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Abstract

The implementation of recommendations for type 2 diabetes (T2D) screening and diagnosis 

focuses on the measurement of glycated hemoglobin (HbA1c) and fasting glucose. This approach 

leaves a large number of individuals with isolated impaired glucose tolerance (iIGT), who are 

only detectable through oral glucose tolerance tests (OGTTs), at risk of diabetes and its severe 

complications. We applied machine learning to the proteomic profiles of a single fasted sample 

from 11,546 participants of the Fenland study to test discrimination of iIGT defined using the 

gold-standard OGTTs. We observed significantly improved discriminative performance by adding 

only three proteins (RTN4R, CBPM and GHR) to the best clinical model (AUROC = 0.80 (95% 

confidence interval: 0.79–0.86), P = 0.004), which we validated in an external cohort. Increased 
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plasma levels of these candidate proteins were associated with an increased risk for future T2D in 

an independent cohort and were also increased in individuals genetically susceptible to impaired 

glucose homeostasis and T2D. Assessment of a limited number of proteins can identify individuals 

likely to be missed by current diagnostic strategies and at high risk of T2D and its complications.

Introduction

Current clinical guidelines for type 2 diabetes (T2D) screening and diagnosis are based on 

glycated haemoglobin (HbA1c) and fasting glucose (FG) levels for reasons of practicality; 

however alternative tests can be used1,2. Globally, over 7.5% of adults have impaired glucose 

tolerance (IGT)3 with increased prevalence reported in older individuals4 and specific ethnic 

groups, such as people from Southeast Asia5. A substantial proportion of people with 

IGT (28 – 86%)6–8 can only be identified through oral glucose tolerance tests (OGTTs), 

which are inconvenient and time-consuming. Individuals with isolated IGT (iIGT), that is, 

2-h plasma glucose (2hPG) ≥7.8 and < 11.1 mmol/L but normal HbA1c and FG, remain 

undetected by current T2D detection strategies9–12 but are at a very high risk of developing 

diabetes (annualized T2D relative risk of 5.5 compared to normoglycemic individuals)13 

and presenting with its severe micro- and macrovascular complications9–12,14. Compared to 

individuals with fasting hyperglycaemia, mortality is twice as high in the iIGT group over a 

period of 46 5 to 12 years15,16.

Small proof-of-concept studies in cohorts of high-risk individuals have demonstrated the 

value of deep molecular profiling for early identification of pathways that are differentially 

regulated between individuals with and without insulin resistance17,18 and to guide its 

prediction19. Deep profiling of the plasma proteome at population scale has become possible 

through aptamer-based affinity assays20. The systematic study of the circulating proteome 

promises to improve strategies for prediction and diagnosis18 as well as aetiological 

understanding, including identification of novel pathways leading to T2D and refinement 

of aetiological subtypes.

Because of the high global prevalence of IGT and iIGT, their severe complications, and 

the currently unmet need of screening strategies that can identify iIGT without a challenge 

test, we used machine learning to test whether large-scale proteomic profiling of a single 

fasted sample could identify individuals with iIGT and improve current clinical models. 

We then tested whether the most discriminatory proteins were affected by fasting status, 

to assess the feasibility of using non-fasted samples to identify iIGT. To gain insights into 

IGT and iIGT aetiology, we 1) identified and characterised biochemical, phenotypic, and 

anthropometric influences on discriminatory proteins, 2) investigated whether their plasma 

levels were associated with the risk of future T2D in two independent prospective cohorts 

and 3) tested the influence of genetic susceptibility to T2D or related phenotypes on protein 

levels.

Results

We used an aptamer-based assay to target 4,775 distinct fasting plasma proteins by 4,979 

aptamers in 11,546 participants (5,389 men and 6,157 women) without diagnosed diabetes 
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from the contemporary Fenland study21 (baseline visit in 2005-2015, mean age 48.5 

years (7.5 s.d.), Supplementary Table 1), as previously described18 (Methods). Participants 

completed a 75-g OGTT (Figure 1a). We defined isolated post challenge hyperglycaemia as 

2hPG ≥7.8 mM but HbA1c <42mmol mol–1 and FG <6.1 mM. This definition captured all 

participants with iIGT (2hPG of 7.8-11.1mM but HbA1c <42mmol mol–1 and FG <6.1 mM) 

as well as participants with isolated post-challenge hyperglycaemia in the diabetic range 

(2hPG ≥ 11.1 mM but HbA1c <42mmol mol–1 and FG <6.1 mM, n=117), that is, high-risk 

individuals missed by standard FG and HbA1c testing. For simplicity, we refer from here on 

to IGT (or iIGT) for all individuals with 2hPG ≥ 7.8 mM, without specifically distinguishing 

post-challenge hyperglycaemia ≥ 11.1 mM. We used a least absolute shrinkage and selection 

operator (LASSO) regression framework implemented as a three-step approach, including 

independent feature selection (50% sample size), optimization (25%) and validation (25%) 

to discriminate IGT (prevalence 6.7%) and iIGT (3.9%) based on fasting assessment of 

4,775 proteins (targeted by 4,979 aptamers) (Figure 1b). We defined highly discriminatory 

proteins as those selected in >80%, 90%, or 95% of bootstrap subsamples of the study 

population during feature selection (Extended Data Figure 1).

Proteomic signatures to discriminate IGT and IIGT

We identified 65 and 68 proteins that achieved an area under the receiver operating 

characteristic curve (AUROC) (95% confidence interval) of 0.83 (0.80 – 0.86) and 0.77 

(0.72 – 0.81) , respectively, for discrimination of IGT and iIGT in the independent validation 

set (Extended Data Figure 2, Supplementary Tables 2 and 3). This represented a significantly 

better predictor when compared to the performance of a T2D genetic risk score (T2D-GRS, 

AUROCIGT 0.58 (0.52 – 0.63), AUROCiIGT 0.54 (0.49 – 0.60)) (Figure 2a and b, and 

Extended Data Figure 3). Protein-based models further outperformed the standard patient 

information-based model (based on the Cambridge T2D risk score including age, sex, family 

history of diabetes, smoking status, prescription of steroid or antihypertensive medication 

and body mass index (BMI))22 (AUROCIGT = 0.71 (0.67 – 0.75); AUROCiIGT = 0.71 (0.66 

– 0.76)) and the standard clinical model that additionally included blood test results, that is, 

FPG and HbA1c (AUROCIGT= 0.78 (0.74 – 0.82); AUROCiIGT=0.75 (0.70 – 0.80)) (Figure 

2a and b, Supplementary Table 4).

Considering a limited set of the most informative proteins that were identified by the feature 

selection framework (Methods), discrimination was still superior to the standard clinical 

model adding only eight proteins for IGT (AUROCIGT 0.83 (0.80 – 0.86), p-value = 4.13 

× 10-5, Figure 2a, Supplementary Table 2) and three proteins for iIGT (AUROCiIGT 0.80 

(0.76 – 0.85), p-value = 0.004, Figure 2b, Supplementary Table 3), including two proteins 

(reticulon-4 receptor (RTN4R) and Carboxypeptidase M (CBPM)) selected for both (Figure 

2c, Supplementary Table 523–33). The weights for the variables included in these final 

models are available in Supplementary Table 6. We observed significant improvement over 

and above the clinical model of similar magnitude in the independent Whitehall II (WHII) 

study (Supplementary Table 7 and 8, Extended Data Figure 4).

To identify participants with iIGT and IGT, we chose a cut-off for the clinical + protein 

model that optimized sensitivity (recall) at 0.70 and 0.71, respectively, which yielded a 
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positive predicted value (precision) of 0.20 and 0.13, respectively. The net reclassification 

index was higher for the final iIGT model (14.5%) compared to IGT (6.5%), consistent with 

the current lack of informative predictors.

Of the nine distinct proteins included in the two final models, eight were not significantly 

affected by fasting status (Methods) with maximum postprandial fold changes ranging 

between 0.07 and 0.16; only HTRA1 showed some evidence of a post-prandial increase 

(maximum fold change= 0.15, p-value=0.004, Supplementary Table 9).

Finally, we tested model performance de novo omitting the three most informative proteins 

to predict iIGT. The new model included seven proteins and still performed significantly 

better than the best clinical model (AUROC = 0.78 (0.73 – 0.83), p-value = 0.04, Extended 

Data Figure 5). This finding illustrates redundancy in the protein biomarkers available to 

select from for iIGT prediction, providing practical benefits for clinical implementation, for 

example, with regard to flexibility of prioritizing choice of proteins more easily targeted by 

clinical chemistry assays and least affected by fasting status or sample handling.

Proteomically informed screening strategies

We calculated the numbers needed to screen (NNS) to determine how many OGTTs would 

need to be performed to identify one participant with iIGT using a three-stage screening 

approach (Figure 3). We stratified all Fenland individuals based on the patient-derived 

information model in the first instance and based on their HbA1c levels and the three-protein 

iIGT model in the second instance (Methods). According to current guidelines2, individuals 

at high predicted risk based on the patient-derived information model, but but who have 

HbA1c levels below the cutoffs for prediabetes or T2D2 would not be considered for further 

testing (N Fenland = 4163, NNS = 14, Figure 3). Applying the clinical + three-protein iIGT 

model on this group enabled identification of a high-risk subgroup (N = 1739) in which 

application of an OGTT should be considered, because the NNS was only 7 to identify one 

additional individual with iIGT (Figure 3, Supplementary Table 10). Hence, our proposed 

approach identified an additional >30% of individuals who would be reclassified (as having 

prediabetes) and could be offered preventative interventions, that is, a substantial proportion 

of high-risk individuals who would otherwise be missed by current strategies. To test for 

potential bias in the NNS estimates arising from overfitting, we applied the same screening 

algorithm in the test set only, which provided internal validation for the estimates and results 

from the entire Fenland set (Extended Data Figure 6).

Characterisation of discriminatory proteins

To investigate whether increased genetic risk of diabetes and related metabolic risk factors 

affects the abundances of the identified proteins, we compared their plasma levels in 

individuals with higher versus lower genetic risk based on the GRS for T2D33 and related 

endophenotypes, including FG34 , fasting insulin (FI)34, 2hPG34, andBMI35, using linear 

regression models. We found evidence of significant, directionally concordant associations 

between genetic susceptibility to these phenotypes and plasma abundance for four of the 

nine most predictive IGT and iIGT proteins, (p-value < 0.001,Figure 4c). Plasma abundances 

of growth hormone receptor (GHR), RTN4R, CBPM and the serine protease HTRA1 was 
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associated with genetic susceptibility to more than one of these phenotypes, including FI, 

T2D and BMI.

The three most predictive iIGT proteins and six of the eight most predictive IGT proteins 

were significantly associated with higher measured concentrations of fasting and 2-h glucose 

and insulin.

Chondroadherin (CHAD) was the only protein inversely associated with all four measures. 

From the remaining two IGT predictor proteins, only cartilage intermediate layer protein 

2 (CILP2) was significantly inversely associated with FG (p-values<0.001, Figure 3a). In 

the independent prospective WHII cohort (n = 1,492, including 521 incident T2D cases, 

Supplementary Table 11), all proteins were significantly associated with an increased risk of 

developing future T2D, except for CHAD, which was inversely associated (p-value < 0.006, 

Figure 4b), and CILP2, which showed no significant association. Effect sizes ranged from 

0.88 to 1.51 (hazard ratio (HR) for T2D per s.d. difference in the protein target) adjusting 

for age, sex, and BMI. Associations for HTRA1, GHR, and CBPM remained significant 

even upon additional adjustment for FG, total triglycerides, high-density lipoprotein (HDL) 

cholesterol and lipid lowering medication (Supplementary Table 12).

Informative biomarkers are not only relevant to improve screening strategies but can also 

inform understanding of the separate and shared aetiologies of IGT and iIGT. Comparison 

of protein ranking from IGT as opposed to iIGT feature selection revealed that most 

discriminatory proteins differed strongly between the IGT and iIGT selections (Extended 

Data Figure 7) with only 11 proteins achieving similarly high rankings for both outcomes, 

that is, being selected in >80% across random subsets of the study population. The top 

two biological Gene Ontology (GO) term processes differed between the 65-IGT protein 

signature ('proteolysis' and 'cytokine-mediated signalling pathway' Supplementary Table 13) 

and the 68-iIGT protein signature ('cartilage development', 'collagen fibril organization' 

Supplementary Table 14), however, none were significantly enriched following Bonferroni 

adjustment for multiple comparisons.

To identify potential differences in factors influencing these IGT and iIGT protein 

signatures, we computed the proportion of variance in the first principal component 

ofthe 65-IGT and 68-iIGT protein signatures explained by 24 biochemical, phenotypic, 

and anthropometric factors. Both signatures had similarly large proportions of explained 

variance explained by glycaemic (5.2 – 37.8%) and anthropometric (25.1– 40.9%) measures, 

blood lipids (2.7 – 33.1%), or an ultrasound-based score for hepatic steatosis (22.4 – 24.5%) 

(Methods). Differences included the higher proportion of variance explained by C-reactive 

protein (CRP) and the lower proportion explained by alanine aminotransferase (ALT, a 

biomarker of liver injury) for the 65-IGT compared to the 68-iIGT protein signature (CRP 

30.2% vs 20.3% and ALT 14.7% vs 23.2%, respectively; Extended Data Figure 8). Measures 

related to glucose metabolism (explaining up to 23.8% of the variance) and adiposity 

(explaining up to 26.9 % of the variance) were identified as the main factors explaining 

variance in the nine predictive IGT or iIGT proteins included in the final prediction models. 

Other protein specific factors included total triglycerides (explaining up to 22.6% of GHR), 

HDL cholesterol (up to 13.6% of RTN4R), measures of hepatic steatosis (liver score 

Carrasco-Zanini et al. Page 5

Nat Med. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



explaining up to 15% of GHR) and inflammation (up to 27.2% of HTRA1), as well as 

genetic variants in the proximity of the relevant protein-encoding gene (up to 11.3% of 

RTN4R) (Extended Data Figure 8).

Long-term health outcomes associated with predicted iIGT

To explore the clinical consequences of isolated impaired glucose tolerance in the absence of 

an OGTT, we performed an exploratory analysis in a random sub-cohort of the prospective 

EPIC-Norfolk study37 (n=753). We evaluated associations between predicted probabilities 

based on 1) the final clinical + 3-protein model, 2) the 3-protein model only and 3) the 

68-protein iIGT model with the onset of eight cardiometabolic diseases based on electronic 

heath record linkage38 (n of incident cases, 30-235; follow-up time between 18 and 19 

years; Supplementary Tables 15 - 16). All scores were significantly associated with a greater 

risk of future T2D (52 incident T2D cases) at 5% false discovery rate (FDR). The iIGT 

final clinical + three-protein score was further associated with cataracts and renal disease, 

possibly reflecting the known association between chronically elevated 2hPG levels and 

micro- or macrovascular complications. Predicted probabilities from the best performing 

68-protein-based iIGT-model showed a nominally significant association for coronary artery 

disease (HR = 1.22, p-value = 0.03) and peripheral artery disease (HR = 1.27, p-value 

= 0.04), T2D-related complications, although these did not reach statistical significance 

when adjusting for multiple testing given the small number of incident cases in this small 

exploratory cohort. We observed significant associations for individual proteins with the risk 

of future T2D, with effect sizes comparable to those in the WHII study39 (Figure 5).

We used proteomic measures obtained with a distinct proteomic technique, the Olink 

Explore panel40 in an independent study (random sub-cohort of the prospective EPIC-

Norfolk study, n=602) to test correlation of overlapping protein predictors and to validate 

some of our findings using an orthogonal technique. We observed a high correlation 

between the SomaScan and Olink measurements for the top three selected proteins (n=50, 

Spearman’s r = 0.80 for GHR, 0.70 for RTN4R and 0.87 for CBPM; Pearson’s r = 0.80 for 

GHR, 0.72 for RTN4R and 0.82 for CBPM). In line with this, we replicated the previously 

observed associations with an increased risk of incident T2D, including comparable effect 

sizes, and further observed significant associations between the final clinical + three-protein 

model and incident cataracts, heart failure, and coronary heart disease (Extended Data 

Figure 9). These findings suggest cross-platform transferability of our results.

Discussion

Behavioural interventions in individuals with IGT have been shown to delay progression to 

T2D and reduce the risk of long-term microvascular and macrovascular complications41. 

However, individuals with iIGT are likely to remain undiagnosed because the current 

implementation of recommendations for screening and diagnosing T2D does not focus on 

OGTTs, for reasons of practicality. People with iIGT are at high risk of developing T2D 

and its associated complications, and failure to identify them can lead to the development of 

severe and potentially irreversible complications of their unmanaged hyperglycaemia16.
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By combining deep plasma proteomic profiling with machine learning, we developed 

models for improved identification of IGT and iIGT and demonstrated that as few as eight 

and three proteins, respectively, provided significant improvement over established clinical 

predictors 22. We provided external validation of the significant and substantial improvement 

achieved by the selected proteins over and above the stringent benchmark provided by the 

best clinical model, something rarely done in genomic or other omic prediction studies. 

The improvement observed in our independent replication study was slightly greater than 

what was originally observed, and we note that the lack of HbA1c measurements and other 

differences in study design (previous phases including OGTT screening) and participant 

characteristics (older and more males on average) of the WHII cohort39 are likely to have 

contributed to this, leading to a lower AUROC for the clinical model and/or potential 

misclassification of iIGT.

We propose a three-step screening strategy, in line with the current UK Diabetes Prevention 

Programmes42, involving risk assessment by 1) a patient-derived information model, 2) 

measuring HbA1c levels and only three additional proteins from a single spot blood sample, 

and 3) an OGTT for eventual diagnosis. Implementation of this proposed screening strategy 

could lead to a large proportion of individuals with iIGT being additionally identified 

with a lower NNS, compared to the currently recommended two-stage approach42. Our 

findings illustrate how the identified proteins could most efficiently be integrated into 

existing screening approaches to identify individuals with iIGT, who are at high risk of 

T2D and its complications but are currently being missed. Behavioural interventions have 

shown to be effective at reversing post-load hyperglycaemia independently of FG levels43,44, 

emphasising the value of identifying individuals with iIGT who would benefit the most from 

these interventions. We further provided evidence of a link between our developed iIGT 

predictive scores and incident T2D as well as several known cardiometabolic comorbidities 

resulting from chronically elevated 2hPG. These findings highlight the potential of applying 

such a predictive risk score not only for cross-sectional identification of iIGT, but for 

monitoring future risk for associated comorbidities that impact patients’ quality of life.

We showed that the identified proteins are not strongly affected by fasting status, suggesting 

that they could enable a simple and convenient strategy to better identify individuals with 

IGT and iIGT, compared to an OGTT, which requires repeated blood draws conveying 

additional costs18. Protein assessment could substantially improve the feasibility and 

acceptability of an improved strategy to identify iIGT, more so than alternative strategies 

that have been proposed such as a 1-h OGTT45, bringing it in line with existing strategies 

for the screening and diagnosis of T2D. Because HbA1c testing requires anticoagulated 

whole blood, usually EDTA, a subset of the same sample type could be processed for 

plasma preparation to measure discriminatory proteins, avoiding the need for additional 

blood sampling.

This study provided insights into aetiological differences between iIGT and IGT. Our 

results suggested a stronger low-grade inflammatory component46–49 among proteins 

discriminatory for IGT compared to those for iIGT. These proteins might represent refined 

biomarkers of low-grade inflammation, as they were highlighted as being predictive over 

and above established inflammatory markers also covered in our proteomic study, such 
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as CRP. At an individual biomarker level, we identified a number of proteins shared or 

distinctly associated with these metabolic disturbances, including GHR, HTRA1, CBPM, 

CHAD, cerebellin-4 (CBLN4), oxytocin–neurophysin 1 (NEU1), CILP2 and S100-A10. We 

used genetic data to provide evidence that early deregulation of diabetes-related pathways is 

linked to the candidate proteins, most of which were also significantly associated with risk 

of future development of T2D, providing a novel set of high priority T2D targets for further 

follow-up and assessment in in more diverse settings and ethnicities.

While our model estimated a meaningful decrease in the NNS, there are important 

consideration for implementation of the proposed strategy. A considerable proportion 

of individuals with iIGT were missed by being classified as low risk in either the 

first or subsequent screening steps. A further limitation of our study was the lack of 

orthogonal validation of our protein-based prediction models with an alternative proteomic 

technology. Technical, genetic and other biological factors can result in biased protein 

measurements due to changes in affinity of the aptamer reagents50. However, the strong 

correlations observed with the antibody-based Olink Explore panel suggests cross-platform 

transferability. We further validated the phenotypic association of the iIGT predictive protein 

scores with incident cardiometabolic diseases using Olink Explore measurements, providing 

the possibility of implementing our model with alternative proteomic technologies.

In summary, we demonstrated the utility of the plasma proteome to inform strategies for 

screening of iIGT and for gaining new aetiological insights into early signatures of IGT, a 

globally very common and clinically important metabolic disorder, but one that it is difficult 

to detect and treat in routine clinical practice.

Methods

Study Samples

The Fenland study21 is a population-based cohort of 12,435 men and women born between 

1950 and 1975 who underwent detailed phenotyping at the baseline visit from 2005-2015. 

Participants were recruited from general practice surgeries in Cambridge, Ely and Wisbech 

(UK). Exclusion criteria of the Fenland study included pregnancy, prevalent diabetes, an 

inability to walk unaided, psychosis, or terminal illness. The study was approved by 

the Cambridge Local Research Ethics Committee (NRES Committee – East of England 

Cambridge Central, ref. 04/Q0108/19) and all participants provided written informed 

consent. The consent covered measurements made from blood samples as well as extends 

beyond the baseline examination as described previously21.

Clinical assessment

All participants completed a 2-hour 75 g OGTT following an overnight fast. Blood 

samples were collected at fasting and 2-hour post glucose load in EDTA tubes for plasma 

separation by centrifugation. Samples were kept at -80°C until further analysis. Glucose 

(assayed in a Dade Behring Dimension RxL analyser) and insulin (DELFIA® immunoassay, 

Perkin Elmner) concentrations were measured at fasting and 2-hours, as well as lipid 

profiles (triglycerides, HDL and total cholesterol), alanine aminotransferase (ALT), alkaline 
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phosphatase (ALP), C-reactive protein (CRP) and serum creatinine (assayed in a Dade 

Behring Dimension RxL analyser) at fasting, and HbA1c (Tosoh Bioscience, TOSOH G7 

analyser).

IGT and T2D were defined by 2-hour glucose according to IEC diagnosis criteria2 as 

glucose levels between 7.8 and < 11.1 mmol/L (141 and < 199 mg/dL) and ≥ 11.1 

mmol/L (≥ 199 mg/dL), respectively. IGT was defined as 2hPG ≥7.8 mmol/L and <11.1 

mmol/L, post-challenge hyperglycaemia as 2hPG ≥11.1mmol/L, iIGT as individuals with 

IGT but HbA1c <42mmol/mol (6%) and FG <6.1 mmol/L (<110mg/dL), and isolated post-

challenge hyperglycaemia as individuals with post-challenge hyperglycaemia but HbA1c 

<42mmol/mol and FG <6.1 mmol/L. The number of individuals with post-challenge 

hyperglycaemia in the diabetic range (i.e., 2hPG ≥ 11.1 mmol/L) was too low to investigate 

the performance of our models to identify this group of people with undiagnosed T2D 

biochemically defined solely due to elevated 2-hour glucose. These individuals would still 

be missed and remain undiagnosed by FG and HbA1c testing. We therefore used the terms 

IGT and iIGT to refer to all individuals with 2hPG ≥ 7.8 mmol/L throughout text and in 

order to develop a model that captures all individuals that would remain undiagnosed by 

current strategies. We note that the thresholds to define glycaemic categories vary across 

the American Diabetes Association (ADA) , WHO and the International Expert Committee 

(IEC)51. We use the IEC HbA1c and FG thresholds to reflect current clinical practice in 

the UK. We note that using ADA thresholds will likely results in lower case numbers for 

IGT and iIGT at the cost of a substantially higher false-positive rate. Body mass index 

(BMI) was calculated as weight (kg) / square of height (m2). Additionally, the homeostasis 

model assessment of insulin resistance (HOMA-IR) was calculated as FI (µIU/mL) × fasting 

glucose (mmol/mL)/22.552. Estimated glomerular filtration rate (eGFR) was calculated by 

the CKD-EPI equation using serum creatinine53.

Hepatic steatosis was evaluated by an abdominal ultrasound and images were scored by 

two trained operators. Criteria used for scoring included: increased echotexture of the liver 

parenchyma, decreased visualisation of the intra-hepatic vasculature and attenuation of 

ultrasound beam. Anormal liver was considered as a score from 3 – 4, mild steatosis from 5 

– 7, moderate steatosis from 8 – 10 and sever steatosis ≥ 11 54.

Participants completed DEXA scan measurements using a Lunar Prodigy advanced fan 

beam scanner (GE Healthcare) performed by trained operators using standard imaging, 

positioning protocols and manually processed according to a standardized procedure 

described previously35. Abdominal visceral and subcutaneous fat mass was estimated using 

the DEXA software.

Differences in clinical characteristics were evaluated by ANOVA followed by posthoc 

Tukey test, or χ2 for categorical variables. Non-normally distributed variables were log 

transformed when appropriate.

Proteomic profiling of the Fenland cohort

Proteomic profiling was done using an aptamer-based technology (SomaScan proteomic 

assay). Fasting proteomic profiling was done in participants from the Fenland cohort at 
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baseline, from which relative abundancies of 4,775 unique protein targets (evaluated by 

4,979 SOMAmer reagents, SomaLogic v4)18,55 was evaluated in EDTA plasma. Briefly, 

proteins are targeted by modified single stranded DNA sequences (aptamers). Concentration 

is then approximated as relative fluorescence units using a DNA microarray 56.

To account for variation in hybridization within runs, hybridization control probes are 

used to generate a hybridization scale factor for each sample. To control for total signal 

differences between samples due to variation in overall protein concentration or technical 

factors such as reagent concentration, pipetting or assay timing, we used the adaptive median 

normalisation (AMN), unless stated otherwise. Briefly, a ratio between each aptamer's 

measured value and a reference value from an external reference population is computed, 

and the median of these ratios is computed for each of the three dilution sets (20%, 1% 

and 0.005%) and applied to each dilution set to shift the intrapersonal distribution of 

protein intensities accordingly to match the reference population. We removed samples 

if they did not meet an acceptance criterion for scaling factors with values outside of 

the recommend range (0.25-4) or were flagged as technical failures (n=19). Detailed 

SomaLogic’s normalization, calibration data, and quality control processes have been 

previously described in detail18. At a protein level, we took only human protein targets 

forward for subsequent analysis (4,979 out of the 5284 aptamers). Intraassay coefficients of 

variation (calculated based on raw fluorescence units) had a median of 4.98% (interquartile 

range 3.87% - 6.99%) suggesting good quality measures for the vast majority of protein 

targets. We decided to not apply any other filters to individual protein qualities given 

that even poorly measured proteins might be informative and left it to the restrictive 

feature selection approach applied to drop uninformative proteins, including possibly poorly 

measured once. Aptamers’ target annotation and mapping to UniProt accession numbers as 

well as Entrez gene identifiers were provided by SomaLogic and we used those to obtain 

genomic positions of protein encoding genes.

Genome wide genotyping and imputation

Fenland participants were genotyped using three genotyping arrays: the Affymetrix UK 

Biobank Axiom array (OMICs, N=8994), Illumina Infinium Core Exome 24v1 (Core-

Exome, N=1060) and Affymetrix SNP5.0 (GWAS, N=1402). Samples were excluded for 

the following reasons: 1) failed channel contrast (DishQC <0.82); 2) low call rate (<95%); 3) 

gender mismatch between reported and genetic sex; 4) heterozygosity outlier; 5) unusually 

high number of singleton genotypes or 6) impossible identity-by-descent values. Single 

nucleotide polymorphisms (SNPs) were removed if: 1) call rate < 95%; 2) clusters failed 

Affymetrix SNPolisher standard tests and thresholds; 3) MAF was significantly affected by 

plate; 4) SNP was a duplicate based on chromosome, position, and alleles (selecting the best 

probe set according to Affymetrix SNPolisher); 5) Hardy-Weinberg equilibrium p<10-6; 6) 

did not match the reference or 7) MAF=0.

Autosomes for the OMICS and GWAS subsets were imputed to the HRC (r1) panel using 

IMPUTE4, and the Core-Exome subset and the X-chromosome (for all subsets) were 

imputed to HRC.r1.1 using the Sanger imputation server57. All three arrays subsets were 

also imputed to the UK10K+1000Gphase358 panel using the Sanger imputation server in 
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order to obtain additional variants that do not exist in the HRC reference panel. Variants with 

MAF < 0.001, imputation quality (info) < 0.4 or Hardy Weinberg Equilibrium p < 10-7 in 

any of the genotyping subsets were excluded from further analyses.

Statistical Analyses

Classification of IGT and iIGT from the fasting proteome

To identify and validate a proteomic signature able to discriminate IGT and iIGT (as a 

binary outcome), the entire Fenland study (N=11,546 without missing data for 2hPG), was 

divided into three subsets: for feature selection (50%, N = 5773), parameter optimization 

(25%, N=2887) and validation (25%, N=2881). IGT and iIGT cases were split equally into 

50% for training (NIGT = 387, NiIGT = 222), 25 % for optimization (NIGT = 194, NiIGT = 

111) and 25% for testing (NIGT = 193, NiIGT = 111) sets. For these analyses, SOMAmer 

RFUs were log10-transformed. Feature selection was carried out by least absolute shrinkage 

and selection operator (LASSO) regression. We chose to use LASSO because it was the 

most suitable model to 1) identify the smallest possible set of independent predictors, 2) 

it is computationally efficient, which allowed us to implement a robust framework using 

bootstrap resampling to identify a core set of most informative predictors and 3) it is less 

prone to overfitting. To address case-control imbalance we used the ROSE R package59, 

which implements down-sampling of the majority class (controls) along with synthetic new 

data points for the minority class (IGT or iIGT). A nested 10-fold cross-validation (inner 

loop to determine regularization parameter, ʎ) was done over 100 bootstrap samples (outer 

loop) drawn from the feature selection set. Each protein received a score that was generated 

by counting the number of times it was included in the final model from each of the 100 

bootstrap samples, that is, the score was between 0 (for proteins that were never selected in 

the final model) and 100 (for proteins that were selected in the final model in all bootstrap 

samples). We ranked the proteins based on their score to identify the most informative set 

of features (i.e. with a higher score) (Supplementary Fig. 1). This was implemented by the 

use of the R packages caret60 and glmnet61. Proteins selected in the final model in more than 

80%, 90%, and 95% of the bootstrap samples, were tested as predictors and taken forward 

for parameter optimization by 10-fold cross validation of the model by LASSO regression 

in the optimization set. Additional models were optimized by LASSO regression, such as a 

standard patient information-based model using the variables from the Cambridge Diabetes 

Risk Score (age, sex, family history of diabetes, smoking status, prescription of steroid or 

antihypertensive medication and BMI)22, a standard clinical model (including the variables 

from the Cambridge Diabetes risk Score, FG and HbA1c) and a standard clinical plus 

the selected proteins model. Clinical predictors were forced to be kept in the clinical plus 

proteins model by setting the penalty factors of these variables to 0. For comparison, ridge 

regression (which will keep all proteins in the final model) was used to build a prediction 

model using all the 4979 proteins as predictors.

Performance of the classification models were evaluated in the internal independent 

validation set, which was never used for training and optimization. The prediction models’ 

discriminatory power was assessed by computing the area under the receiver operating curve 

(AUROC). Confidence intervals and p-values (using the deLong method implemented by the 
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R package pROC62) were computed for the comparison between the ROC curves for the 

standard clinical model and clinical with added proteins model. Additionally, models’ net 

reclassification index was evaluated using the R package PredictABEL63.

Using an analogous machine learning strategy, we developed models for iIGT 

discrimination. For these analyses, all individuals with non-isolated IGT (2hPG > 7.8 

mmol/L, FPG > 6.1 mmol/L and HbA1c > 42 mmol/mol) were excluded from the cohort 

(leaving N = 11,281), which was subsequently divided into feature selection (50%, N 

= 5591), parameter optimization (25%, N=2796) and validation (25%, N=2795). Feature 

selection, optimization and testing were carried out as described for IGT models. To achieve 

comparable model performance with the minimal number of predictors, we used recursive 

feature elimination on the set of proteins selected in >95% of boots during feature selection. 

As a sensitivity analysis, we performed the same framework described above, that is, feature 

selection, parameter optimization and validation to assess model performance when using 

protein data reversing the final normalisation step that is unique to the SomaScan platform. 

We note that using ‘non-normalised’ proteomic data led to broadly comparable results, 

which are well in the margins of random variation of protein measurements in general, albeit 

with some difference in the proteins selected as the most predictive markers in the final 

models (Supplementary Table 17).

Calibration of the final models was assessed in the internal validation set by computing the 

calibration slope, which evaluates the spread of the estimated risks and has a target value 

of one. Calibration slopes less than 1 indicate extreme estimated risks while slopes greater 

than 1 indicate very moderate risk estimates. Calibration slopes were computed using the R 

package rms64.

The number needed to screen (NNS) was calculated using a staged screening scenario. 

Firstly, participants from the Fenland study were stratified by predicted probabilities from 

the Cambridge T2D risk Score, that is, non-invasive risk factors that could be obtained by 

interviewing the patient. The threshold used to stratify individuals into “high” and “low” 

risk strata according to their predicted probabilities was set to optimize a balance between 

the total number of individuals that would be needed to screen and sensitivity (as would 

be appropriate for such a screening setting), which was achieved at 0.7, regardless of 

specificity. On second instance, participants within the high-risk group were further stratified 

by HbA1c levels, using IEC cut-offs (normoglycaemic : HbA1c < 42 mmol/mol, prediabetic 

criteria: HbA1c >= 42 mmol/mol and < 48 mmol/mol, T2D criteria : HbA1c >= 48 mmol/

mol)51. On third instance, participants whose HbA1c did not meet the criteria for T2D or 

prediabetes (that is, normoglycaemic as defined aboved), were further stratified according 

to the clinical + 3- iIGT protein model. Similarly, a threshold that optimized testing as 

few individuals as possible while retaining good sensitivity of 0.7 was set for this model 

(Supplementary Table 10). We estimated the NNS within this stratum compared to the NNS 

within the full set of individuals with HbA1c in the normoglycaemic range. The NNS was 

calculated as the total number of individuals within the group divided by the number iIGT 

cases within the same group and refers to the number of OGTTs that would need to be done 

to identify one iIGT case within the group of interest. We additionally estimated the NNS in 

the test set only, as a sensitivity analysis.
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IGT/iIGT model validation and follow-up analyses in the WHII study

The Whitehall II study is a longitudinal, prospective cohort study39 that was approved by the 

joint University College London / University College London Hospital’s Committees on the 

Ethics of Human Research. Proteomic profiling of fasting EDTA-plasma samples was done 

for all individuals at phase 5 (from 1997 - 1999) with the SomaScan v4.1 proteomic assay. 

We performed validation of the IGT and iIGT clinical + protein models at phase 5 (from 

1997 - 1999) of the study, were proteomic profiling and OGTT values were available. Since 

HbA1c was not measured at phase 5 of the study, we defined iIGT as 2hPG > 7.8 mmol/L 

and FPG > 6.1 mmol/L. We used the weights from the models trained in Fenland to evaluate 

their performance in WHII phase 5 (total sample size = 5058, NIGT= 693, NiIGT=617) for 

the baseline clinical model (Cambridge T2D risk score + FG) and the baseline clinical + 

protein iIGT and IGT models (3 and 8 proteins respectively).

For the association between top discriminatory proteins and incident T2D in the Whitehall 

II study individuals were selected as a nested case-control study design in which proteomic 

profiling of fasting EDTA-plasma samples was done at phase 5 (from 1997 - 1999) with 

the SomaScan v4 proteomic assay. Incident T2D occurrence was assessed in repeated 

clinical examinations in 1997-1999, 2002-2004, 2007-2009, 2012-2013, and 2015-2016, 

based on FPG above 7 mmol/L, HbA1c>6.5%, use of diabetes medication, or reported 

physician diagnosed diabetes, excluding prevalent T2D cases at baseline from the analysis. 

Additionally, participants with impaired kidney function (eGFR < 30 mL/min/1.73m2), 

incident cardiovascular diseases or missing data on T2D at follow-up were excluded. The 

final sample comprised of 521 cases and 971 controls.

Association between fasting candidate proteins and incident T2D was assessed using Cox-

proportional hazards regression adjusting for the baseline confounders age, sex and BMI. 

We tested a second model adjusting for additional baseline confounders including FG, 

triglycerides, HDL-cholesterol and lipid lowering medication on top of age, sex and BMI to 

determine whether the association persisted in a more refined model.

Effect of fasting status on plasma levels of IGT and iIGT discriminatory 

proteins

Fourteen adult participants were recruited to participate in the study and provided informed 

consent appropriately. Participants were asked to fast overnight for at least 12 hours prior 

to reporting to the study site. Fasting blood samples were collected from each participant, 

after which they were given a moderate fat meal consisting of 5-8 ounces of Cheerios with 

6 ounces of 2% milk, one egg, one slice of bacon, one slice of toast with margarine, and 4 

ounces of orange juice (calories: 450, 16.9 grams of fat, 16 grams of protein, and 59 grams 

of carbohydrates)65.

The time for each participant to complete the meal ranged from 7 to 19 minutes (average 

of 16 minutes). Post prandial blood samples were collected at 0.5, 1, and 3 hours following 

completion of the meal. Since each participant consumed their meals at different rates, the 

actual blood collection times post meal does vary between participants. Participants were not 
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allowed to eat or drink any further caloric items until after the last blood collection. Twelve 

participants (6 male and 6 female) completed the study. Two participants were excluded due 

to unmet fasting requirements and an adverse reaction during the first blood draw.

Blood samples were processed to obtain EDTA-plasma by centrifugation and frozen at 

-80°C until delivered to SomaLogic Sample Management for proteomic profiling using the 

SomaScan v4 assay. The effect of fasting status on 9 unique SOMAmer reagents included 

in the final clinical + protein models for IGT or iIGT, was tested by repeated measures 

ANOVA. Proteins with ANOVA p-values < 0.0055 (according to Bonferroni adjustment for 

9 comparisons) were deemed to be significantly affected by fasting status.

Functional annotation of IGT and iIGT-protein signatures

Functional annotation of the 65-IGT and 68-iIGT protein signatures was performed using 

modified Fisher’s exact tests as implemented by the Database for Annotation, Visualization 

and Integrated Discovery (DAVID, version 6.8) and enrichment of biological process GO 

terms (GOTERM_BP_DIRECT) was analysed, setting the full list of proteins evaluated by 

the SomaLogic platform as the background.

Variance explained in top discriminatory protein levels by clinical, biochemical, 
anthropometric and behavioural risk factors

The proportion of variance explained in candidate protein levels by several variables was 

evaluated in the Fenland cohort using the variancePartition R package66. Analogously, the 

proportion of variance explained in the first principal component of the 65-IGT and 68-iIGT 

discriminatory protein signatures was evaluated. Briefly, this package fits a linear mixed 

model to assess the effect of each variable on the outcome while correcting for all other 

variables. Variables evaluated were age, sex, IGT, IPCH, FPG, 2hPG, FI, 2hPI, HbA1c, 

total triglycerides, total cholesterol, HDL-cholesterol, LDL-cholesterol, ALT, ALP, a liver 

score, BMI, waist-to-hip ratio (WHR), amount of subcutaneous fat, amount of visceral fat, 

CRP, estimated glomerular filtration rate (eGFR) and intake of statins or antihypertensive 

medication. FPG, 2hPG, FI, 2hPI, HbA1c, total triglycerides, ALT, ALP, CRP, subcutaneous 

fat and visceral fat were natural log-transformed due to skewed distribution of these 

variables. We fit separate models for each of the variables evaluated adjusting only for age 

and sex in the entire Fenland cohort (N=11,546) to avoid bias due to strong collinearity 

among variables tested. For each of the models, participants with missing data were 

excluded.

Protein quantitative trait loci (pQTLs) for candidate proteins

Genetic variants associated with candidate proteins (protein quantitative trait loci or pQTLs) 

were taken from our genome-wide association studies across all aptamers as described in 

Pietzner et al, 202155.

Percentage of variance explained in protein levels by cis and trans pQTL scores

Polygenic scores were constructed for pQTLs within the cis (within ±500 kb of the 

protein-encoding gene) and trans regions. Cis-pQTL scores were built using conditionally 
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independent variants. The percentage of variance explained in protein levels by the cis and 

trans-scores was computed as described in the above section adjusting for age and sex.

Association between top discriminatory proteins and fasting and 2-hour plasma glucose 
and insulin

Observational associations between the top selected IGT and iIGT discriminatory proteins 

and FPG, FI, 2hPG and 2hPI were assessed in the entire Fenland cohort at baseline 

(N=10,259 without missing data) by linear regression models adjusting for age, sex, 

BMI and test site from the study. The models for 2hPG and 2hPI were additionally 

adjusted by FPG and FPG + FI, respectively. Protein levels were log10-transformed and 

standardized, and 2hPG and 2hPI values were log-transformed for these analyses. Proteins 

were considered significant at a Bonferroni threshold (p-values < 0.001, accounting for 

comparisons between the number of protein and number of traits, as for all further 

association analyses).

Association between polygenic risk scores for glycaemic traits and top discriminatory 
proteins

T2D36, fasting glucose (FG)34, fasting insulin34 (FI score), 2hPG34 (2hPG score) and BMI35 

polygenic scores, weighted by genetic effect sizes of previously reported genome-wide 

significant variants, were computed for 7,973 Fenland participants genotyped with the same 

array (Affymetrix UK Biobank Axiom Array). Variants not available, with low imputation 

quality scores < 0.6, or with strand ambiguous alleles were excluded from the scores. Each 

polygenic score was tested for associations with the plasma abundancies of top IGT and 

iIGT discriminatory proteins by linear regression models adjusting for age, sex, BMI, the 

first 10 genetic principal components and test site of the study.

Association between iIGT scores with incident cardiometabolic diseases in a sub-cohort 
of the EPIC-Norfolk study

The EPIC-Norfolk study is a cohort of 25,639 middle-aged, individuals from the general 

population of Norfolk a county in Eastern England which is a component of EPIC37. 

The EPIC-Norfolk study was approved by the Norfolk Research Ethics Committee (ref. 

05/Q0101/191); all participants gave their informed written consent before entering the 

study. All participants were flagged for mortality at the UK Office of National Statistics 

and vital status was ascertained for the entire cohort. Death certificates were coded by 

trained nosologists according to the International Statistical Classification of Diseases and 

Related Health Problems, 10th Revision (ICD-10). Hospitalization data were obtained using 

National Health Service numbers through linkage with NHS Digital. Participants were 

identified as having experienced an event if the corresponding ICD-10 code was registered 

on the death certificate (as the underlying cause of death or as a contributing factor) or as 

the cause of hospitalization (Supplementary Table 15). Since the long-term follow-up of 

EPIC-Norfolk comprised the ICD-9 and ICD-10 coding system, codes were consolidated. 

The current study is based on follow-up to 31 March 2016. Information on lifestyle 

factors and medical history was obtained from questionnaires as reported previously37. 

The current analysis is based on a random sub-cohort (N=875) of the whole EPIC-Norfolk 

study population that was selected excluding known prevalent case subjects of diabetes 
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at baseline was using the same definitions as used in the InterAct Project67; in which 

proteomic profiling was done at health check 1 using the SOMAscan v4 platform from 

citrate-plasma samples stored in liquid nitrogen since the baseline visit.

Participants with missing data for any of the variables included in the final prediction 

models developed in the Fenland study were excluded. The final sample comprised of 753 

individuals for which characteristics are presented in Supplementary Table 16.

Final prediction models trained and optimized for iIGT in the Fenland study were used to 

calculate the predicted probability of iIGT for each participant at health check 1 in this 

sub-cohort of the EPIC-Norfolk study. Models tested included: the clinical + 3-proteins 

iIGT model, 3-protein iIGT model (95% feature selection protein set model), 68-protein 

iIGT model (80% feature selection protein set model) and the clinical model as a baseline 

comparison. We then tested the association of the predicted iIGT probability with 8 incident 

cardiometabolic diseases (or associated T2D comorbidities) including type 2 diabetes, 

coronary heart disease, heart failure, peripheral artery disease, cerebral stroke, liver disease, 

renal disease and cataracts using cox proportional hazards models adjusting by age at 

baseline and sex (except for the clinical + 3 protein model, which already accounted for 

these risk factors within the score). Associations were deemed significant at an 5% FDR 

accounting for comparison between 8 diseases.

We aimed for cross-platform validation in a separate random sub-cohort of the prospective 

EPIC-Norfolk study (N=771), in which proteomic measures were done with the Olink 

Explore panel40 from serum samples. Participants with missing data for any of the variables 

included in the final prediction models developed in the Fenland study (expect HbA1c which 

was excluded from the models as it was unavailable in a large proportion of participants 

from this sub-cohort) were excluded. The final sample comprised of 602 individuals for 

which characteristics are presented in Supplementary Table 18.

Final prediction models trained and optimized for iIGT in the Fenland study (using 

SomaScan) were used to calculate the predicted probability of iIGT for each participant 

at health check 1 in this sub-cohort of the EPIC-Norfolk study, using the Olink measures 

for the proteins. Models tested included: the clinical + 3-proteins iIGT model, 3-protein 

iIGT model (95% feature selection protein set model) and the Cambridge T2D risk Score. 

We then tested the association of the predicted iIGT probability with the same Cox-model 

setting and set of disease as in the sub-cohort with available SomaLogic measurements 

except for liver disease (Supplementary Table 19). Associations were deemed significant at 

an 5% FDR accounting for comparison between 7 diseases.

All statistical analyses were performed using R language, and environment for statistical 

computing (version 3.6.1 and 4.1.0, R Core Team).

Carrasco-Zanini et al. Page 16

Nat Med. Author manuscript; available in PMC 2023 June 13.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data

Extended Data Fig. 1. Feature selection ranking of proteins for postprandial glycaemia 
prediction.
Protein ranking based on the number of times selected over bootstrap resampling during 

feature selection for impaired glucose tolerance (IGT) (a) and isolated impaired glucose 

tolerance (iIGT) (b). Dashed lines represent thresholds for proteins selected in more than 

80%, 90% or 95% of bootstrap samples to be taken forward to parameter optimization step.
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Extended Data Fig. 2. Performance of LASSO trained protein-only models for IGT (a) and iIGT 
(b) discrimination in the internal validation test set.
a, Impaired glucose tolerance (IGT) discrimination was evaluated in the independent 

internal validation test set (N = 2881, 192 IGT individuals) for models based on proteins 

selected in more than 80% (65 proteins), 90% (18 proteins) or 95% (8 proteins) and kept 

after model optimization step or based on all proteins (4979 proteins). b, isolated impaired 

glucose tolerance (iIGT) discrimination was evaluated in the independent internal validation 

test set (N = 2819, 135 iIGT individuals) for models based on proteins selected in more than 

80% (73 proteins), 90% (17 proteins) or 95% (3 proteins) and kept after model optimization 

step or based on all proteins (4979 proteins).
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Extended Data Fig. 3. Performance of the T2D genetic risk score (T2D-GRS) for IGT (a) and 
iIGT (b) discrimination in the internal validation test set.
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Extended Data Fig. 4. Validation of the clinical and clinical + protein models for IGT (a) and 
iIGT (b) in the independent WHII study.
The clinical + protein model significantly outperformed the clinical model (p-valueIGT = 

5.26 × 10−5
; p-valueiIGT = 1.5 × 10−17). The improvement was of similar magnitude than that 

observed in the Fenland study, although with overall lower AUROCs (clinical models: 

AUROCIGT = 0.66 (0.64–0.69), and AUROCiIGT = 0.60 (0.57–0.62); clinical + protein 

models: AUROCIGT = 0.70 (0.68–0.72) and AUROCiIGT = 0.69 (0.67–0.71)). Significant 

differences between the AUROCs were asses by the Delong method. This might be best 

explained by differences in the characteristics of the study population, the design and the 

lack of HbA1c to define iIGT (see Methods).
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Extended Data Fig. 4. Performance of LASSO trained models for isolated impaired glucose 
tolerance discrimination in the internal validation test set having excluded the top 3 selected 
proteins.
Isolated impaired glucose tolerance (iIGT) discrimination performance in the independent 

internal validation test set (N = 2795, 111 iIGT individuals) for the standard clinical model, a 

68-protein model (selected in >80% of bootstrap samples and kept during optimization), and 

a clinical + 7 protein model (selected in >95% of bootstrap samples).
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Extended Data Fig. 6. Internal validation of proposed 3-stage screening strategy in the test set 
only.
In the first stage, individuals in the Fenland test set were divided into low and high risk 

according to the Cambridge T2D risk score. The high risk group would undergo a second 

stage involving measurement of HbA1c and of the 3 iIGT proteins. Individuals with HbA1c 

levels within the T2D or prediabetic range would be referred for intervention and lifestyle 

modifications. Individuals with HbA1c below the prediabetic range, would further stratified 

using the final clinical + 3 iIGT protein model to identify a high risk group, which on a 

third stage would be taken forward for OGTT testing to identify iIGT cases that would 

have been otherwise by current screening guidelines. The NNS in the strata of individuals at 

high predicted risk based on the patient-derived information model, but HbA1c levels below 
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cut-offs for prediabetes (N = 1043) was 14, while by additionally applying the clinical + 

3-protein iIGT model the NNS was of only 5 (N = 88 at high-risk). Figure was designed with 

biorender.com.

Extended Data Fig. 7. Comparison of protein ranking during feature selection over bootstrap 
resampling for isolated impaired glucose tolerance (iIGT) and impaired glucose tolerance (IGT).
Comparison is shown for proteins that were selected in more 80% of bootstrap samples 

(shown by the red line) for either IGT (N = 2881, 192 IGT individuals) or iIGT (N = 2795, 

111 iIGT individuals).
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Extended Data Fig. 7. Percentage of variance explained in impaired glucose tolerance and 
isolated impaired glucose tolerance top discriminatory protein levels by clinical, biochemical, 
anthropometric and lifestyle risk factors.
Linear mixed models were fitted for each of the 24 clinical, biochemical, anthropometric, 

genetic and lifestyle risk factor variables adjusting by age and sex to estimate the percentage 

of explained variance in plasma abundances of discriminatory proteins as well as for the 

principal component of the 65-IGT and 68-iIGT protein signatures. Cis and trans scores 

with missing values represent proteins for which no protein quantitative trait loci could be 

identified.
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Extended Data Fig. 9. Association of iIGT protein scores using Olink explore proteomics 
measures with incident cardiometabolic diseases.
Association of iIGT prediction scores (left panel; red: Cambridge T2D risk score, orange: 

Cambridge T2D risk score variable + fasting glucose + 3 protein iIGT prediction model, 

darkblue: 3-protein iIGT prediction model) and individual top iIGT proteins (right panel) 

with 7 cardiometabolic disease outcomes in a sub-cohort the EPIC-Norfolk study (N = 602 

individuals). 95% confidence intervals of hazard ratios (HR) are shown.
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Figure 1. Study design.
a,Proteomic profiling was done in fasting plasma samples from participants from the 

Fenland cohort that had undergone an OGTT. b, Three-step modelling framework for IGT 

and iIGT classification. The asterisk denotes the difference in cases due to exclusion of 

non-isolated IGT for iIGT prediction. c, Association of top discriminatory proteins with 

incident T2D was assessed in the WHII study. d, Association of iIGT protein scores with 

eight incident cardiometabolic diseases was assessed in a sub-cohort of the EPIC-Norfolk 

study. IFG: impaired fasting glucose, NGT: normal glucose tolerance.
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Figure 2. Performance of LASSO trained models for impaired glucose tolerance (a) and isolated 
impaired glucose tolerance (b) discrimination in the internal validation test set.
a,IGT discrimination performance in the independent internal validation test set (N=2881, 

192 IGT individuals) for the standard clinical model (Cambridge T2D risk Score + FPG 

+ HbA1c), a 65-protein model and a clinical + 8 protein model. b, iIGT discrimination 

performance in the independent internal validation test set (N=2795, 111 iIGT individuals) 

for the standard clinical model, a 68-protein model and a clinical + 3 protein model. 

c, Comparison of protein ranking during feature selection for iIGT (N=2795, 111 iIGT 
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individuals) and IGT (N=2881, 192 IGT individuals) top discriminatory proteins. AUC, area 

under the curve.
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Figure 3. Proposed 3-stage screening strategy.
In the first stage, individuals in the entire of Fenland were divided into those with low and 

high risk according to the Cambridge T2D risk score. The high-risk group would undergo 

a second stage involving measurement of HbA1c and of the three iIGT-associated proteins. 

Individuals with HbA1c levels within the T2D or prediabetic range would be referred 

for intervention and lifestyle modifications. Individuals with HbA1c below the prediabetic 

range, would be further stratified using the final clinical + three-iIGT protein model to 

identify a high-risk group, which on a third stage would be taken forward for OGTT 

testing to identify iIGT cases that would have otherwise been missed by current screening 

guidelines. The figure was designed with BioRender.com.
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Figure 4. Characterization of the association between top impaired glucose tolerance and 
isolated impaired glucose tolerance discriminatory proteins and glycaemic traits, future T2D 
risk and genetic predisposition to metabolic phenotypes.
a,Association of top IGT and iIGT discriminatory proteins with fasting and 2-hour glucose 

and insulin in the Fenland study (N = 10259 individuals). Beta estimates with 95% CIs are 

shown. b, Association of top IGT and iIGT discriminatory proteins with incident T2D in 

the WHII study (N = 1492, 521 incident T2D cases). Hazard ratios (HR) with 95% CIs are 

shown. c, Association of GRSs for FG, FI, 2hPG, T2D and BMI with top IGT and iIGT 

discriminatory proteins in the Fenland study (N = 7973 individuals). Beta estimates with a 

95% CIs are shown.
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Figure 5. Association of iIGT protein scores with incident cardiometabolic diseases.
Association of iIGT prediction scores (left panel) or individual top iIGT proteins (right 

panel) with eight cardiometabolic disease outcomes in a sub-cohort the EPIC-Norfolk study 

(N=753 individuals). Hazard ratios (HR) with 95% CIs are shown.
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