exposure and outcome. An important assumption for two-sample MR estimation is that the 

two samples are from the same underlying population, or more narrowly that the association 

between the genetic variants and exposure is the same in both samples, although that 
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exposure may not be measured or reported in the sample included in the outcome dataset.39 

To satisfy this assumption, two-sample approaches usually use data from the most similar 

populations possible, with respect to genetic ancestry and contextual factors such as the 

prevalence of environmental exposures and the timeframe in which the measurements were 

taken.

The method of estimation and applicable sensitivity analyses used in MR depend on 

whether individual participant or summary-level data are used to conduct the analyses.40 

Using multiple genetic instruments in combination improves statistical power because 

the combination increases the total fraction of the exposure variance explained by the 

instruments.27,41 The availability of multiple genetic instruments is also valuable for 

detecting or avoiding bias if one or more of the IV conditions are not met for some or 

all of the instruments.

Instrument Selection

Genetic variants used as instruments for MR should be associated with the exposure of 

interest, so that they satisfy IV condition 1 (see Box 2). This can be through the use of 

variants with known functionality or through the selection of variants that are strongly 

associated with the exposure. GWAS can potentially identify a large number of SNPs that 

predict a selected phenotype and many MR studies use SNPs identified in credible GWAS as 

genome-wide significant predictors of the exposure of interest for estimation.42

When using individual data, overlap between the dataset used for instrument discovery and 

the dataset used for estimation can introduce a bias known as ‘winners curse’. The goal of 

IV is to remove the effect on the exposure of variation due to confounders of the exposure 

and outcome. However, the best fitting model for the association of a SNP and the exposure 

will, by chance, pick up some variation owing to confounders. Although this bias is small 

and unimportant if the SNP has a very strong effect on the exposure, this is rarely the 

case. When many SNPs are used as IVs, each with a very small effect, this can create a 

non-trivial bias towards the conventional effect estimate, known as weak instrument bias43. 

This can be avoided through bias correction calculations or by using a two-sample approach 

and applying jackknife resampling to the estimation. 44–46 In a jacknife estimation, the data 

are divided into groups and each is then used for estimation, with instrument discovery 

conducted in the rest of the sample. The results for each group are then meta-analysed to 

obtain a result for the whole dataset.47

Bias due to overfitting is a concern when summary level data are used for estimation if 

the effect of the SNP on the exposure is in a dataset that overlaps with the dataset used to 

estimate the SNP−outcome association. Recent research has suggested that overlap between 

the samples used may not bias the results obtained by as much as previously thought, 

unless the instruments are not strongly associated with the exposure, and methods have been 

proposed to estimate the size of and correct for this bias.44,45,48
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Results

This section outlines methods used for MR estimation, tests for violation of the first 

IV condition and methods of estimation that are robust to particular violations of the 

second and third IV conditions. Here, we cover the main methods used for estimation. A 

number of other papers are available that cover guidelines for reading49, conducting40 and 

interpreting50 results from MR studies. STROBE guidelines for the consistent reporting 

of MR studies have also been published.51,52 Additionally, the MR dictionary provides an 

extensive glossary of terms used in MR.

Individual level data

Estimating causal effects—When using individual level data in MR estimation, genetic 

variants can either be used as separate instruments or combined into an allele score.26 An 

allele score is generated by adding up the number of risk-increasing alleles for all the 

variants selected as instruments. This score can be unweighted, in which each SNP makes 

the same contribution, or weighted, in which the number of risk-increasing alleles at each 

SNP is multiplied by the estimated effect of that SNP on the exposure.26 Weighted scores 

provide increased instrument strength and power, although there are cases in which the 

unweighted approach is preferred — for example, if the definition of the exposure in the 

discovery dataset differs from the exposure variable in the estimation data. In this case the 

weights will reflect the weight of the SNP on a different exposure to the exposure included 

in the estimation. The more similar the definition of the exposure is in each sample the 

more the weighted approach will be preferred, differences in scaling alone will not affect the 

preference for a weighted score. Both SNPs and weights should be selected from a dataset 

that does not overlap with the dataset used to obtain the MR estimates, such as those from 

GWAS in non-overlapping datasets.53 If many SNPs that each only have a small effect on 

the exposure are being used, combining them into a single score can increase the power 

of the analysis and reduce the risk of bias from many weak instruments.27 However if any 

SNPs violate IV conditions 2 or 3 (if any of the component SNPs influence the outcome 

through a mechanism other than the exposure of interest) then the allele score will also 

violate that condition.

Estimation of causal effects using individual level data is most commonly implemented 

with some version of two-stage least squares (2SLS) estimation (alternative methods include 

likelihood approaches common in structural equation modelling)54. 2SLS estimation for MR 

uses genetic variants to obtain a predicted value of the exposure (X) that is not associated 

with any of the unmeasured confounders. The first stage can be written as;

X = π0 + Gπ + vx (4)

Where X is the exposure of interest; G is a n×L matrix of genetic variants, L is the number 

of SNPs and n is the number of individuals in the dataset; π is a vector of the effect of each 

genetic variant on the exposure of length L; π0 is a constant and vx is a random error term. 

The outcome is then regressed upon the predicted value of the exposure, X:
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Y = α + βX + u (5)

Where Y is the outcome, α is a constant, β is the effect of the exposure on the outcome 

and u is a random error term assumed to be unrelated to vx. The four conditions for IV 

estimation imply that the assumption of independence of u and vx is met and the estimated 

value of β, β , obtained from estimation of equation (5) is a consistent estimator for the effect 

of X on Y. If the estimation is implemented using an allele score, equation (4) is replaced 

with:

X = π0 + πScore + vx (6)

Where Score is the allele score (weighted or unweighted) and π is a single coefficient for 

the association of the genetic score with the exposure. The second stage of the analysis, 

equation (5), is the same whether using individual SNPs as instruments or an allele score. In 

both cases, the standard error should not be computed using the standard formula for linear 

models and should be corrected for the additional uncertainty owing to the inclusion of X in 

the estimation. IV estimation software packages implement this correction as standard.

Additional measured covariates can be incorporated into both stages of the estimation. 

The use of additional covariates should be considered carefully because covariates can be 

influenced by the exposure or the outcome. In either of these situations, controlling for such 

a covariate could bias the MR effect estimate.55–57

Assessment of IV conditions—Regardless of the statistical method being used, it is 

important to assess the IV conditions. The first IV condition can be tested using a first-stage 

F-statistic [G], which tests the association between the SNPs and the exposure. If the genetic 

instruments are not strongly associated with the exposure, then weak instrument bias can 

be introduced into the estimation.43 The first stage F-statistic should be reported in all MR 

analyses. As a general rule, if the first-stage F-statistic is greater than 10, the level of this 

bias is small.58,59 An F-statistic >10 should be interpreted as a minimum criterion for a 

useful instrument. Note that this should not act as convincing evidence that a proposed IV is 

valid, and conversely a F-statistic < 10 does not indicate that this instrument should not be 

used, rather that weak instrument bias should be considered as an issue in analysis.

Although the second and third IV conditions cannot be proven to be true, they can 

sometimes be disproven. Assessment of these conditions therefore focuses on disproving 

them and failure to do so (i.e. failure to disprove the conditions) is interpreted as supporting 

the validity of the proposed IV. Genetic variants are fixed at conception, so it is not possible 

for conventional confounders such as age, sex or environmental risk factors to influence 

them. However, confounding of the genetic variants with the outcome in a sample can be 

induced by population stratification, dynastic effects and assortative mating,60 violating the 

second IV condition. This confounding is not easily corrected with current MR methods and 

is discussed in more detail in the Limitations and optimizations section.
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Violations of the third IV condition can be caused by pleiotropy, where genetic variants 

have effects on multiple phenotypes.61,62 This can include situations where the phenotype 

of interest is not the phenotype the SNP is primarily associated with.63 Additionally, 

linkage disequilibrium (LD) [G] means that the effects of neighbouring genetic variants can 

introduce additional associations between the variant of interest — and thus the exposure 

it relates to — and the outcome, creating a bias analogous to that caused by pleiotropy. 

Pleiotropy in the context of MR is described in Fig. 3. Many MR methods are available that 

are robust to different forms of pleiotropy and analyses using these different methods should 

be carried out in any MR study to determine how sensitive the results are to an assumption 

of no pleiotropy.

A final important source of bias in MR, and indeed all studies of observational data, 

is selection bias.64,65 This selection could occur either from differential selection into 

the sample or selection on a competing risk for the outcome. Selection bias cannot be 

accounted for easily with existing MR methods and is discussed further in the Limitations 

and optimizations section.

An approach for assessing the IV assumptions that is applicable when there are more 

instrumental variables than exposures of interest is based on overidentification tests. These 

tests, such as the Sargan test,66 leverage the expectation that if all proposed IVs are valid, 

they should deliver identical IV effect estimates. If the IV effect estimates from multiple IVs 

differ to a greater extent than expected due to sampling error, at least one is not valid for the 

exposure-outcome effect of interest. If all IVs are biased in the same way, over-identification 

tests will not identify the bias; for example, overidentification tests can incorrectly suggest a 

lack of pleiotropy when it is present if similar pleiotropic pathways are likely to affect many 

or all proposed IVs or if there is population stratification biasing the association between 

many SNPs and the outcome in the same way.25 They also rely on the assumption that each 

IV estimates the same causal effect, which may not be true for complex traits where different 

genetic variants potentially act as genetic instruments for different aspects of the trait. The 

weaker the effect of an IV on an exposure, the more imprecise the IV effect estimate will be 

and therefore the more likely an instrument will fail to reject an overidentification test.

One further method for identifying potential violations of the IV conditions when the 

exposure is binary or categorical is using IV inequality constraints.29,67,68 The IV conditions 

described above imply a set of mathematical patterns that must be true if the conditions 

are true; these patterns can be used to demonstrate that the IV conditions are not 

met if the equalities defined by those patterns do not hold. IV inequalities are rarely 

especially informative because they only identify extreme violations of the conditions. These 

inequalities can also be used to define non-parametric bounds for an IV estimate (those 

that would hold without the fourth, point-estimate-identifying condition discussed above). 

Although these are often very wide, they can give a sense of how much an IV analysis 

depends on the point-estimate-identifying condition. An alternative approach for identifying 

violations of the IV conditions is to examine the association between the genetic variants 

and other measured causes of the outcome, excluding any variables that are themselves on 

the same pathway as the exposure of interest.69,70 If a proposed genetic instrument predicts 

Sanderson et al. Page 10

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



other causes of the outcome that are not thought to be along the same causal pathway as the 

exposure, it indicates the proposed instrument is not valid.

Recent methods such as sisVIVE71 and adaptive LASSO72 provide MR estimates that are 

robust to pleiotropy under certain assumptions. These methods assume that multiple IVs 

are available and that a majority or plurality of the proposed IVs are valid. Given this 

assumption, it is possible to estimate the magnitude of pleiotropic bias. An alternative 

approach is to adjust for pleiotropic effects of the genetic variants by accounting for the 

association between the genetic variants and potentially pleiotropic phenotypes. Methods 

that apply this approach include constrained instrumental variables73 and multivariable 

MR.74

Tests to invalidate proposed IVs often draw on subject matter knowledge, such as an 

understanding of settings in which a genetic variant does not influence the exposure, where 

the genetic variant may have different effects based on the level of an environmental variable 

(known as gene-environment interactions) or where the exposure should have no effect 

on the outcome, such as a negative control or zero-relevance point. The proposed genetic 

instrument should be unassociated with the outcome in the environmental setting where it 

is not associated with the exposure unless there are pleiotropic pathways from the genetic 

variant to the outcome. A classic example of this type of analysis is examining the effect of 

alcohol consumption in populations where subgroups of the population (e.g. women in some 

cultures) do not drink or drink very little.75 If the IV conditions are satisfied, there should 

be no association between genetic variants for alcohol consumption and the outcome under 

consideration among women in the previous example. Two methods, MR GxE and MR 

GENIUS, have extended and formalised these concepts and enable the estimation of causal 

effects in more general settings. MR GxE uses an interaction between the genetic variant 

and a covariate to create a new IV;76,77 MR GENIUS uses variation that occurs owing to 

unobserved interactions between the genetic variants and covariates as the instrument.76,78

Summary level data

Estimating causal effects—MR estimation with summary level data requires estimates 

of πl, the estimated effect of genetic variant l on the exposure with variance σx, l
2 , and Γ l

∧
, 

the estimated effect of genetic variant l on the outcome with variance σy, l
2 . Inverse-variance 

weighting (IVW) estimation is a meta-analysis of the variant specific Wald ratios for each 

variant which are given as:

β l = Γ l
∧

πl
∧

Where β l is the effect estimated using genetic variant l. These individual ratios are weighted 

by their associated uncertainty; the IVW estimator β IV W  can therefore be computed as:

β IV W = ∑l = 1
L πl

∧Γ l
∧

σy, l
−2

∑l = 1
L π∧l

2
σy, l

−2
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Where L is the total number of genetic variants included as potential IVs.38 The IVW 

estimate can equivalently be obtained by regressing the genetic variant-outcome association, 

πl
∧, on the genetic variant-exposure association, πl, (without an intercept) weighted by the 

inverse variance of the SNP-outcome association 1/σy, l
2 :

Γ l
∧

= βIV W πl
∧ + ul weighted by 1/σy, l

2

This equation describes a linear regression with the intercept fixed to zero as ul~N(0,1), and 

is based on a dataset with L observations.

One important assumption for IVW estimation is that the genetic variants are independent of 

each other.41 This assumption is usually satisfied by removing one of each pair of genetic 

variants that are in LD. However, methods are available that can take account of LD between 

genetic variants in summary-level MR.79,80 It is also important to ensure that data are 

harmonized to ensure that the values of Γ l
∧

 and πl refer to the same effect alleles.81

Assessment of IV conditions—As with individual level data analysis, IV conditions 

need to be assessed for any summary-data MR. A number of different methods are available 

to correct for horizontal pleiotropy — a violation of the third IV condition — under different 

assumptions about the causal structure of that pleiotropy. Table 1 lists some of these 

methods, which primarily draw on three approaches: outlier removal, outlier adjustment 

and adjustment for specific forms of pleiotropy. Many methods combine more than one of 

these approaches. Outlier removal estimation involves identifying and removing individual 

genetic variants for which the causal effect estimate obtained using that variant alone lies 

outside the expected range given the estimates obtained from other variants, so they do 

not have an effect on the result obtained. Traditionally, summary-data MR is visualized 

as a scatter plot plotting associations of the variant and exposure against associations of 

the variant and outcome (Fig 4a, b); however, this can limit the identification of outliers. 

Radial MR is a method for visualizing the data that can make outlying data points easier 

to detect (Fig 4c).82 An additional approach is to explore the effect of individual SNPs on 

the overall IV estimate, by approaches such as leave one out analyses (Fig 4d). Methods 

of estimation that use outlier removal include weighted Median83, weighted Mode84 and 

MR LASSO85. Outlier adjustment methods identify outlying variants and then perform 

an adjustment to either the effect obtained from that genetic variant or the weight given 

to the estimate from that variant so that it has less influence on the overall estimation 

result. Many pleiotropy-robust MR methods fall into this category including MR Tryx86, 

MR PRESSO87, MR Robust85, MR RAPS88, MR GRAPPLE89 and MR CAUSE90. The 

final broad category of pleiotropy-robust methods for summary-data MR estimation are 

methods that allow for most or all of the genetic variants included in the estimation to have 

pleiotropic effects on the outcome and place other constraints on the pleiotropic effects. 

These methods include MR Egger91 and multivariable MR.74,92 Each of these methods 

imposes strong assumptions on the nature of the pleiotropy. MR Egger analysis assumes that 

across all instruments, the magnitude of the pleiotropic effect is unrelated to the strength 

of the association between the genetic variant and the phenotype of interest (known as 
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the InSIDE assumption); multivariable MR assumes pleiotropic pathways operate through 

known and well-measured phenotypes that are also included in the estimation.

None of the methods described above are truly robust to all types of pleiotropy and each 

imposes different assumptions on the nature of the pleiotropy and how the pleiotropic effects 

are accounted for. Furthermore, many methods have less statistical power than conventional 

MR, leading to very wide confidence intervals. Therefore, a few methods should be selected 

based on the most plausible assumptions for the application in question and used alongside 

an IVW MR estimation to perform a sensitivity analysis; this can determine how robust 

MR results are to the assumption that genetic variants have no pleiotropic effects on the 

outcome under different alternative specifications. As a minimum, any summary data MR 

estimation usually include weighted median and weighted mode approaches, although these 

can be replaced with appropriate alternatives for the application in question. Additionally, 

these estimation methods will not necessarily identify violations of any IV conditions that 

are not due to pleiotropy of the nature interrogated by the method. Consequently, consistent 

results across a range of methods is not a guarantee that results are free from bias. Potential 

violations of the IV assumptions not due to pleiotropy are discussed in the Limitations and 

optimizations section.

Another form of pleiotropy arises when the exposure for the MR estimation is misspecified 

and genetic variants associated with a confounder are used as instruments for the exposure 

under investigation (see Fig. 3f). For example, body mass index (BMI) influences circulating 

CRP and if a genetic variant primarily associated with BMI is included as a genetic variant 

for CRP, misleading effect estimates of the causal effect of CRP on other phenotypes 

— including BMI — can be generated.62,93 These issues are increasingly important to 

consider as the sample sizes used in GWAS are increasing, making it more likely that a 

primary phenotype has been misspecified (in the context of GWAS, this could refer to the 

detection of genetic variants for an upstream phenotype of the exposure which potentially 

confounds the exposure and outcome, or genetic variants for the outcome if the direction of 

effect has been misspecified). Steiger filtering attempts to correct for this misspecification 

by removing SNPs that explain more variation in the outcome than the exposure.94 Any 

genetic variant should explain more variation in phenotypes it is more proximal to; however, 

differing measurement error, substantially different sample sizes for each phenotype, or the 

presence of binary or categorical phenotypes can lead to phenotypes that are less proximal 

to the genetic variant appearing to have more variation explained by the variant than more 

proximal phenotypes in the observed data. Additional methods are now being developed that 

attempt to resolve misspecification and confounding.90,95,96

Software Packages

Any statistical package can be used for simple MR estimates as the core IV estimate is 

derived from a two-step regression model. Deriving correct standard errors requires special 

calculations and variations on the standard model have been implemented as packages in 

common statistics packages such as Stata and R. A range of software packages are available 

in both Stata and R to conduct MR estimation, many of which include a range of assumption 

tests and options to conduct robust methods. The TwosampleMR R package links to the 
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OpenGWAS project database97, a large database of GWAS results that can be used in the 

estimation. Table 2 gives details of the most popular software packages currently available; 

an extended list is given in Supplementary Table 1.

Further extensions of MR methods

Bidirectional MR—In bidirectional MR, two MR analyses are conducted on the same 

pair of phenotypes by reversing the exposure and the outcome. This method can be 

used to establish the direction of effect between two variables. For example, extensive 

observational evidence indicates that hearing loss predicts dementia and it is hypothesized 

to be an important causal determinant of dementia;98 however, it is possible that the 

neurodegenerative disease that leads to dementia also causes hearing loss and thus the causal 

direction between hearing loss and dementia is unclear. There are known genotypes for both 

hearing loss and Alzheimer’s disease — the most common cause of dementia99–101 — and a 

bidirectional MR would first conduct an MR analysis of the effect of liability to dementia on 

hearing and then for the effect of hearing on dementia. If genetic variants known to associate 

with dementia influence hearing loss and genetic variants known to associate with hearing 

loss do not influence dementia risk, this suggests that hearing loss is a causal determinant of 

dementia.

Results from bidirectional MR studies should be interpreted with caution. Evidence of 

an effect in both directions could indicate a true bidirectional relationship between the 

exposures or be a product of bias from horizontal pleiotropic effects in the variants, 

misspecification of the primary phenotype, or a violation of the second IV condition owing 

to confounding of genetic variants and outcome caused by factors such as population 

stratification and dynastic effects.

Multivariable MR—Multivariable MR is an extension of standard MR that includes 

multiple exposures, predicted by a set of genetic variants used as instruments. Fig. 5 

illustrates a multivariable MR with two exposures. Although multiple exposures can be 

included in a multivariable MR, there must be at least as many genetic variants or 

scores included as instruments as there are exposures. Multivariable MR can be estimated 

with either individual level or summary level data using extensions of the 2SLS or 

IVW approach, respectively.74,102. Conditions required for estimation are adapted from 

the standard IV conditions and are defined as follows: each exposure must be robustly 

predicted by the instruments, conditional on the other exposures included in the estimation 

(Multivariable instrumental variable condition 1, or MVIV1); there must be no confounders 

of the outcome and any of instruments (MVIV2) and none of the instruments can have an 

effect on the outcome that doesn’t act through at least one of the exposures (MVIV3). If 

the above conditions are met, the estimates obtained from multivariable MR will be a direct 

effect of each exposure included on the outcome, given the other exposures included in the 

estimation.74

Multivariable MR can be used as an approach to address pleiotropic violations of the 

IV conditions. In a univariable MR where IV3 is violated and the genetic variants used 

as instruments for an exposure of interest are also thought to be associated with another 
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trait on the path to the outcome, that trait can be included as an additional exposure 

in the multivariable MR estimation. Multiple, correlated exposures can be included in a 

multivariable MR; however, including multiple exposures can reduce power and potentially 

instrument strength and thus the benefit of adding extra exposures must be considered 

carefully. Bayesian approaches have been proposed for selecting a set of exposures where 

multiple highly correlated exposures are potentially relevant for an outcome.103 In addition, 

multivariable MR can be used for mediation analysis, as described below.

MR mediation analysis—MR can be used to estimate the proportion of the effect of 

an exposure on an outcome that is mediated by an intermediate phenotype.104,105 Network 

MR and two-step MR use two univariable MR estimates to do this, estimating the effect 

of the primary exposure on the intermediate phenotype and the effect of the intermediate 

phenotype on the outcome.106,107 Alternatively, multivariable MR can estimate the direct 

effect of each exposure on the outcome that is not mediated by the other exposures included 

in the estimation. If all of the IV conditions are satisfied, this estimate will differ from a 

univariable MR estimate where all or part of the effect of the exposure on the outcome 

acts through a mediating phenotype included in the multivariable MR estimation.104 Both 

two-step and multivariable MR can therefore be used as part of a mediation analysis to 

estimate how much of the effect of an exposure on an outcome acts through an intermediate 

phenotype.104,105 When multiple intermediate phenotypes are thought to be potential 

mediators, two-step MR can estimate the proportion of the outcome mediated through each 

of these, whereas multivariable MR including all of the mediators considered will estimate 

the total proportion of the effect of the exposure on the outcome that is mediated by the 

set. If the intermediate phenotype mediators are correlated, or one also mediates the effect 

of another on the outcome, the total proportion of the outcome mediated by all of the 

intermediate phenotypes may be less than sum of the proportion mediated by each one 

individually; therefore, each of the above approaches will estimate different properties. A 

detailed description of the use of MR for mediation analysis is given elsewhere.105

Non-linear MR—Standard MR only provides a single effect estimate, which may not 

be informative if the effect of the exposure varies in a non-linear way — for example, 

a dose-response curve. With individual level data and a continuous exposure, non-linear 

MR can be applied to estimate whether the causal effect of the exposure on the outcome 

varies across different levels of the exposure.30,108 For example, although mortality risk 

generally increases with BMI, an increase is also seen at very low BMIs; this J-shaped 

relationship may reflect weight loss in individuals who are unwell, potentially before their 

illness is diagnosed. Non-linear MR has supported this, although it has also suggested that 

the J-shape could be caused by the relationship between BMI and mortality risk differing for 

ever-smokers [G] and never-smokers.109

Testing for interactions between exposures—With individual-level data, it is 

possible to test for interactions between two exposures using MR. When individual-level 

data are available to conduct a multivariable MR, interactions between the exposures can be 

included as additional exposures in the estimation110,111 This requires a multivariable MR 

estimation including the exposure, the potential effect modifier and the interactions between 
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them included as exposures. The inclusion of these additional terms decreases the statistical 

power for detecting an effect and should be limited to a single interaction. An alternative 

approach is to split the allele scores for each exposure into high and low values and compare 

outcomes across the resulting four groups by dividing participants up based on their score 

for each exposure, mimicking a 2x2 factorial randomised trial. It should be noted that this 

approach can have low power compared to the inclusion of an interaction term in a 2SLS 

regression.111

Colocalization and MR

Ever larger GWAS have now provided evidence that hundreds of genetic variants may be 

associated with many human phenotypes. This, together with the tendency for neighbouring 

genetic variants to be correlated owing to LD, could lead to the violation of IV condition 

2 where different neighbouring variants happen to be causally associated to the exposure 

and outcome through different pathways (Fig 6a). The bias in this situation is equivalent 

to that caused by pleiotropy (see Fig. 3) and although it is unlikely that this pattern will 

arise at many independent genetic locations in MR studies with multiple IVs, it should be a 

consideration in single-IV studies.

Colocalization analysis can be used to determine whether two traits share causal variants in 

a single genetic region, without prior knowledge of which variant is causal for either trait. 

It was originally used to identify potential molecular causes of single GWAS associations 

and considers the patterns of association across multiple neighbouring genetic variants 

for the GWAS and exposure traits (including molecular traits). Although this involves an 

implicit assumption of directionality in its interpretation, the test is not dependent on this 

assumption and indeed a single pleiotropic variant would satisfy the statistical definition of 

a shared causal variants (Fig 6b). Unlike in MR with multiple IVs, the majority of multiple 

neighbouring genetic variants considered in this analysis are expected to be associated with 

either trait solely through LD with one or a small number of causal variants in the region. 

This explicit use of LD means colocalization can be used to check for the violation of IV 

condition 2 in the form shown in Fig 6a (and Box 2).

One colocalization method originally proposed by Plagnol et al 112 frames shared causality 

as the null hypothesis and rejection of this would indicate violation of IV condition 2, i.e. 

that there are no common causes of the instrument and the outcome.112–114 However, it is 

hard to differentiate whether failure to reject the null hypothesis indicates that IV condition 2 

is satisfied or a lack of power in the colocalization test. Alternatively, Bayesian frameworks 

for colocalization analysis consider GWAS summary statistics for both traits across multiple 

SNPs in the region around the IV and assess either the evidence that each variant is jointly 

causal115 or consider shared causal variants as one of five competing hypotheses.116 A 

key difference between MR and Bayesian colocalization strategies is that the latter assume 

summary data exist for multiple variants in a region, with sufficient density such that any 

causal variant or variants for an outcome and exposure are likely to be included in the set 

of variants studied. This assumption is required because Bayesian colocalization approaches 

enumerate all possible configurations of causal variants for each trait and assess the relative 

likelihood of each combination. A further difference is that in Bayesian colocalization 
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strategies the user must supply parameters describing their prior belief that the outcome 

and exposure share causal variants; these may be different in the context of the carefully 

chosen traits in MR compared to those in more typical uses of colocalization, and thus 

sensitivity analyses are recommended to confirm the robustness of inference to changes in 

prior parameter values.117

Gene expression and protein are often instrumented with a single genetic variant and so 

colocalization can be particularly useful in MR studies of these exposures;42 in these settings 

colocalization can be used to attempt to falsify the second IV condition.

Applications

Below we describe five applications of MR. The studies described below have used MR to 

make important theoretical or practical contributions to understanding the causes of disease 

and some have implemented recently developed enhanced analytical approaches..

Estimation when trials are unfeasible

Conventional observational epidemiological studies have long suggested a J-shaped 

relationship between alcohol and risk of cardiovascular disease (CVD), 118 119 120. It was 

unclear from these studies whether the J-shape reflected a true non-linear cause and effect 

relationship, was caused by confounding by socio-demographic factors, or was present 

because individuals with low alcohol consumption had a higher apparent risk of CVD owing 

to a reduction in alcohol consumption caused by sickness (a form of reverse causation 

known as ‘sick quitters’). Although efforts were made to assess this question using a 

RCT121, the trial was terminated by the US National Institutes of Health (NIH) following 

concerns regarding the study design and influence from the alcohol industry122 123,124. 

Furthermore, ethical issues exist in deliberately exposing individuals to alcohol, which is 

a named carcinogen by the International Agency for Research on Cancer (IARC)125 and 

is recognized to have multiple detrimental effects on human health including liver disease, 

depression, and cancers of the oesophagus and liver.126

Early MR studies in individuals with European ancestry using a single genetic variant 

(rs122994) in the ADH1B gene127 128 suggested that the apparent protective effect of 

alcohol on the risk of CHD and ischemic stroke shown in epidemiological studies might not 

be real. However, use of a single genetic variant with a modest effect on the magnitude of 

alcohol consumption meant the relationship across the distribution of alcohol consumption 

could not be explored.129 In a recent study, Millwood and colleagues 130 used genetic 

variants in ALDH2 and ADH1B, which together explained considerable variation in alcohol 

use. Across the distribution of genetic variants, the average amount of alcohol consumed 

varied from 4g/week to 256 g/week. Applying these genetic variants to the China Kadoorie 

Biobank, they found strong evidence of a dose-response relationship between alcohol and 

risk of stroke, and no strong evidence of a protective or detrimental effect on risk of CHD. 

In the same study, they were able to show the J-shaped observational association between 

alcohol and CHD and stroke that had been observed elsewhere. Further, use of negative 

controls (i.e. exploration of the effect of the genetic instrument in women who did not 

drink), empirically demonstrated that the genetic instrument was unlikely to have effects 
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on disease independent of the exposure of interest. Thus, available evidence from MR 

methods that facilitate estimation in the presence of unobserved confounding — assuming 

no selection bias — do not support the conclusion that the consumption of a moderate 

amount of alcohol may lower vascular disease risk and identify alcohol consumption as a 

factor linked to increased likelihood of ischemic stroke

Cholesterol and coronary heart disease

Cholesterol circulating in the blood plays a central role in atherosclerosis, the disease 

process affecting arteries that leads to symptomatic cardiovascular disease including CHD 

and ischemic stroke.131 An inverse association between high-density lipoprotein cholesterol 

(HDL-C) and CHD risk reported over a number of observational studies, leading to the 

widely held belief that high levels of HDL-C are protective against CHD risk.132–135 This 

association was observed to be persistent even when other lipid fractions were accounted for, 

suggesting this association was not owing to confounding.134

MR studies have provided accumulating evidence against the observational results 

above.136–140 Such MR studies used a range of genetic variants that act through different 

mechanisms and showed no protective effect of increased levels of HDL-C on CHD 

risk. These studies were published alongside the results of several large scale RCTs of 

pharmacological interventions that relatively specifically increased HDL-C and without 

a noticeable change in other blood lipids such as LDL-C − these trials also failed to 

show a protective effect.141–142 This indicates that the association observed in the more 

traditional observational studies was likely to have occurred owing to confounding. It is 

worth reflecting on whether the RCTs would have been embarked upon if the MR study 

findings were known at the time of their inception.135 Indeed, where data already exists, MR 

studies are relatively cheap to conduct — particularly compared to a large RCT — and can 

provide additional evidence that can be used to direct which studies are worth follow up with 

RCTs. However, it must be noted that MR studies are themselves not free from issues of bias 

or lack of power; evidence from MR studies for the presence or absence of an effect should 

be compared with results from studies with other potential sources of bias.

Testing causation across the life course

A key issue in preventing disease in adulthood is identifying when in the lifecourse harmful 

exposures must be minimized. For example, if the contribution of exposures in childhood is 

non-reversible, this evidence would argue in favour of early intervention. This is challenging 

to appraise using conventional observational epidemiology owing to various features such as 

time-dependent confounding.

One example of this issue is the relationship between adiposity and adult-onset diseases 

such as CHD and type 2 diabetes (T2D). An MR study143 took an innovative approach by 

constructing separate genetic instruments for early-life body size and adult body size. The 

authors were able to fit a multivariable MR model to elucidate whether childhood body 

size was detrimental to the risk of CHD or T2D after taking adult body size into account. 

A direct effect of childhood body size in the multivariable model would suggest that high 

adiposity in childhood has a long term effect on health outcomes in adulthood — suggesting 
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that focusing on early interventions in childhood to minimize excess body weight would 

be of importance in lowering the risk of diseases that typically present in adulthood. As 

UK Biobank participants were asked for information on their body size at 10 years of age 

and BMI was measured at recruitment into the study144, these data provided an opportunity 

to conduct GWAS on body size during childhood and adulthood for the same group of 

individuals and detected 295 and 557 independent SNPs associated with childhood and 

adulthood body size, respectively, with a high level of overlap in the SNPs associated with 

each time period as expected.143 Univariable MR analysis showed both genetically predicted 

body size in early life and adulthood were individually related to higher risks of CHD and 

T2D and a lower a risk of breast cancer. In contrast multivariable MR analysis identified 

that only adult body size showed an independent causal effect for CHD and T2D, suggesting 

that the relationship between early life body size was mediated through adult body size. In 

contrast, the inverse relationship between genetically predicted body size and breast cancer 

was stronger for early-life body size than adult body size in the multivariable MR analysis, 

suggesting an age-dependent relationships between adiposity and risk of different diseases in 

adults. This suggests that for children that are overweight, losing weight in their adulthood 

can still effectively lower risk of T2D and CAD and in this case a metabolically unhealthy 

childhood can potentially be offset by healthy lifestyle approaches adopted in adulthood.

Such study designs can be applied to other exposure-outcome relationships to determine 

whether risk factors have cumulative effects or differential influences at different periods 

of the life course. This information could allow for fine-tuned, age-specific public health 

interventions that minimize the effects of deleterious, time-dependent risk factors. Although, 

it is very important to bear in mind that effects of harmful exposures become less evident 

with increasing age because of selection bias due to the almost inevitable selection only of 

survivors.145

Estimation of healthcare costs

A clear understanding of the healthcare costs arising from individual diseases and risk 

factors is needed to ensure that public health resources are distributed judiciously. RCTs 

are typically not designed to estimate healthcare costs as an outcome and conventional 

observational studies aimed at assessing healthcare costs can be hampered by selection bias 

and confounding.

Dixon and colleagues146 described a potential application for MR in quantifying the effects 

of genetically predicted BMI on healthcare costs. Their method used data from the UK 

Biobank, which provided a rich source of data for exploring the causal relationship of 

lifelong exposures to certain traits and genetic liability to diseases and their economic 

impact. Using genetic variants associated with higher BMI as instruments in an individual-

level MR study to estimate the effect of BMI on hospitalization costs,147 the authors 

found that higher BMI increased hospital costs with little evidence for non-linearity in 

this effect. In addition to physiological consequences, body weight has social consequences 

such increasing exposure to stigma and discrimination and these MR analyses include the 

consequences of all such mechanisms for hospitalization costs.

Sanderson et al. Page 19

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Testing treatment response factors

Identifying whether individuals are likely to respond to a specific therapy is an important 

component of so-called ‘precision medicine’, whereby the goal is to individualize patient 

care based on genetic, environmental and lifestyle factors. This can be done in conventional 

pharmacogenetic studies and RCTs, although the risk of bias in the former and the sample 

size constraints of the latter mean that neither provide a reliable means of assessing 

interactions between an individual’s genotype and treatment response.

A recent study by Xu and Burgess 148 used a drug-target MR design149 150 to investigate 

polygenic determinants of the response of LDL-cholesterol levels to treatment with statins. 

The authors used SNPs in and around the HMGCR locus as a mimic of the pharmacological 

inhibition of HMG-CoA reductase by statins, and explored genetic variants that might 

act as effect modifiers of the association between the statin genetic instrument and LDL-

cholesterol levels. Polygenic scores did not identify any effect-modifying genetic groups; 

however, a single variant (rs162724) proximal to the glutamate receptor gene GRM7 
and previously associated with major depressive disorder was found to potentially be of 

interest. The authors postulated that this variant could be related to statin response owing to 

concurrent pharmacotherapies for major depressive disorder or adherence to statin treatment 

moderating the effect of statins on LDL-cholesterol.

Although the above study did not find evidence of reliable polygenic effect modification, it 

introduces the concept of agnostic identification of pharmacogenetic interactions within the 

context of a population-based study. This approach benefits from lack of confounding by 

indication, compared to a conventional pharmacoepidemiology study design.151 However, 

using a genetic instrument for treatment as part of a drug-target MR means that the 

underlying magnitude of the effect on which potential genetic effect modifiers are 

investigated is very small and thus very large sample sizes are needed to identify effects. 

When using MR in this way, it is important to identify appropriate instruments for 

estimating the effect of a particular drug. Instruments that are associated with the target 

of that drug should be used, rather than those associated with the risk factor that the drug 

acts on.42,152,153

Reproducibility and data deposition

There has been substantial discussion of the importance of ensuring that published research 

findings are robust, replicable and reproducible in recent years.154 In the context of 

epidemiological research, one area of concern is that findings may be replicated in settings 

with nearly identical sources of bias. Data with such replication provide little independent 

confirmation of the initial result and thus even highly consistent replicated findings may 

not reflect true causal effects. An example is the J-shaped association between alcohol 

consumption and cardiovascular disease; there is now consensus that this apparent protective 

effect of moderate levels of consumption is artefactual, as discussed above.130 One simple 

step authors can take to ensure that MR findings are robust and reproducible is to use the 

STROBE-MR guidelines,51,52 which outline how MR studies should be reported to make the 

approach used in any particular study clear for readers.
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The first aim of all studies should be to ensure that steps are taken to detect and minimise 

bias, such as selection bias or bias caused by violation of one of the IV conditions. 

Triangulation of evidence from multiple methodologies — using different methodologies 

that are subject to different sources and directions of potential bias — can help to identify 

bias in MR studies.6,7,155 Alignment of results across these different methodologies can 

improve confidence in an initial causal interpretation. Among the most promising strategies 

for triangulation is contrasting MR results with results using other IVs — such as policy-

based IVs — or results from conventional analyses. For example, there is clear evidence 

from both MR and the natural experiment of an increase in the school leaving age 

that an increase in the number of years in education has a causal protective effect on 

health behaviours such as smoking.156–160 Within MR, using methods that make different 

assumptions (such as those regarding pleiotropy) and are therefore subject to different 

sources and directions of potential bias can support this approach, although the least 

plausible assumption may be shared by many methods, reducing the potential independent 

insight to be gained from comparing studies.

Open research can increase the robustness of data through allowing greater scrutiny of 

data and increased error detection by researchers and the wider research community. Open 

research approaches for increasing data transparency include protocol pre-registration and 

sharing of data, code and materials. Summary data from GWAS are often a source of data 

for MR analysis and are typically publicly available, such as those listed on the OpenGWAS 

project. Although individual level data are not made publicly available owing to the sensitive 

nature of the data, there are a number of large datasets that are accessible to any researchers 

on application, such as the UK Biobank. Any MR estimation should clearly indicate the data 

sources they have used and link to the dataset used if it is publicly available. The source 

code for many software packages is openly available (for example, TwoSampleMR and 

mrrobust on GitHub, and MendelianRandomization on CRAN). However, the analysis code 

from MR studies is not routinely shared; we encourage readers to do so to enable errors in 

coding to be more readily identified. Pre-registration of study protocols has not been widely 

adopted in observational epidemiology, although it could in principle be applied and help 

protect against bias, such as publication bias against null results or findings that do not fit 

with the anticipated conclusion.161,162

Limitations and Optimizations

An important limitation of MR studies is potential confounding of the genetic variants and 

the outcome (violation of the second IV condition; see Box 2). As genetic variants are 

generally fixed at conception, it is not intuitively clear how confounding of the instrument 

and the outcome can occur in MR studies. However, population stratification, dynastic 

effects and assortative mating all induce bias by creating an artefactual relation at the 

population level between the genetic variants and the outcome, violating the second IV 

condition.65,163–166 Each of these sources of confounding are described in detail in Box 5. 

This correlation between genetic variants and the outcome can potentially affect most (or 

all) of the genetic variants used as instruments; it is therefore not easy to correct for with 

current MR methods as most assume that the majority of genetic variants satisfy all of the 
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IV conditions.61 Considering the potential for biases of the sort described here is therefore 

crucial in the interpretation of any MR result.

One solution that can account for confounding owing to dynastic effects and assortative 

mating is the use of family data to conduct the MR analyses.167,168 Within-family MR 

requires data from either pairs of siblings or mother–father–child trios and allows for 

estimation of causal effects using MR after family-level structure has been taken into 

account.164,167 Within-family MR using sibling pairs will also account for any factors acting 

at a population level that affect siblings equally, such as population stratification. A key 

limiting factor for within-family MR is the lack of available data and the low power of these 

studies as a result; however, a GWAS of family data for a range of phenotypes has recently 

been published, enabling further within-family MR in the future.169

Another type of bias that can arise in MR studies that cannot be easily corrected for is 

selection bias64 In an MR study, an example of selection bias would be if an individual’s 

exposure and outcome values affected their participation.57 When these phenotypes are 

partially determined by genetic variants, this will also induce an association between those 

genetic variants and participation. Study participation has shown to be heritable and is 

influenced by a number of different traits, and large studies such as the UK Biobank have 

been shown to have high levels of selection in those who participate.31,170–172

In addition, most studies recruit survivors of the original birth cohorts. This means all 

participants must have survived in order to observe whether they get the outcome of interest. 

Selection of participants on surviving their genetic make-up and the outcome of interest or 

a competing risk of the outcome effectively applies covariable adjustment on survival into 

the estimates.173–175 This form of selection bias is likely to be particularly problematic for 

studies of harmful exposures on disease outcomes that occur in later life and will be least 

evident in studies where the exposure does not affect survival to recruitment.176 As such, 

consideration of whether the genetically instrumented exposures would affect survival to 

recruitment, age at recruitment or any competing risk of the outcome may help identify bias. 

This type of survival bias will affect observational studies of the same research question 

in similarly aged populations, so is not an obvious explanation for discrepancies between 

MR and conventional results. All forms of selection biases could bias MR estimates and so 

careful assessment of the potential for selection into the sample or samples used in an MR 

study is important.65 Novel methods are being developed that attempt to detect and correct 

for selection bias174,177; however, this is an area in which further research is required.

Finally, MR uses genetic variants that are fixed across the life course to estimate the lifetime 

effects of the exposure of interest. This introduces a potential limitation in the form of 

canalization, which refers to a natural tendency for the suppression of phenotypic variation 

among individuals despite contrasting genotypes. Canalization can occur when polymorphic 

phenotypes expressed during fetal development lead to the development of compensating 

pathways to mitigate the effects of that expression. 1,178,179 For example, individuals 

with genetically elevated fibrinogen levels could become resistant to the effects of higher 

fibrinogen owing to permanent changes in tissue structure during fetal development. 

Canalization is even seen following dramatic genetic or environmental changes, for example 
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in gene knockout studies. 180,181 Such compensation would potentially limit the ability of 

MR to identify the causal effect of the change in the exposure as the effect of a genetically 

induced change from conception would differ to the effect of a change in later life. This 

is an example of a violation of the assumption of gene-environment equivalence (see Box 

4). Further work is required to understand whether small changes induced by the common 

polymorphisms used to estimate causal effects in MR have the same compensatory effects.

Outlook

The rapid increase in MR publications demonstrates the strong appetite for approaches that 

can contribute to strengthening causal inference. This growth in the quantity of published 

MR studies comes with anxiety regarding their quality. Papers reporting two-sample MR 

have grown rapidly over recent years and now constitute a large majority of published 

studies.8,81 These are relatively easy to conduct — perhaps too easy — and they can contain 

clear errors as discussed and demonstrated elsewhere.81 Indeed, many such papers simply 

report MR estimates obtained from applying open-access software to open-access data and 

in these cases the analyses have, in essence, already been conducted by automated tools 

— an observation detailed in a recent preprint article.182 The situation with MR is now 

moving towards the one seen in the meta-analysis literature, with the mass production of 

redundant, misleading, and conflicted publications.183 The current explosion in predatory 

journals unfortunately means this situation is very unlikely to change. There are now a 

number of guidelines available for MR estimation, and those regarding the conduct40 and 

reporting of MR studies51,52 are useful for understanding and identifying whether a MR 

study has been well conducted and reported properly. For those aiming to keep up with the 

MR literature, the twitter account @MR_lit searches for papers and preprint articles and 

allows readers to rapidly review abstracts to identify papers of interest.

As most contemporary MR studies rely on available GWAS data, they unfortunately 

suffer from considerable bias with respect to representativeness of populations according 

to geography and ancestry.184 This can influence the generalizability of MR findings and 

exacerbate existing inequity in medical research. It can also restrict the scope of MR 

studies, as some forms of genetic variation are restricted to particular populations. For 

example, a large-effect genetic variant influencing alcohol consumption that has been of 

considerable value in MR studies of the effects of alcohol75,130 is only prevalent in East 

Asian populations. Current international efforts to equalize inclusion of different populations 

in genetic studies will hopefully begin to address this important issue.

A large area of medical research is aimed at identifying potentially therapeutic influences 

on disease progression once the disease is established. However, MR studies usually rely 

on GWAS of the initial development of disease for their outcome data. This means that 

although MR has been a powerful tool for confirming or discovering factors that cause 

disease, it does not often identify therapeutic targets.185 For example, although MR studies 

have shown that smoking causes lung cancer186, this is not useful therapeutically following 

the onset of the disease as smoking cessation is not a useful treatment once lung cancer 

has developed. It is plausible that in many cases, factors that cause a disease do not relate 

to its progression once it is established. For example, the onset and progression of Crohn’s 
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disease are associated with different genetic variants, indicating that different risk factors 

play a role in onset and development.187 It is also possible that the same risk factor could 

have opposite effects on incidence and progression, such as has been suggested for folate 

intake and colon cancer.188 MR of factors influencing disease progression is needed to 

identify useful treatments;189 however, such estimation requires appropriate datasets and as 

there are currently few of these in existence, efforts should be focused on increasing the 

availability of such data. Importantly, case-only study designs may be severely compromised 

by collider bias[[G] 56,64, which must be taken into account in data analysis185. More 

method development is required in this domain.

Although the increasing size of GWAS datasets appears to be positive for MR studies, it can 

also introduce problems; smaller and smaller effect sizes are being identified as significant 

in GWAS and it is increasingly likely that such variants affect the trait of interest through 

an upstream phenotype that might in turn influence the outcomes under investigation. For 

example, as the GWAS of CRP and vitamin D increased in size, multiple variants that 

primarily influence adiposity were identified — with adiposity being a confounder of the 

observational association of these exposures with health outcomes. If these variants are 

used as instruments for CRP or vitamin D, they will produce highly misleading results. 

The resulting bias can be accounted for through multivariable MR if the upstream factor is 

known; however, in many cases it is not and thus bias will remain undetected. This issue of 

misspecification of the primary phenotype requires more research to identify the extent of 

the problem of recapitulating confounding in MR studies as GWAS size increases.

When initially presented, it was concluded that “[MR] offers a more robust approach to 

understanding the effect of some modifiable exposures on health outcomes than does much 

conventional observational epidemiology”1 and that where possible, RCTs should follow to 

establish the effects of interventions. This conclusion remains unchanged, although moving 

towards formal triangulation of all pertinent evidence as we discuss above should be the goal 

of all research aimed at identifying causal influences on health and development outcomes.

Acknowledgements

E.S., M.M., T.P. and G.D.S. are members of the UK Medical Research Council (MRC) Integrative Epidemiology 
unit which is funded by the MRC (MC_UU_00011/1, MC_UU_00011/3 and MC_UU_00011/7) and the University 
of Bristol. M.M.G. is supported by the National Institutes of Health/National Institute on Aging (NIH/NIA) grant 
R01AG057869. M.V.H. works in a unit that receives funding from the MRC and is supported by a British Heart 
Foundation Intermediate Clinical Research Fellowship (FS/18/23/33512) and the National Institute for Health 
Research Oxford Biomedical Research Centre. H. K. is supported by the National Science Foundation grant 
DMS-1811414. C.W. is funded by the MRC (MC UU 00002/4, MC UU 00002/13) and the Wellcome Trust 
(WT107881).

References

1. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to 
understanding environmental determinants of disease? International journal of epidemiology. 2003; 
32: 1–22. [PubMed: 12689998] 

2. Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. 
Journal of the American statistical Association. 1996; 91: 444–455. 

3. Hernán, MA, JM, R. Causal Inference: What If. Chapman & Hall/CRC; Boca Raton: 2020. 

Sanderson et al. Page 24

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



4. Greenland S. An introduction to instrumental variables for epidemiologists. International journal of 
epidemiology. 2000; 29: 722–729. [PubMed: 10922351] 

5. Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the 
absence of genetic data. International journal of epidemiology. 2017; 46: 962–965. [PubMed: 
28025256] 

6. Munafò MR, Higgins JP, Smith GD. Triangulating evidence through the inclusion of genetically 
informed designs. Cold Spring Harbor Perspectives in Medicine. 2021; 11 a040659 [PubMed: 
33355252] 

7. Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological epidemiology. International 
Journal of Epidemiology. 2017; 45: 1866–1886. DOI: 10.1093/ije/dyw314 

8. Richmond RC, Smith GD. Mendelian randomization: Concepts and scope. Cold Spring Harbor 
perspectives in medicine. 2021. a040501 

9. Davey Smith G, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. 
International journal of epidemiology. 2004; 33: 30–42. [PubMed: 15075143] 

10. Gupta SK. Intention-to-treat concept: A review. Perspect Clin Res. 2011; 2: 109–112. DOI: 
10.4103/2229-3485.83221 [PubMed: 21897887] 

11. Ellenberg JH. Intent-to-treat analysis versus as-treated analysis. Drug Information Journal. 1996; 
30: 535–544. 

12. Glymour MM. Natural experiments and instrumental variable analyses in social epidemiology. 
Methods in social epidemiology. 2006; 1: 429. 

13. Martens EP, Pestman WR, de Boer A, Belitser SV, Klungel OH. Instrumental variables: application 
and limitations. Epidemiology. 2006. 260–267. [PubMed: 16617274] 

14. Lousdal ML. An introduction to instrumental variable assumptions, validation and estimation. 
Emerging Themes in Epidemiology. 2018; 15: 1. doi: 10.1186/s12982-018-0069-7 [PubMed: 
29387137] 

15. Angrist JD, Krueger AB. Instrumental Variables and the Search for Identification: From Supply 
and Demand to Natural Experiments. Journal of Economic Perspectives. 2001; 15: 69–85. DOI: 
10.1257/jep.15.4.69 

16. Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA, Schneeweiss S. Instrumental variables 
I: instrumental variables exploit natural variation in nonexperimental data to estimate 
causal relationships. Journal of Clinical Epidemiology. 2009; 62: 1226–1232. DOI: 10.1016/
j.jclinepi.2008.12.005 [PubMed: 19356901] 

17. Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach 
to causal inference. Statistical Methods in Medical Research. 2007; 16: 309–330. DOI: 
10.1177/0962280206077743 [PubMed: 17715159] 

18. Smith GD. Capitalizing on Mendelian randomization to assess the effects of treatments. Journal of 
the Royal Society of Medicine. 2007; 100: 432–435. [PubMed: 17766918] 

19. Carlson CS, et al. Polymorphisms within the C-reactive protein (CRP) promoter region are 
associated with plasma CRP levels. The American Journal of Human Genetics. 2005; 77: 64–77. 
[PubMed: 15897982] 

20. Davey Smith G, et al. Association of C-reactive protein with blood pressure and hypertension: life 
course confounding and mendelian randomization tests of causality. Arteriosclerosis, thrombosis, 
and vascular biology. 2005; 25: 1051–1056. [PubMed: 15731495] 

21. Morris TT, Heron J, Sanderson E, Davey Smith G, Tilling K. Interpretation of mendelian 
randomization using one measure of an exposure that varies over time. medRxiv. 2021. 

22. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to 
understanding environmental determinants of disease?*. International Journal of Epidemiology. 
2003; 32: 1–22. DOI: 10.1093/ije/dyg070 [PubMed: 12689998] 

23. Swanson SA, Tiemeier H, Ikram MA, Hernán MA. Nature as a Trialist?: Deconstructing the 
Analogy Between Mendelian Randomization and Randomized Trials. Epidemiology. 2017; 28 

24. Didelez V, Meng S, Sheehan NA. Assumptions of IV Methods for Observational Epidemiology. 
Statist Sci. 2010; 25: 22–40. DOI: 10.1214/09-STS316 

Sanderson et al. Page 25

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



25. Palmer TM, et al. Using multiple genetic variants as instrumental variables for 
modifiable risk factors. Statistical Methods in Medical Research. 2011; 21: 223–242. DOI: 
10.1177/0962280210394459 [PubMed: 21216802] 

26. Burgess S, Thompson SG. Use of allele scores as instrumental variables for Mendelian 
randomization. International Journal of Epidemiology. 2013; 42: 1134–1144. DOI: 10.1093/ije/
dyt093 [PubMed: 24062299] 

27. Davies NM, et al. The many weak instruments problem and Mendelian randomization. Statistics in 
Medicine. 2015; 34: 454–468. DOI: 10.1002/sim.6358 [PubMed: 25382280] 

28. Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream? 
Epidemiology. 2006. 360–372. [PubMed: 16755261] 

29. Swanson SA, Hernán MA, Miller M, Robins JM, Richardson TS. Partial Identification of 
the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary 
Instruments, Treatments, and Outcomes. Journal of the American Statistical Association. 2018; 
113: 933–947. DOI: 10.1080/01621459.2018.1434530 [PubMed: 31537952] 

30. Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome 
relationship using instrumental variables with application to Mendelian randomization. Genetic 
epidemiology. 2017; 41: 341–352. [PubMed: 28317167] 

31. Tyrrell J, et al. Genetic predictors of participation in optional components of UK Biobank. Nature 
Communications. 2021; 12 

32. Davey Smith G. Epigenesis for epidemiologists: does evo-devo have implications for population 
health research and practice? International Journal of Epidemiology. 2012; 41: 236–247. [PubMed: 
22422459] 

33. Freeman G, Cowling BJ, Schooling CM. Power and sample size calculations for Mendelian 
randomization studies using one genetic instrument. International journal of epidemiology. 2013; 
42: 1157–1163. [PubMed: 23934314] 

34. Walker VM, Davies NM, Windmeijer F, Burgess S, Martin RM. Power calculator for instrumental 
variable analysis in pharmacoepidemiology. International Journal of Epidemiology. 2017; 46: 
1627–1632. [PubMed: 28575313] 

35. Burgess S. Sample size and power calculations in Mendelian randomization with a single 
instrumental variable and a binary outcome. Int J Epidemiol. 2014; 43: 922–929. DOI: 10.1093/ije/
dyu005 [PubMed: 24608958] 

36. Brion M-JA, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian 
randomization studies. International Journal of Epidemiology. 2012; 42: 1497–1501. DOI: 
10.1093/ije/dyt179 

37. Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical methods. 
Statistics in medicine. 2019; 38: 2074–2102. [PubMed: 30652356] 

38. Burgess S, Butterworth A, Thompson SG. Mendelian Randomization Analysis With Multiple 
Genetic Variants Using Summarized Data. Genetic Epidemiology. 2013; 37: 658–665. DOI: 
10.1002/gepi.21758 [PubMed: 24114802] 

39. Zhao Q, Wang J, Spiller W, Bowden J, Small DS. Two-sample instrumental variable analyses using 
heterogeneous samples. Statistical Science. 2019; 34: 317–333. 

40. Burgess S, et al. Guidelines for performing Mendelian randomization investigations. Wellcome 
Open Research. 2019; 4: 186. [PubMed: 32760811] 

41. Pierce BL, Burgess S. Efficient Design for Mendelian Randomization Studies: Subsample and 
2-Sample Instrumental Variable Estimators. American Journal of Epidemiology. 2013; 178: 1177–
1184. DOI: 10.1093/aje/kwt084 [PubMed: 23863760] 

42. Holmes MV, Richardson TG, Ference BA, Davies NM, Davey Smith G. Integrating genomics with 
biomarkers and therapeutic targets to invigorate cardiovascular drug development. Nature Reviews 
Cardiology. 2021; 18: 435–453. DOI: 10.1038/s41569-020-00493-1 [PubMed: 33707768] 

43. Bound J, Jaeger DA, Baker RM. Problems with instrumental variables estimation when the 
correlation between the instruments and the endogenous explanatory variable is weak. Journal of 
the American statistical association. 1995; 90: 443–450. 

44. Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian 
randomization. Genetic epidemiology. 2016; 40: 597–608. [PubMed: 27625185] 

Sanderson et al. Page 26

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



45. Mounier N, Kutalik Z. Correction for sample overlap, winner’s curse and weak instrument 
bias in two-sample Mendelian Randomization. bioRxiv. 2021; 2021.2003.2026.437168 doi: 
10.1101/2021.03.26.437168 

46. Angrist JD, Krueger AB. Split-Sample Instrumental Variables Estimates of the Return 
to Schooling. Journal of Business & Economic Statistics. 1995; 13: 225–235. DOI: 
10.1080/07350015.1995.10524597 

47. Fang S, Hemani G, Richardson TG, Gaunt TR, Smith GD. Evaluating and implementing block 
jackknife resampling Mendelian randomization to mitigate bias induced by overlapping samples. 
medRxiv. 2021; 2021.2012.2003.21267246 doi: 10.1101/2021.12.03.21267246 

48. Sadreev II, et al. Navigating sample overlap, winner’s curse and weak instrument 
bias in Mendelian randomization studies using the UK Biobank. medRxiv. 2021; 
2021.2006.2028.21259622 doi: 10.1101/2021.06.28.21259622 

49. Davies NM, Holmes MV, Smith GD. Reading Mendelian randomisation studies: a guide, glossary, 
and checklist for clinicians. Bmj. 2018; 362 k601 [PubMed: 30002074] 

50. Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: 
challenges in evaluating causality. Nat Rev Cardiol. 2017; 14: 577–590. DOI: 10.1038/
nrcardio.2017.78 [PubMed: 28569269] 

51. Skrivankova VW, et al. Strengthening the reporting of observational studies in epidemiology using 
mendelian randomisation (STROBE-MR): explanation and elaboration. bmj. 2021; 375 

52. Skrivankova VW, et al. Strengthening the Reporting of Observational Studies in Epidemiology 
using Mendelian Randomization: the STROBE-MR Statement. JAMA. 2021; 326 16141621 

53. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using 
genes as instruments for making causal inferences in epidemiology. Statistics in medicine. 2008; 
27: 1133–1163. [PubMed: 17886233] 

54. Wooldridge, JM. Econometric analysis of cross section and panel data. MIT press; 2010. 

55. Cole SR, et al. Illustrating bias due to conditioning on a collider. International Journal of 
Epidemiology. 2009; 39: 417–420. DOI: 10.1093/ije/dyp334 [PubMed: 19926667] 

56. Munafò MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Collider scope: when selection 
bias can substantially influence observed associations. International journal of epidemiology. 
2018; 47: 226–235. [PubMed: 29040562] 

57. Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiology. 
2004. 615–625. [PubMed: 15308962] 

58. Staiger, D, Stock, JH. Instrumental variables regression with weak instruments, Report No. 
0898-2937. National Bureau of Economic Research; 1994. 

59. Stock, JH, Yogo, M. Testing for weak instruments in linear IV regression, Report No. 0898-2937. 
National Bureau of Economic Research; 2002. 

60. Brumpton B, et al. Within-family studies for Mendelian randomization: avoiding dynastic, 
assortative mating, and population stratification biases. Nature Communications. 2020; 11: 1–13. 

61. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian 
randomization studies. Human Molecular Genetics. 2018; 27: R195–R208. DOI: 10.1093/hmg/
ddy163 [PubMed: 29771313] 

62. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in 
epidemiological studies. Human Molecular Genetics. 2014; 23: R89–R98. DOI: 10.1093/hmg/
ddu328 [PubMed: 25064373] 

63. Burgess S, Swanson SA, Labrecque JA. Are Mendelian randomization investigations immune from 
bias due to reverse causation? European Journal of Epidemiology. 2021; 36: 253–257. [PubMed: 
33611685] 

64. Griffith GJ, et al. Collider bias undermines our understanding of COVID-19 disease risk and 
severity. Nature Communications. 2020; 11 5749 doi: 10.1038/s41467-020-19478-2 

65. Hughes RA, Davies NM, Smith GD, Tilling K. Selection Bias When Estimating Average 
Treatment Effects Using One-sample Instrumental Variable Analysis. Epidemiology. 2019; 30: 
350–357. [PubMed: 30896457] 

66. Sargan JD. The estimation of economic relationships using instrumental variables. Econometrica: 
Journal of the Econometric Society. 1958. 393–415. 

Sanderson et al. Page 27

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



67. Glymour MM, Tchetgen Tchetgen EJ, Robins JM. Credible Mendelian Randomization Studies: 
Approaches for Evaluating the Instrumental Variable Assumptions. American Journal of 
Epidemiology. 2012; 175: 332–339. DOI: 10.1093/aje/kwr323 [PubMed: 22247045] 

68. Diemer EW, Labrecque J, Tiemeier H, Swanson SA. Application of the Instrumental Inequalities to 
a Mendelian Randomization Study With Multiple Proposed Instruments. Epidemiology. 2020; 31: 
65–74. DOI: 10.1097/ede.0000000000001126 [PubMed: 31790379] 

69. Yang Q, Sanderson E, Tilling K, Borges MC, Lawlor DA. Exploring and mitigating potential bias 
when genetic instrumental variables are associated with multiple non-exposure traits in Mendelian 
randomization. medRxiv. 2019; 19009605 doi: 10.1101/19009605 

70. Lawlor DA, et al. Exploring the developmental overnutrition hypothesis using parental−offspring 
associations and FTO as an instrumental variable. PLoS medicine. 2008; 5 e33 [PubMed: 
18336062] 

71. Kang H, Zhang A, Cai TT, Small DS. Instrumental variables estimation with some invalid 
instruments and its application to Mendelian randomization. Journal of the American statistical 
Association. 2016; 111: 132–144. 

72. Windmeijer F, Farbmacher H, Davies N, Davey Smith G. On the use of the lasso for 
instrumental variables estimation with some invalid instruments. Journal of the American 
Statistical Association. 2019; 114: 1339–1350. [PubMed: 31708716] 

73. Jiang L, et al. Constrained instruments and their application to Mendelian randomization 
with pleiotropy. Genetic Epidemiology. 2019; 43: 373–401. DOI: 10.1002/gepi.22184 [PubMed: 
30635941] 

74. Sanderson E, Davey Smith G, Windmeijer F, Bowden J. An examination of multivariable 
Mendelian randomization in the single-sample and two-sample summary data settings. 
International journal of epidemiology. 2019; 48: 713–727. [PubMed: 30535378] 

75. Chen L, Smith GD, Harbord RM, Lewis SJ. Alcohol intake and blood pressure: a systematic 
review implementing a Mendelian randomization approach. PLoS medicine. 2008; 5 

76. Spiller W, Hartwig FP, Sanderson E, Davey Smith G, Bowden J. Interaction-based Mendelian 
randomization with measured and unmeasured gene-by-covariate interactions. medRxiv. 2020; 
2020.2007.2027.20162909 doi: 10.1101/2020.07.27.20162909 

77. Spiller W, Slichter D, Bowden J, Davey Smith G. Detecting and correcting for bias in 
Mendelian randomization analyses using gene-by-environment interactions. International journal 
of epidemiology. 2019; 48: 702–712. [PubMed: 30462199] 

78. Tchetgen Tchetgen EJ, Sun B, Walter S. The GENIUS approach to robust Mendelian 
randomization inference. Statistical Science. 2019; 36: 443–464. 

79. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables 
in Mendelian randomization: comparison of allele score and summarized data methods. Statistics 
in medicine. 2016; 35: 1880–1906. [PubMed: 26661904] 

80. Zhu Z, et al. Causal associations between risk factors and common diseases inferred from GWAS 
summary data. Nature Communications. 2018; 9 224 doi: 10.1038/s41467-017-02317-2 

81. Hartwig FP, Davies NM, Hemani G, Davey Smith G. Two-sample Mendelian randomization: 
avoiding the downsides of a powerful, widely applicable but potentially fallible technique. 
International Journal of Epidemiology. 2017; 45: 1717–1726. DOI: 10.1093/ije/dyx028 

82. Bowden J, et al. Improving the visualization, interpretation and analysis of two-sample summary 
data Mendelian randomization via the Radial plot and Radial regression. International journal of 
epidemiology. 2018; 47: 1264–1278. [PubMed: 29961852] 

83. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian 
randomization with some invalid instruments using a weighted median estimator. Genetic 
epidemiology. 2016; 40: 304–314. [PubMed: 27061298] 

84. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian 
randomization via the zero modal pleiotropy assumption. International journal of epidemiology. 
2017; 46: 1985–1998. [PubMed: 29040600] 

85. Rees JM, Wood AM, Dudbridge F, Burgess S. Robust methods in Mendelian randomization via 
penalization of heterogeneous causal estimates. PloS one. 2019; 14 

Sanderson et al. Page 28

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



86. Cho Y, et al. Exploiting horizontal pleiotropy to search for causal pathways within a 
Mendelian randomization framework. Nature Communications. 2020; 11 1010 doi: 10.1038/
s41467-020-14452-4 

87. Verbanck M, Chen C-y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal 
relationships inferred from Mendelian randomization between complex traits and diseases. Nature 
genetics. 2018; 50: 693–698. [PubMed: 29686387] 

88. Zhao Q, Wang J, Hemani G, Bowden J, Small DS. Statistical inference in two-sample summary-
data Mendelian randomization using robust adjusted profile score. The Annals of Statistics. 2020; 
48: 1742–1769. 

89. Wang J, et al. Causal Inference for Heritable Phenotypic Risk Factors Using Heterogeneous 
Genetic Instruments. PLoS genetics. 2021; 17 

90. Morrison J, Knoblauch N, Marcus JH, Stephens M, He X. Mendelian randomization accounting 
for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nature 
Genetics. 2020. 1–7. [PubMed: 31911675] 

91. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect 
estimation and bias detection through Egger regression. International journal of epidemiology. 
2015; 44: 512–525. [PubMed: 26050253] 

92. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic 
variants to estimate causal effects. American journal of epidemiology. 2015; 181: 251–260. 
[PubMed: 25632051] 

93. Bowden J, Vansteelandt S. Mendelian randomization analysis of case-control data using structural 
mean models. Statistics in Medicine. 2011; 30: 678–694. [PubMed: 21337362] 

94. Hemani G, Tilling K, Smith GD. Orienting the causal relationship between imprecisely measured 
traits using GWAS summary data. PLoS genetics. 2017; 13 e1007081 [PubMed: 29149188] 

95. Brown BC, Knowles DA. Welch-weighted Egger regression reduces false positives due to 
correlated pleiotropy in Mendelian randomization. bioRxiv. 2021. 

96. O’Connor LJ, Price AL. Distinguishing genetic correlation from causation across 52 diseases 
and complex traits. Nature Genetics. 2018; 50: 1728–1734. DOI: 10.1038/s41588-018-0255-0 
[PubMed: 30374074] 

97. Elsworth BL, et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv. 2020. 

98. Livingston G, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet 
Commission. The Lancet. 2020; 396: 413–446. 

99. Snoeckx RL, et al. GJB2 mutations and degree of hearing loss: a multicenter study. The American 
Journal of Human Genetics. 2005; 77: 945–957. [PubMed: 16380907] 

100. Hoffmann TJ, et al. A large genome-wide association study of age-related hearing impairment 
using electronic health records. PLoS genetics. 2016; 12 e1006371 [PubMed: 27764096] 

101. Lambert J-C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for 
Alzheimer’s disease. Nature genetics. 2013; 45: 1452–1458. [PubMed: 24162737] 

102. Burgess S, Dudbridge F, Thompson SG. Re:”Multivariable Mendelian randomization: the use of 
pleiotropic genetic variants to estimate causal effects”. American journal of epidemiology. 2015; 
181: 290–291. [PubMed: 25660081] 

103. Zuber V, Colijn JM, Klaver C, Burgess S. Selecting likely causal risk factors from high-
throughput experiments using multivariable Mendelian randomization. Nature Communications. 
2020; 11 29 doi: 10.1038/s41467-019-13870-3 

104. Sanderson E. Multivariable Mendelian Randomization and Mediation. Cold Spring Harbor 
Perspectives in Medicine. 2020. a038984 

105. Carter AR, et al. Mendelian randomisation for mediation analysis: current methods and 
challenges for implementation. European Journal of Epidemiology. 2021; 36: 465–478. DOI: 
10.1007/s10654-021-00757-1 [PubMed: 33961203] 

106. Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for 
establishing the causal role of epigenetic processes in pathways to disease. International journal 
of epidemiology. 2012; 41: 161–176. [PubMed: 22422451] 

Sanderson et al. Page 29

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



107. Burgess S, Daniel RM, Butterworth AS, Thompson SG, Consortium E-I. Network Mendelian 
randomization: using genetic variants as instrumental variables to investigate mediation in causal 
pathways. International journal of epidemiology. 2015; 44: 484–495. [PubMed: 25150977] 

108. Burgess S, Davies NM, Thompson SG. Instrumental variable analysis with a nonlinear exposure-
outcome relationship. Epidemiology (Cambridge, Mass). 2014; 25: 877. [PubMed: 25166881] 

109. Sun Y-Q, et al. Body mass index and all cause mortality in HUNT and UK Biobank studies: 
linear and non-linear mendelian randomisation analyses. BMJ. 2019; 364 11042 doi: 10.1136/
bmj.l1042 

110. North T-L, et al. Using Genetic Instruments to Estimate Interactions in Mendelian Randomization 
Studies. Epidemiology. 2019; 30: e33–e35. DOI: 10.1097/ede.0000000000001096 [PubMed: 
31469698] 

111. Rees J, Foley CN, Burgess S. Factorial Mendelian randomization: using genetic variants to assess 
interactions. International Journal of Epidemiology. 2019. 

112. Plagnol V, Smyth DJ, Todd JA, Clayton DG. Statistical independence of the colocalized 
association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. 
Biostatistics. 2009; 10: 327–334. DOI: 10.1093/biostatistics/kxn039 [PubMed: 19039033] 

113. Wallace C. Statistical Testing of Shared Genetic Control for Potentially Related Traits. Genetic 
Epidemiology. 2013; 37: 802–813. DOI: 10.1002/gepi.21765 [PubMed: 24227294] 

114. Pavlides JMW, et al. Predicting gene targets from integrative analyses of summary data from 
GWAS and eQTL studies for 28 human complex traits. Genome Med. 2016; 8: 84–84. DOI: 
10.1186/s13073-016-0338-4 [PubMed: 27506385] 

115. Hormozdiari F, et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. Am J 
Hum Genet. 2016; 99: 1245–1260. DOI: 10.1016/j.ajhg.2016.10.003 [PubMed: 27866706] 

116. Giambartolomei C, et al. Bayesian Test for Colocalisation between Pairs of Genetic 
Association Studies Using Summary Statistics. PLOS Genetics. 2014; 10 e1004383 doi: 10.1371/
journal.pgen.1004383 [PubMed: 24830394] 

117. Wallace C. Eliciting priors and relaxing the single causal variant assumption in colocalisation 
analyses. PLOS Genetics. 2020; 16 e1008720 doi: 10.1371/journal.pgen.1008720 [PubMed: 
32310995] 

118. Marmot M, Brunner E. Alcohol and cardiovascular disease: the status of the U shaped curve. 
BMJ. 1991; 303: 565–568. [PubMed: 1912889] 

119. Corrao G, Rubbiati L, Bagnardi V, Zambon A, Poikolainen K. Alcohol and coronary heart 
disease: a meta-analysis. Addiction. 2000; 95: 1505–1523. [PubMed: 11070527] 

120. Mukamal KJ, Rimm EB. Alcohol’s effects on the risk for coronary heart disease. Alcohol Res 
Health. 2001; 25: 255–261. [PubMed: 11910702] 

121. https://clinicaltrials.gov/ct2/show/NCT03169530 

122. Dyer O. $100m alcohol study is cancelled amid pro-industry “bias”. BMJ. 2018; 361 k2689 doi: 
10.1136/bmj.k2689 [PubMed: 29921589] 

123. Mitchell G, Lesch M, McCambridge J. Alcohol Industry Involvement in the Moderate Alcohol 
and Cardiovascular Health Trial. Am J Public Health. 2020; 110: 485–488. DOI: 10.2105/
AJPH.2019.305508 [PubMed: 32078349] 

124. https://www.nih.gov/news-events/news-releases/nih-end-funding-moderate-alcohol-
cardiovascular-health-trial 

125. https://www.iarc.fr/wp-content/uploads/2018/07/WCR2014Chapter2-3.pdf 

126. Secretan B, et al. A review of human carcinogens--Part E: tobacco, areca nut, alcohol, coal 
smoke, and salted fish. Lancet Oncol. 2009; 10: 1033–1034. [PubMed: 19891056] 

127. Lawlor DA, et al. Exploring causal associations between alcohol and coronary heart disease risk 
factors: findings from a Mendelian randomization study in the Copenhagen General Population 
Study. Eur Heart J. 2013; 34: 2519–2528. DOI: 10.1093/eurheartj/eht081 [PubMed: 23492672] 

128. Holmes MV, et al. Association between alcohol and cardiovascular disease: Mendelian 
randomisation analysis based on individual participant data. BMJ. 2014; 349 g4164 doi: 10.1136/
bmj.g4164 [PubMed: 25011450] 

Sanderson et al. Page 30

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://clinicaltrials.gov/ct2/show/NCT03169530
https://www.nih.gov/news-events/news-releases/nih-end-funding-moderate-alcohol-cardiovascular-health-trial
https://www.nih.gov/news-events/news-releases/nih-end-funding-moderate-alcohol-cardiovascular-health-trial
https://www.iarc.fr/wp-content/uploads/2018/07/WCR2014Chapter2-3.pdf


129. Silverwood RJ, et al. Testing for non-linear causal effects using a binary genotype in a Mendelian 
randomization study: application to alcohol and cardiovascular traits. Int J Epidemiol. 2014; 43: 
1781–1790. DOI: 10.1093/ije/dyu187 [PubMed: 25192829] 

130. Millwood IY, et al. Conventional and genetic evidence on alcohol and vascular disease aetiology: 
a prospective study of 500 000 men and women in China. The Lancet. 2019; 393: 1831–1842. 

131. Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to 
statins. Cell. 2015; 161: 161–172. DOI: 10.1016/j.cell.2015.01.036 [PubMed: 25815993] 

132. Miller G, Miller N. Plasma-high-density-lipoprotein concentration and development of ischaemic 
heart-disease. The lancet. 1975; 305: 16–19. 

133. Castelli WP, et al. HDL cholesterol and other lipids in coronary heart disease. The cooperative 
lipoprotein phenotyping study. Circulation. 1977; 55: 767–772. [PubMed: 191215] 

134. Collaboration*, T. E. R. F. Major Lipids, Apolipoproteins, and Risk of Vascular Disease. JAMA. 
2009; 302: 1993–2000. DOI: 10.1001/jama.2009.1619 [PubMed: 19903920] 

135. Davey Smith G, Phillips AN. Correlation without a cause: an epidemiological odyssey. 
International Journal of Epidemiology. 2020; 49: 4–14. DOI: 10.1093/ije/dyaa016 [PubMed: 
32244255] 

136. Frikke-Schmidt R, et al. Am Heart Assoc. 2007. 

137. Voight BF, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian 
randomisation study. The Lancet. 2012; 380: 572–580. 

138. Do R, et al. Common variants associated with plasma triglycerides and risk for coronary artery 
disease. Nature genetics. 2013; 45: 1345–1352. [PubMed: 24097064] 

139. Holmes MV, et al. Mendelian randomization of blood lipids for coronary heart disease. European 
heart journal. 2015; 36: 539–550. [PubMed: 24474739] 

140. Holmes MV, Smith GD. REVEALing the effect of CETP inhibition in cardiovascular disease. 
Nature Reviews Cardiology. 2017; 14: 635–636. [PubMed: 28980665] 

141. Barter PJ, et al. Effects of torcetrapib in patients at high risk for coronary events. New England 
journal of medicine. 2007; 357: 2109–2122. [PubMed: 17984165] 

142. Riaz H, et al. Effects of high-density lipoprotein targeting treatments on cardiovascular outcomes: 
A systematic review and meta-analysis. European journal of preventive cardiology. 2019; 26: 
533–543. [PubMed: 30861690] 

143. Richardson TG, Sanderson E, Elsworth B, Tilling K, Smith GD. Use of genetic variation to 
separate the effects of early and later life adiposity on disease risk: mendelian randomisation 
study. bmj. 2020; 369 

144. Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 
2018; 562: 203–209. DOI: 10.1038/s41586-018-0579-z [PubMed: 30305743] 

145. Schooling CM. Selection bias in population-representative studies? A commentary on Deaton 
and Cartwright. Soc Sci Med. 2018; 210: 70. doi: 10.1016/j.socscimed.2018.04.047 [PubMed: 
29754782] 

146. Dixon P, Davey Smith G, von Hinke S, Davies NM, Hollingworth W. Estimating 
Marginal Healthcare Costs Using Genetic Variants as Instrumental Variables: Mendelian 
Randomization in Economic Evaluation. PharmacoEconomics. 2016; 34: 1075–1086. DOI: 
10.1007/s40273-016-0432-x [PubMed: 27484822] 

147. Dixon P, Hollingworth W, Harrison S, Davies NM, Davey Smith G. Mendelian Randomization 
analysis of the causal effect of adiposity on hospital costs. Journal of Health Economics. 2020; 70 
102300 doi: 10.1016/j.jhealeco.2020.102300 [PubMed: 32014825] 

148. Xu ZM, Burgess S. Polygenic modelling of treatment effect heterogeneity. Genet Epidemiol. 
2020; doi: 10.1002/gepi.22347 

149. Holmes MV. Human genetics and drug development. N Engl J Med. 2019; 380: 1076–1079. 
[PubMed: 30865805] 

150. Holmes MV, Richardson TG, Ference BA, Davies N, Davey Smith G. Integrating genomics 
with biomarkers and therapeutic targets to invigorate cardiovascular drug development. Nature 
Reviews Cardiology. 2020. 

Sanderson et al. Page 31

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



151. Kyriacou DN, Lewis RJ. Confounding by Indication in Clinical Research. JAMA. 2016; 316: 
1818–1819. DOI: 10.1001/jama.2016.16435 [PubMed: 27802529] 

152. Schmidt AF, et al. Genetic drug target validation using Mendelian randomisation. Nature 
Communications. 2020; 11 3255 doi: 10.1038/s41467-020-16969-0 

153. Schmidt AF, Hingorani AD, Finan C. Human Genomics and Drug Development. Cold Spring 
Harbor Perspectives in Medicine. 2021. a039230 

154. Munafò MR, et al. A manifesto for reproducible science. Nature Human Behaviour. 2017; 1: 
0021. doi: 10.1038/s41562-016-0021 

155. Munafò MR, Smith GD. Robust research needs many lines of evidence. Nature. 2018. 

156. Davies NM, Dickson M, Davey Smith G, van den Berg GJ, Windmeijer F. The causal effects of 
education on health outcomes in the UK Biobank. Nature Human Behaviour. 2018; 2: 117–125. 
DOI: 10.1038/s41562-017-0279-y 

157. Sanderson E, Davey Smith G, Bowden J, Munafò MR. Mendelian randomisation analysis 
of the effect of educational attainment and cognitive ability on smoking behaviour. Nature 
Communications. 2019; 10 2949 doi: 10.1038/s41467-019-10679-y 

158. Davies NM, et al. Multivariable two-sample Mendelian randomization estimates of the effects of 
intelligence and education on health. Elife. 2019; 8 e43990 [PubMed: 31526476] 

159. Tillmann T, et al. Education and coronary heart disease: mendelian randomisation study. BMJ. 
2017; 358 j3542 doi: 10.1136/bmj.j3542 [PubMed: 28855160] 

160. Davies NM, Dickson M, Davey Smith G, Windmeijer F, van den Berg GJ. The causal effects 
of education on adult health, mortality and income: Evidence from Mendelian randomization 
and the raising of the school leaving age. Preprint available at SSRN. 2019; doi: 10.2139/
ssrn.3390179 

161. Baldwin J, Pingault J-B, Schoeler T, Sallis H, Munafo M. Protecting against researcher bias in 
secondary data analysis: Challenges and solutions. Psyrxiv. 2020. 

162. Sallis H. Triangulation Protocol; Intergenerational Effects of Parental Substance use on Child 
Substance use and Mental Health Outcomes. OSF. 2021. 

163. Hartwig FP, Davies NM, Davey Smith G. Bias in Mendelian randomization due to assortative 
mating. Genetic epidemiology. 2018; 42: 608–620. [PubMed: 29971821] 

164. Brumpton B, et al. Avoiding dynastic, assortative mating, and population stratification biases 
in Mendelian randomization through within-family analyses. Nature Communications. 2020; 11 
3519 doi: 10.1038/s41467-020-17117-4 

165. Morris TT, Davies NM, Hemani G, Smith GD. Population phenomena inflate genetic associations 
of complex social traits. Science Advances. 2020; 6 eaay0328 doi: 10.1126/sciadv.aay0328 
[PubMed: 32426451] 

166. Minică CC, Boomsma DI, Dolan CV, de Geus E, Neale MC. Empirical comparisons of multiple 
Mendelian randomization approaches in the presence of assortative mating. International Journal 
of Epidemiology. 2020; 49: 1185–1193. DOI: 10.1093/ije/dyaa013 [PubMed: 32155257] 

167. Davies NM, et al. Within family Mendelian randomization studies. Human Molecular Genetics. 
2019; 28: R170–R179. DOI: 10.1093/hmg/ddz204 [PubMed: 31647093] 

168. Minică CC, Dolan CV, Boomsma DI, de Geus E, Neale MC. Extending Causality Tests with 
Genetic Instruments: An Integration of Mendelian Randomization with the Classical Twin 
Design. Behavior Genetics. 2018; 48: 337–349. DOI: 10.1007/s10519-018-9904-4 [PubMed: 
29882082] 

169. Howe LJ, et al. Within-sibship GWAS improve estimates of direct genetic effects. bioRxiv. 2021; 
2021.2003.2005.433935 doi: 10.1101/2021.03.05.433935 

170. Taylor AE, et al. Exploring the association of genetic factors with participation in the Avon 
Longitudinal Study of Parents and Children. International Journal of Epidemiology. 2018; 
47: 1207–1216. DOI: 10.1093/ije/dyy060%JInternationalJournalofEpidemiology [PubMed: 
29800128] 

171. Fry A, et al. Comparison of sociodemographic and health-related characteristics of UK Biobank 
participants with those of the general population. American journal of epidemiology. 2017; 186: 
1026–1034. [PubMed: 28641372] 

Sanderson et al. Page 32

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



172. Pirastu N, et al. Genetic analyses identify widespread sex-differential participation bias. Nature 
Genetics. 2021; 53: 663–671. [PubMed: 33888908] 

173. Smit RA, Trompet S, Dekkers OM, Jukema JW, le Cessie S. Survival bias in mendelian 
randomization studies: a threat to causal inference. Epidemiology. 2019; 30: 813. [PubMed: 
31373921] 

174. Schooling CM, et al. Use of multivariable Mendelian randomization to address biases due to 
competing risk before recruitment. Frontiers in genetics. 2020. 

175. Vansteelandt S, Dukes O, Martinussen T. Survivor bias in Mendelian randomization analysis. 
Biostatistics. 2017; 19: 426–443. DOI: 10.1093/biostatistics/kxx050 

176. Hernán MA. Invited Commentary: Selection Bias Without Colliders. Am J Epidemiol. 2017; 185: 
1048–1050. DOI: 10.1093/aje/kwx077 [PubMed: 28535177] 

177. Mahmoud O, Dudbridge F, Smith GD, Munafo M, Tilling K. Slope-Hunter: A robust method 
for index-event bias correction in genome-wide association studies of subsequent traits. bioRxiv. 
2020. 

178. Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 
1942; 150: 563–565. 

179. Debat V, David P. Mapping phenotypes: canalization, plasticity and developmental stability. 
Trends in ecology & evolution. 2001; 16: 555–561. 

180. Kitami T, Nadeau JH. Biochemical networking contributes more to genetic buffering in human 
and mouse metabolic pathways than does gene duplication. Nature genetics. 2002; 32 191194 

181. Gu Z, et al. Role of duplicate genes in genetic robustness against null mutations. Nature. 2003; 
421: 63–66. [PubMed: 12511954] 

182. Hemani G, et al. Automating Mendelian randomization through machine learning to construct a 
putative causal map of the human phenome. bioRxiv. 2017; 173682 doi: 10.1101/173682 

183. Ioannidis JP. The mass production of redundant, misleading, and conflicted systematic reviews 
and meta-analyses. The Milbank Quarterly. 2016; 94: 485–514. [PubMed: 27620683] 

184. Martin AR, et al. Clinical use of current polygenic risk scores may exacerbate health disparities. 
Nature Genetics. 2019; 51: 584–591. DOI: 10.1038/s41588-019-0379-x [PubMed: 30926966] 

185. Paternoster L, Tilling K, Davey Smith G. Genetic epidemiology and Mendelian randomization 
for informing disease therapeutics: Conceptual and methodological challenges. PLOS Genetics. 
2017; 13 e1006944 doi: 10.1371/journal.pgen.1006944 [PubMed: 28981501] 

186. Zhou W, et al. Causal relationships between body mass index, smoking and lung cancer: 
Univariable and multivariable Mendelian randomization. International journal of cancer. 2021; 
148: 1077–1086. [PubMed: 32914876] 

187. Lee JC, et al. Genome-wide association study identifies distinct genetic contributions to prognosis 
and susceptibility in Crohn’s disease. Nature Genetics. 2017; 49: 262–268. DOI: 10.1038/
ng.3755 [PubMed: 28067912] 

188. Kim Y-I. Role of folate in colon cancer development and progression. The Journal of nutrition. 
2003; 133: 3731S–3739S. [PubMed: 14608107] 

189. Davey Smith G, Paternoster L, Relton C. When Will Mendelian Randomization Become 
Relevant for Clinical Practice and Public Health? JAMA. 2017; 317: 589–591. DOI: 10.1001/
jama.2016.21189 [PubMed: 28196238] 

190. Ye T, Shao J, Kang H. Debiased inverse-variance weighted estimator in two-sample summary-
data mendelian randomization. Annals of Statistics. 2021; 49: 2079–2100. 

191. Bowden J, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: 
moving beyond the NOME assumption. International Journal of Epidemiology. 2018; 48: 728–
742. DOI: 10.1093/ije/dyy258 

192. Wang S, Kang H. Weak-Instrument robust tests in two-sample summary-data mendelian 
randomization. Biometrics. doi: 10.1111/biom.13524 

193. Minelli C, et al. The use of two-sample methods for Mendelian randomization analyses on single 
large datasets. International Journal of Epidemiology. 2021. 

Sanderson et al. Page 33

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



194. Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and efficient method for 
Mendelian randomization with hundreds of genetic variants. Nature Communications. 2020; 11 
376 doi: 10.1038/s41467-019-14156-4 

195. Foley CN, Mason AM, Kirk PDW, Burgess S. MR-Clust: clustering of genetic variants in 
Mendelian randomization with similar causal estimates. Bioinformatics. 2020; 37 531541 doi: 
10.1093/bioinformatics/btaa778 

196. Berzuini C, Guo H, Burgess S, Bernardinelli L. A Bayesian approach to Mendelian 
randomization with multiple pleiotropic variants. Biostatistics. 2018; 21: 86–101. DOI: 10.1093/
biostatistics/kxy027 

197. Xu S, Fung WK, Liu Z. MRCIP: a robust Mendelian randomization method accounting for 
correlated and idiosyncratic pleiotropy. Briefings in Bioinformatics. 2021; doi: 10.1093/bib/
bbab019 

198. Qi G, Chatterjee N. Mendelian randomization analysis using mixture models for robust and 
efficient estimation of causal effects. Nature Communications. 2019; 10 1941 doi: 10.1038/
s41467-019-09432-2 

199. Cheng Q, et al. MR-LDP: a two-sample Mendelian randomization for GWAS summary statistics 
accounting for linkage disequilibrium and horizontal pleiotropy. NAR Genom Bioinform. 2020; 2 
lqaa028-lqaa028 doi: 10.1093/nargab/lqaa028 [PubMed: 33575584] 

200. Zhu X, Li X, Xu R, Wang T. An iterative approach to detect pleiotropy and perform Mendelian 
Randomization analysis using GWAS summary statistics. Bioinformatics. 2020; 37 13901400 
doi: 10.1093/bioinformatics/btaa985 

201. Grant AJ, Burgess S. An efficient and robust approach to Mendelian randomization with 
measured pleiotropic effects in a high-dimensional setting. Biostatistics. 2020; doi: 10.1093/
biostatistics/kxaa045 

202. Iong D, Zhao Q, Chen Y. A Latent Mixture Model for Heterogeneous Causal Mechanisms in 
Mendelian Randomization. arXiv preprint. 2020. arXiv:2007.06476 

203. Jiang L, et al. Constrained instruments and their application to Mendelian randomization with 
pleiotropy. Genetic epidemiology. 2019; 43: 373–401. [PubMed: 30635941] 

204. van der Graaf A, et al. Mendelian randomization while jointly modeling cis genetics identifies 
causal relationships between gene expression and lipids. Nature communications. 2020; 11 

205. Jiang L, Xu S, Mancuso N, Newcombe PJ, Conti DV. A Hierarchical Approach Using Marginal 
Summary Statistics for Multiple Intermediates in a Mendelian Randomization or Transcriptome 
Analysis. American Journal of Epidemiology. 2021; 190: 1148–1158. DOI: 10.1093/aje/kwaa287 
[PubMed: 33404048] 

206. DiPrete TA, Burik CAP, Koellinger PD. Genetic instrumental variable regression: Explaining 
socioeconomic and health outcomes in nonexperimental data. Proceedings of the National 
Academy of Sciences. 2018; 115: E4970–E4979. DOI: 10.1073/pnas.1707388115 

207. Howey R, Shin S-Y, Relton C, Davey Smith G, Cordell HJ. Bayesian network analysis 
incorporating genetic anchors complements conventional Mendelian randomization approaches 
for exploratory analysis of causal relationships in complex data. PLOS Genetics. 2020; 16 
e1008198 doi: 10.1371/journal.pgen.1008198 [PubMed: 32119656] 

208. Schmidt AF, Dudbridge F. Mendelian randomization with Egger pleiotropy correction and weakly 
informative Bayesian priors. International Journal of Epidemiology. 2017; 47 12171228 doi: 
10.1093/ije/dyx254 

209. Bucur IG, Claassen T, Heskes T. Inferring the direction of a causal link and estimating its effect 
via a Bayesian Mendelian randomization approach. Statistical Methods in Medical Research. 
2019; 29: 1081–1111. DOI: 10.1177/0962280219851817 [PubMed: 31146640] 

210. Holmes MV, Richardson T, Ference BA, Davies N, Davey Smith G. Integrating genomics 
with biomarkers and therapeutic targets to invigorate cardiovascular drug development. Nature 
Reviews Cardiology. 2020. 

211. Davey Smith G, Holmes MV, Davies NM, Ebrahim S. Mendel’s laws, Mendelian randomization 
and causal inference in observational data: substantive and nomenclatural issues. European 
journal of epidemiology. 2020; 35: 99–111. DOI: 10.1007/s10654-020-00622-7 [PubMed: 
32207040] 

Sanderson et al. Page 34

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



212. Davey Smith G, et al. Clustered environments and randomized genes: A fundamental distinction 
between conventional and genetic epidemiology. Plos Med. 2007; 4: 1985–1992. DOI: 10.1371/
journal.pmed.0040352 

213. Munafò MR, Higgins JPT, Smith GD. Triangulating Evidence through the Inclusion 
of Genetically Informed Designs. Cold Spring Harb Perspect Med. 2020; doi: 10.1101/
cshperspect.a040659 

214. Pearl, J. Causality. Cambridge university press; 2009. 

215. Keele L, Zhao Q, Kelz RR, Small D. Falsification Tests for Instrumental Variable Designs 
With an Application to Tendency to Operate. Med Care. 2019; 57: 167–171. DOI: 10.1097/
MLR.0000000000001040 [PubMed: 30520835] 

216. Brookhart MA, Rassen JA, Schneeweiss S. Instrumental variable methods in comparative 
safety and effectiveness research. Pharmacoepidemiology and drug safety. 2010; 19: 537–554. 
[PubMed: 20354968] 

217. Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: 
interpretation and presentation of causal estimates. European Journal of Epidemiology. 2018; 
33: 947–952. DOI: 10.1007/s10654-018-0424-6 [PubMed: 30039250] 

218. Wang L, Tchetgen Tchetgen E. Bounded, efficient and multiply robust estimation of average 
treatment effects using instrumental variables. J R Stat Soc Series B Stat Methodol. 2018; 80: 
531–550. DOI: 10.1111/rssb.12262 [PubMed: 30034269] 

219. West-Eberhard, MJ. Developmental plasticity and evolution. Oxford University Press; 2003. 

220. Ames BN. Cancer prevention and diet: help from single nucleotide polymorphisms. Proc Natl 
Acad Sci U S A. 1999; 96: 12216–12218. DOI: 10.1073/pnas.96.22.12216 [PubMed: 10535898] 

221. Ebrahim S, Davey Smith G. Mendelian randomization: Can genetic epidemiology help redress 
the failures of observational epidemiology? Human Genetics. 2008; 123: 15–33. DOI: 10.1007/
s00439-007-0448-6 [PubMed: 18038153] 

222. Davey Smith G. Epigenesis for epidemiologists: Does evo-devo have implications for population 
health research and practice? Int J Epidemiol. 2012; 41: 236–247. DOI: 10.1093/ije/dys016 
[PubMed: 22422459] 

223. Hill WD, et al. Molecular Genetic Contributions to Social Deprivation and Household Income 
in UK Biobank. Curr Biol. 2016; 26: 3083–3089. DOI: 10.1016/j.cub.2016.09.035 [PubMed: 
27818178] 

224. Labrecque JA, Swanson SA. Interpretation and Potential Biases of Mendelian Randomization 
Estimates With Time-Varying Exposures. American Journal of Epidemiology. 2018; 188: 231–
238. DOI: 10.1093/aje/kwy204 

225. Cardon LR, Palmer LJ. Population stratification and spurious allelic association. The Lancet. 
2003; 361: 598–604. 

226. Loh P-R, et al. Efficient Bayesian mixed-model analysis increases association power in large 
cohorts. Nature genetics. 2015; 47: 284. [PubMed: 25642633] 

227. Zhou W, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-
scale genetic association studies. Nature genetics. 2018; 50: 1335–1341. [PubMed: 30104761] 

228. Price AL, et al. Principal components analysis corrects for stratification in genome-wide 
association studies. Nature genetics. 2006; 38: 904–909. [PubMed: 16862161] 

229. Lawson DJ, et al. Is population structure in the genetic biobank era irrelevant, a challenge, or an 
opportunity? Human Genetics. 2020; 139: 23–41. [PubMed: 31030318] 

230. Haworth S, et al. Apparent latent structure within the UK Biobank sample has implications for 
epidemiological analysis. Nature communications. 2019; 10: 1–9. 

231. Howe LJ, et al. Genetic evidence for assortative mating on alcohol consumption in the UK 
Biobank. Nature Communications. 2019; 10 5039 doi: 10.1038/s41467-019-12424-x 

232. Nordsletten AE, et al. Patterns of nonrandom mating within and across 11 major psychiatric 
disorders. JAMA psychiatry. 2016; 73: 354–361. [PubMed: 26913486] 

Sanderson et al. Page 35

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Box 1

The principles of the “Mendelian randomization” approach

The MR approach draws on Mendel’s first and second laws of genetic inheritance: the 

law of segregation and the law of independent assortment.211 The law of segregation 

indicates that at every point in the autosomal genome, offspring randomly inherit one 

allele from their mother and one allele from their father. The law of independent 

assortment states that these alleles will be passed to offspring independently of each 

other, other than in regions of the genome that are genetically linked in the DNA of the 

offspring.

The first extended description of MR1 was in the context of family-based studies. Its 

analogy with randomized controlled trials was in the context of the random allocation 

of variants from parents to their children. At the time of this first description, adequate 

family-based data were not available and “approximate” MR in population studies was 

advocated for instead; indeed, family-based data and MR studies are still limited.1,3 

The advocacy of population studies was based on the premise that at a population 

level, genetic variants can identify groups that differ, on average, with respect to a 

modifiable exposure. In these studies, genetically defined group membership should be 

unrelated to factors that may confound conventional observational associations, including 

behavioural, social and physiological exposures that occur after conception.4,212,213 

Therefore, genetic associations between traits should be free from confounding and any 

difference in outcomes between groups defined by genetic variation can be attributed to 

the exposure, assuming no selection bias owing to that genetic variation.
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Box 2

Instrumental variable (IV) conditions

The IV conditions are required to hold for the results from any IV estimation —

including a randomized controlled trial or Mendelian randomization estimation — to 

provide a valid test of the null hypothesis that the exposure has no effect on the 

outcome.12,17,24,53,214

One way the IV conditions can be expressed formally is with directed acyclic graphs (see 

figure)17; solid red lines show effects that must exist and dashed lines representing effects 

that must not exist if an IV is to be used to assess the causal effect of X on Y. G is the 

instrumental variable (a genetic variant or set of genetic variants in MR). U represents 

unobserved confounders. We do not consider here the potential bias owing to selection.

The IV conditions are:

• IV condition 1: Relevance. The instrumental variable is associated with the 

exposure.

• IV condition 2: Exchangeability. There are no causes of the instrumental 

variable that also influence the outcome through mechanisms other than the 

exposure of interest (no confounders of the IV and the outcome).

• IV condition 3: The exclusion restriction. The instrumental variable does not 

affect the outcome other than through the exposure and does not affect any 

another trait which has a downstream effect on the outcome of interest.

Only the first condition can be formally tested. The other two conditions can be 

disproven and otherwise assessed through a range of sensitivity analyses, but cannot be 

demonstrated to be true.67,215 Methods to test the first condition and to conduct analysis 

to assess the plausibility of the second and third conditions are discussed in the Results 

section.
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Box 3

Point-estimate-identifying conditions

The instrumental variable (IV) conditions described in Box 2 are sufficient to test for 

the presence of a causal effect. However, performing estimation and interpretation of the 

causal effect requires at least one additional assumption. The effect of the exposure (X) 

on the outcome (Y) may differ for different people. These differences require additional 

assumptions to be placed on the relationship between the instruments, exposure and 

outcome to identify both the causal effect of the exposure on the outcome, and who that 

causal effect estimate applies to. Each assumption gives a slightly different interpretation 

for the causal effects obtained from MR analysis.

There are two common options for point-estimate-identifying conditions. The first is 

homogeneity of the effect of the exposure on the outcome, or that either (a) the effect of 

the exposure on the outcome is the same for everyone, regardless of the starting value 

of X or any other individual characteristics, or (b) that the effect of the exposure on the 

outcome does not depend on the value of the instrument. (a) gives the interpretation that 

the causal effect estimate is ‘the causal effect of the exposure on the outcome’, whereas 

(b) gives the interpretation that the effect estimate obtained is the ‘population average 

of the causal effect of the exposure on the outcome’. The second common assumption 

is monotonicity in the association between the genetic variants and the exposure — 

that the direction of the effect of the genetic variant on the exposure is the same for 

everyone.2,28,216–218 This gives the interpretation that the effect estimate is the effect 

of the exposure on the outcome in those people whose exposure is changed by the 

instrument. In MR, this is the average effect of differences in the exposure that are 

attributable to differences in the genetic variants.

Which assumption is most relevant will depend on the particular estimation; however, the 

assumption of monotonicity is most commonly relevant for MR estimation. The point-

estimate-identifying condition remains an area of debate and methodologic development, 

with researchers identifying additional possible assumptions that would support a causal 

interpretation of the IV effect estimate.
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Box 4

Issues interpreting MR results

Gene-environment equivalence

Typically, MR considers exposures that are modifiable and so evidence of a causal effect 

of the exposure on the outcome can be used to infer that intervening on the exposure 

will lead to a change in the outcome. However, making such inference depends on the 

exposure of interest fulfilling the consistency criterion that however the intervention is 

applied to alter the exposure, the effect on the outcome is the same. This means that 

changes in an exposure by either a hypothetical change in genotype or by a change in 

the environment should produce the same downstream effect on an outcome 219–222. 

For example, genotypic influences on circulating cholesterol level or a similar change 

in cholesterol level induced by dietary influences should lead to the same effect on 

coronary heart disease. Although many exposures can be closely proxied by genetic 

variation, for others — such as those that reflect aspects of social deprivation and income 

— it is unlikely that genetic variation will mimic environment changes exactly223. Gene-

environment equivalence is a fundamental principle in MR and consideration should be 

given to how closely it is likely to hold when interpreting the results from any MR study.

Interpretation of results for time-varying exposures

Genetic variants are fixed throughout an individual’s lifetime and MR estimates can 

therefore be interpreted as the ‘lifetime effect’ of the exposure on the outcome.1,9 If 

the association between the genetic variants and the exposure is constant across the life 

course, this lifetime effect can be interpreted as the effect of having a level of exposure 

that is a unit higher at every time point.224 However, for many exposures the association 

between genetic variants and the exposure may vary across the life course; for example, 

genetic variants associated with body mass index (BMI) have been shown to have a 

wide range of differential effects between childhood and adulthood.143 In this scenario, 

MR estimates can be interpreted as the lifetime effect of being on a trajectory for the 

exposure associated with having a unit higher level of the exposure at the time it is 

measured.21 MVMR can be used to estimate causal effects of the different time periods 

and potentially identify particularly relevant periods across the lifecourse.143 That MR 

estimates the lifetime effect of the exposure on the outcome means that MR estimates 

can be larger than estimates obtained from alternative methods of estimation such as 

randomized controlled trials, as the total length of time over which the exposure can have 

an effect is much longer.
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Box 5

Sources of instrument–outcome confounding in MR studies

Population stratification

Population stratification is the association between genetic variants and phenotypes that 

occurs because of underlying structure within the population.53,225 This underlying 

structure reflects the fact that genetic mutations accrue and accumulate across 

generations, and that individuals differentially select partners who are geographically 

proximal. Within GWAS studies, population stratification is often controlled for by 

adjusting for the top principal components from a principal components analysis of 

the genetic variants or through the use of linear mixed models. 226–228 However, there 

is increasing evidence that these approaches do not fully account for the underlying 

structure for a number of phenotypes.229,230 Population stratification biases estimates 

from MR studies by creating an association between the genetic variants and the outcome 

as illustrated in panel a of the figure.164,229 In the figure, G represents genetic variants, 

X represents exposure and Y represents outcome in a MR study. P represents population 

level factors.

Dynastic effects

Dynastic effects are the direct effects on an individual’s phenotypes of the phenotypes 

of their parents, and potentially to a lesser extent more distantly related relatives such 

as grandparents. As parental genotypes have a direct effect on the genotype of an 

individual, if a parent’s phenotype is influenced by their genotype and influences the 

individuals phenotype this will induce confounding between the genetic variants and 

phenotype of the offspring, as illustrated in panel b of the figure.165 If the exposure has 

a non-null causal effect on the outcome in a MR study, these dynastic effects will induce 

instrument–outcome confounding and bias the results of the MR study.164 In the figure, 

GA, XA and YA are the genetic variants, exposure and outcome respectively for ancestors 

(such as parents) of the individuals under consideration in the MR estimation.

Assortative mating

Assortative mating occurs when individuals select partners who are more similar 

to themselves than would be expected by chance, with respect to one or multiple 

phenotypes.231,232 If the genetically influenced level of the phenotype influences 

selection, this assortment can lead to spurious genetic associations with the phenotype or 

phenotypes that assortment is based on or that are causally dependent on the assortment 

phenotypes. This consequently biases MR estimates involving these phenotypes.163,164
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Glossary

Instrumental variable: A variable associated with an exposure which is not associated 

with the outcome through any other pathway.

Pleiotropy: Pleiotropy describes the phenomena of genetic variants being associated with 

multiple phenotypes.

Horizontal pleiotropy: The phenomena of genetic variant associated with multiple 

phenotypes on different pathways.

Vertical pleiotropy: The phenomena of genetic variant associated with multiple 

phenotypes on the same pathway.

Confounder: A trait that influences both the exposure and outcome of interest.

RCT: Randomized control trial

Bidirectional: An effect that acts in both directions between a pair of traits so that 

changing one will change the other.

Non-linear effect: Where the effect of an exposure on an outcome depends on the level of 

the exposure.

Interaction effects: Where the effect of an exposure on the outcome depends on the value 

of another trait.

Natural experiment: An epidemiological study in which there is no intervention

First-stage F statistic: F-statistic used to test the strength of association between the 

instrument(s) and the exposure in an Instrumental variable estimation.

Linkage disequilibrium: Correlation between genetic variants located closely together on 

the genome.

Collider bias: Bias occurring due to conditioning on a variable that is dependent on both 

the exposure and outcome.
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Figure 1. An overview of Mendelian randomization studies
This overview illustrates the parallels between Mendelian randomization (MR) and 

randomized controlled trials (RCTs). In MR, randomization is due to the random allocation 

of alleles. This conceptualisation was originally based on between-sibling variation, where 

allocation of alleles is totally random and not dependent on population-level variation (see 

also Box 1). Inference from MR in this way relies on the assumption of gene-environment 

equivalence — that a change in the exposure owing to genetic variation has the same effect 

as a change in that exposure owing to the phenotypic environment.
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Figure 2. Illustration of a randomized control study and instrumental variable estimation
Figure illustrating (a) a randomized controlled trial (RCT) and (b) a Mendelian 

randomization (MR) study to estimate the effect of lowering C-reactive protein (CRP) on 

systolic blood pressure (SBP). The arrows highlighted in red show the causal effect of 

interest.

Sanderson et al. Page 43

Nat Rev Methods Primers. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. Types of pleiotropy
Figure showing different types of pleiotropy in Mendelian randomization (MR), where G is 

a genetic variant or set of genetic variants associated with the exposure, X is the exposure 

of interest, Y is the outcome of interest, U is an unmeasured confounder and C is another 

(potentially unmeasured) phenotype that is also associated with the genetic variants. (a,b) 

Horizontal pleiotropy. Sometimes referred to as biological pleiotropy, this occurs where a 

genetic variant is associated with multiple phenotypes and these phenotypes lie on different 

pathways. (a) Horizontal pleiotropy with bias. The third instrumental variable condition 

(IV3) is violated in this case as there is a pathway from the genetic variant to the outcome 

that is not via the exposure. B) Horizontal pleiotropy with no bias. As the genetic variants 

are not associated with other phenotypes on the pathway to the outcome, MR estimates 

are not biased by this form of pleiotropy. C) Confounding by linkage disequilibrium. 

When G2 has an effect on the outcome through a pathway that is not via the exposure, 

correlation between G1 and G2 creates a bias that is indistinguishable from that shown in 

(a). d) Vertical pleiotropy. Another phenotype lies on the genetic variant–exposure–outcome 

pathway. This could occur either before or after the exposure of interest. Sometimes referred 

to as mediated pleiotropy, this form of pleiotropy does not bias MR studies and can even 

be used to elucidate causal intermediaries.210 e) Misspecification of the primary phenotype. 

Vertical pleiotropy can bias MR estimates if the wrong phenotype is specified as the primary 

phenotype. Here the genetic variants are primarily associated with C. If X is misspecified 

as the primary phenotype, MR estimation of the effect of X on Y would be biased by 

the alternative pathways from C to Y. f) Correlated pleiotropy. If genetic variants for the 

exposure are also associated with a confounder of the exposure and outcome this creates 

correlated pleiotropy. In this setting, the size of the pleiotropic effect is correlated with the 

size of the association between the genetic variant and the exposure. This form of pleiotropy 

is particularly hard to detect and correct for. Scenarios (b) and (d) give settings where the 

pleiotropy will not bias the MR estimation. All other settings violate assumption IV2 or IV3 

and can cause meaningful bias in MR estimation.
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Figure 4. Data visualization
Figure showing different visualisations of a summary-data MR analysis. The example shown 

is estimating the effect of body mass index (BMI) on coronary heart disease (CHD). (a) 

A scatter plot of the SNP–exposure and SNP–outcome associations for each SNP with an 

inverse variance weighted estimated line fitted. (b) The same plot with the robust approaches 

weighted mode, weighted median and MR Egger added (note that the weighted median is 

obscured by the weighted mode). (c) The same data plotted using a radial MR framework 

to identify outliers, the horizontal axis gives the weight given to each point and the vertical 

axis the weight multiplied by the effect estimate. The inverse variance weighted estimated 

fitted line is shown. (d) A leave-one-out analysis where the inverse-variance weighted (IVW) 

estimate has been recalculated excluding one SNP at a time to look for SNPs that highly 

influence the overall result. These graphs were created using the ‘TwoSampleMR’ and 

‘RadialMR’ R packages, using data from the OpenGWAS project.
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Figure 5. Illustration of the multivariable Mendelian randomization model
Figure illustrating multivariable Mendelian randomization for three genetic variants (G1, G2, 

G3), two exposures (X1, X2) and an outcome Y. Confounders U1 and U2 are assumed to be 

unknown.
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Figure 6. Illustration of variants in linkage disequilibrium and shared causal variants identified 
by colocalization
Figure illustrating colocalization. (a) An example of distinct causal variants that violate the 

instrumental variable assumption IV2. G1 and G2 represent two genetic variants and the link 

between them is non-directional, reflecting linkage disequilibrium (LD). (b, c) Examples of 

a shared causal variant. (b) A violation of the assumption IV2. (c) A situation that satisfies 

the IV assumptions.
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Table 1
List of MR estimation methods

Category Core IV assumption relaxed Individual level data Summary data

‘Basic’ MR method None Wald ratio estimation, two-
stage least squares regression 
analysis (2SLS)a

Wald ratio estimation, inverse variance 

weightinga,38

Weak instrument robust 
methods

IV1; allows for weak 
instruments

Limited information maximum 
likelihood (LIML)27, allele 
score approaches27

MR RAPS88, dIVW190, MR GRAPPLE89, 
NOME adjustment191, two-sample AR192

Outlier/variant selection 
and removal

IV3; allows for balanced/
sparse pleiotropy

Weighted median193 Weighted mediana,83

Outlier/variant selection 
and removal

IV3; allows for (some) 
directional pleiotropy

sisVIVE71, adaptive LASSO72, 
weighted mode

193
Weighted modea,84, MR LASSO85, Steiger 

filteringa,94, Welch-weighted Egger95, 
contamination mixture194, GSMR80, MR-
Clust195, Bayesian MIMR196, CIV73

Outlier/variant 
adjustment

IV3; allows for balanced 
pleiotropy

Limited approaches currently 
available

MR RAPS88, MRCIP197

Outlier/variant 
adjustment

IV3; allows for (some) 
directional pleiotropy

Limited approaches currently 
available

MR TRYX86, MR Robust85, MR 
CAUSE90, MR PRESSO87, MR 
GRAPPLE89, MRMix198, MR-LDP199, 
IMRP200, regularization201, MR-PATH202

Estimation adjustment IV3; allows for balanced 
pleiotropy

Limited approaches currently 
available

dIVW190

Estimation adjustment IV3; allows for (some) 
directional pleiotropy

Constrained instrumental 
variables203, multivariable 
MR74

MR Egger91, multivariable MR
74,92

, MR Link
204

, 

hJAM205, GIV206, Bayesian network 
analysis207, BMRE208, BayesMR209

Environmental control 
adjustment

IV3; allows for (some) 
directional pleiotropy

MR GxE76,77, MR GENIUS78 Limited approaches currently available

a
Most commonly used methods; note that each method relies on strong assumptions and may not be the most appropriate in any particular setting. 

These categories are not mutually exclusive and the classification of some methods may be ambiguous. Each method will impose some alternative 
version of the IV condition that is relaxed for consistent estimation with that method. Methods that are robust to directional pleiotropy impose 
(often strong) assumptions on the nature of that pleiotropy to enable estimation. Novel MR estimation methods are being developed continually and 
will generally fit into one or more of these categories.
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Table 2
Summary of selected software packages for performing MR analyses

Package name Software Description

Individual-level data

AER R Includes the ivreg function for two-stage least squares (2SLS) estimation

OneSampleMR R Various functions for one-sample instrumental variable (IV) analyses, including the 
Sanderson-Windmeijer F-statistic, and various estimators (two-stage predictor substitution, 
two-stage residual inclusion, structural mean models)

ivmodel R Various functions for individual level IV analyses, includes limited information maximum 
likelihood (LIML), weak instrument tests and sensitivity analyses.

ivtools R Various functions for individual level IV analyses, including functions to fit structural 
mean models

ivonesamplemr Stata Includes various estimators (two-stage predictor substitution, two-stage residual inclusion, 
structural mean models) for one-sample IV analyses.

ivreg2 Stata Stata module for extended instrumental variables/2SLS and generalized method of 
moments (GMM) [Au:Added abbreviation - OK?YES] estimation.

ivregress Stata Linear IV estimators including two-stage least squares.

Summary-level data

MendelianRandomization R Implements several methods for performing Mendelian randomization analyses with 
summarized data and an interface with the PhenoScanner database.

TwoSampleMR and MR-Base app R/web-app MR-base is an analytical platform for Mendelian randomization. TwoSampleMR is the 
R package providing the functions to perform MR estimation. Both are linked to the 
OpenGWAS project, a large database of GWAS summary statistics.

mrrobust Stata Provides various programs for two-sample MR analyses in Stata
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