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Abstract

Although we perceive the world in a continuous manner, our experience is partitioned into discrete 

events. However, to make sense of these events, they must be stitched together into an overarching 

narrative − a model of unfolding events. It has been proposed that such a stitching process 

happens in offline neural reactivations when rodents build models of spatial environments. Here 

we show that, whilst understanding a natural narrative, humans reactivate neural representations of 

past events. Similar to offline replay, these reactivations occur in hippocampus and default mode 

network, where reactivations are selective to relevant past events. However, these reactivations 

occur, not during prolonged offline periods, but at the boundaries between ongoing narrative 

events. These results, replicated across two datasets, suggest reactivations as a candidate 

mechanism for binding temporally distant information into a coherent understanding of ongoing 

experience.

Introduction

Reading a scientific paper is a complicated task. The paper you are about to read is 

composed of a stream of words that convey a detailed, interconnected narrative, that you 

will try to make sense of. Although you may read through this narrative continuously, your 

brain will process the narrative by parcelling it into discrete chunks of information, termed 
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“events”1, with associated neural representations (“event models”2, 3). The transitions 

between events, termed event boundaries, have been suggested to occur when shifts in the 

content of incoming information will be detected, at which point the current event model 

will be encoded into memory, and a new event model will be formed1, 2, 4, 5. This could 

happen, for example, in the transition between paragraphs.

However, understanding a narrative requires more than just parcelling the ongoing stream 

of information into events and storing them into memory. Following an ongoing narrative 

requires relations to be drawn between each current event and contextually-relevant past 

events (for example, linking results presented in the Results section with their related 

research hypothesis presented in the Introduction section). How, then, could these events be 

pieced together? It has long been proposed that remote past information could be integrated 

with incoming sensory information6–8 Accordingly, it has been suggested that event-models 

of past events can assist in the interpretation of incoming information5, 9–12. However, the 

mechanism underlying this process is currently unknown.

One possible mechanism that may underlie this integration is termed “replay”, and was 

originally seen in rodents. Here, sequences of cell firing patterns that are observed during 

past events are rapidly recapitulated during pauses in behaviour. Replay has predominantly 

been studied offline, during periods of rest or sleep13, 14, but it can be triggered by 

salient behavioral events, for example when an animal completes a trial15 or receives 

a reward16. These situations could be analogous to event-boundaries, as they mark 

contextual shifts in the ongoing experience. This hypothesis is supported by human imaging 

studies, demonstrating that the representations of just-ended events are reactivated at event 

boundaries17, 18 (due to the lack of temporal resolution to infer a sequentially-ordered 

reinstatement, the term reactivation, rather than replay, is commonly used).

Event segmentation and replay also engage similar brain regions. Increased activity at 

event boundaries during the processing of a narrative has been associated with regions 

including the hippocampus19–21 and nodes of the default mode network (DMN22, mainly 

the precuneus, angular gyrus/superior lateral occipital cortex and superior/middle temporal 

gyrus5, 23–25). Similarly, replay and sharp wave ripples are associated with increased activity 

in hippocampus and in the DMN in both humans and animal models26–30.

It has been proposed that both replay in rodents and reactivation in humans encode past 

events into memory, as well as inform future decisions13, 31. But, notably, offline replay in 

rodents is not limited to playing a veridical recording of experience. Instead, it can make 

inferences - piecing together multiple past events, even remote ones, as if building, and 

sampling from, a model of the world13, 32–34. Similarly, in humans, replay can reorganize 

and reorder events to fit with a pre-learned task model35, 36. It is therefore possible that, 

as an experience is unfolding, reactivation could underlie the inference of relations between 

current and past events, and continuously bind related event-models as the narrative is 

progressively built.

Replay studies have, so far, used controlled experiments with regularly-repeated trials, 

which make it hard to assess the integration of events across time, since repeated events 
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would have very similar representations. Yet, the integration of events across time can be 

measured in more naturalistic experiments that have a continuously evolving narrative: 

here, each event is unique and should have a more distinct representation. In such 

experiments, we would expect to find that reactivation at event boundaries would not only 

contain representations of the event that has just ended17. Reactivation should also contain 

representations of unique past events, particularly those most relevant to the understanding 

of the current narrative stage (for example, you will gain a better understanding of the 

current hypothesis, if at the relevant event boundary, your brain replays the hypothesis along 

with supporting information from previous paragraphs).

We therefore aimed to detect brain regions in which, not only the event that has just ended is 

reactivated at event boundaries, but also more temporally-remote events that are relevant to 

the understanding of the present situation. To this end, we analysed two naturalistic datasets, 

where participants either viewed a movie or listened to a story while undergoing a whole-

brain fMRI scan. We examined these datasets using a novel analytic method, designed to 

detect reactivated representations of remote events at event boundaries. Using this method, 

we indeed revealed reactivation in the posterior hippocampus, the precuneus/retrosplenial 

cortex, and the angular gyrus/lateral occipital cortex, and replicated these results across 

datasets. We further demonstrated that this reactivation is apparent at both a local, voxel-

scale, and also at a meso-scale. Finally, we found that the reactivated representations in 

the precuneus/retrosplenial cortex were of semantically-relevant past events, demonstrating 

a specific integration of information that is needed for the understanding of each current 

narrative stage. We therefore propose that reactivation is a constructive mechanism that 

builds our understanding of evolving experiences by selectively binding relevant pieces of 

information across time.

Results

Can reactivation at event boundaries integrate current, ongoing experiences with temporally-

remote past information? To answer this question, we used fMRI data acquired from 

participants engaged in a naturalistic narrative (movie/story). Reactivation entails the 

expression of past scene-representations (voxel-activity patterns) at event boundaries. 

Therefore, to detect reactivation in these fMRI data, we looked for correlations between 

fMRI representations at event boundaries (scene endings) and representations of remote 

scenes (preceding the just-ended scene) using Representation Similarity Analysis37. 

However, due to the low temporal resolution of fMRI data, representations at event 

boundaries are likely correlated with the representations of the immediately neighboring 

scenes. If these scenes are similar to other scenes, then correlations between event 

boundaries and remote scenes may in fact reflect between-scene correlations, rather than 

reactivation of remote information. This problem can be solved, since between-scenes 

correlations are symmetric in time (past/future, see Figure 1b). We therefore defined a 

“reactivation index” that cancels out symmetric similarities by contrasting past with future 

correlations. The results obtained from this reactivation analysis were replicated across 

two independent fMRI datasets (Sherlock dataset38, 21st year dataset39, see Table 1). We 

demonstrate these results using reactivation within the brains of single participants, and also 

using the similarity in reactivation between the brains of different participants (potentially 
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measuring reactivation of representations at a mesoscopic scale). Finally, we used the 

overlap in words between scenes to test whether the reactivated scenes are those that are 

most relevant (semantically-similar) for the understanding of the current scene.

See Figure 1 for a schematic of the analysis pipeline, and Online Methods for full 

methodological details, simulations and experimental constraints of our analytic methods.

Reactivation of remote past events at event boundaries

We first tested for the reactivation of remote events within a single brain. To this 

end, we looked for brain regions where representations at event boundaries are more 

similar to representations of pasts scenes compared to future scenes (significantly positive 

reactivation index). Visual inspection of the results, as presented in Figure 2a, revealed that 

brain regions showing consistent effects across datasets included the bilateral precuneus/

retrosplenial cortex (PCUN), angular gyrus/lateral Occipital Cortex (Ang/LOC) and 

posterior hippocampus (HIP). These regions were consistently observed in each of the two 

datasets and in a mega-analysis that pooled the participants of the two datasets together (The 

top two rows of Figure 4a displays the overlap between these regions across datasets. The 

statistical quantification of this replication will be presented in the section “Reactivation 

is specific to event boundaries” and Figure 4b/c). No regions showing the opposite effect, 

of a significantly negative reactivation index, were revealed. All maps have been cluster 

corrected for multiple comparisons across the entire brain (p<0.005, permutation test).

Note that, although regional variations between the group reactivation maps were also 

revealed, we refrain from interpreting results that do not show a qualitative replication across 

the 2 independent datasets. This is because such differences could be attributed to any of 

the design- or processing-related specifics of the individual datasets (see Table 1 and Online 

Methods).

Reactivated representations have structure at the mesoscale

Replay in rodents is typically studied at the single cell resolution. The human reactivation 

results presented so far were voxel-specific, which is the highest possible spatial 

resolution when using fMRI. However, naturalistic fMRI findings indicate that the 

neural representations of scenes are shared across participants40–42. Since there is no 

accurate correspondence between single voxels across brains (due to inter-brain anatomical/

functional variability and image preprocessing constraints), it is likely that between-

participant analyses do not sample the exact same voxels across brains, but rather voxels that 

are in some anatomical vicinity to each other. The findings of shared scene representations 

across brains therefore demonstrate that the representations of complex naturalistic events 

can be expressed at coarser scales, including mesoscopic scales, in which functional 

anatomy is consistent across participants. We were therefore interested to study whether 

reactivation is expressed at a mesoscopic resolution. Unlike in previous studies, we tested, 

not whether mere scene-representations are shared, but rather whether the reactivated 

representations observed at event boundaries within a single brain would also be shared 

across participants. To this end, scene representations extracted from one brain were 
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correlated with the averaged event-boundary representation across the remaining participants 

of the same dataset.

Visual inspection of the results, as depicted in Figures 3a, demonstrates that the between-

participant analysis indeed revealed reactivation in the bilateral precuneus/retrosplenial 

cortex, angular gyrus/lateral occipital cortex and bilateral posterior hippocampus, similar 

to the effects seen in the within-participant analysis (Figures 2a. The bottom two rows 

of Figure 4a displays the overlap between these regions across datasets. The statistical 

quantification of this replication will be presented in the section “Reactivation is specific 

to event boundaries” and Figure 4b/c). For the 21st year dataset, these results were equally 

strong if only the congruent parts of the similarity matrix were analysed, but not if a Time 

(past/future) X Congruency (same/different narrative) interaction was used as a reactivation 

index (see sup. Figure 1 and Discussion). Similar results were also obtained for both 

datasets using the more typical scene-based between-participant analysis, in which the 

representations at event boundaries (rather than scene representations) extracted from one 

brain were correlated with the averaged scene (rather than event-boundary) representations 

across the remaining participants of the same dataset (Supplementary Figure 2, left column).

We interpret the greater correlations between representations at event boundaries and past 

scenes (compared to future scenes) as reactivation of past information. However, a possible 

confound to this interpretation is a case where event representations are rapidly “flushed” 

after event boundaries43. If this is true, our effects may be due to representation at the event 

boundaries resembling the pre-flush representation more than the post-flush representation. 

This can be addressed by excluding, not only the pre-boundary event, but also the post-

boundary event from the analysis (as already done in the within-participant analysis to 

control for autocorrelation-related biases). Doing so yields results that are highly similar to 

the original ones (sup. Figure 3), suggesting that flushing dynamics do not drive our effects.

Thus, our results so far reveal a set of brain regions in which remote scene-representations 

are reliably reactivated at the event boundaries of naturalistic fMRI data in humans. The 

reactivated representations are evident not only within a single brain, but they are also shared 

across brains, providing evidence that the reactivated representations have structure at the 

mesoscopic scale.

Reactivation is specific to event boundaries

We have so far shown reactivation of past events at event boundaries, but is this effect 

specific to event boundaries? To test this, we repeated the reactivation analysis, but this 

time contrasted the reactivation indices at event boundaries with those calculated for control 

timepoints, that are adjacent to the event boundaries (see Online Methods and sup. Figure 

4). As presented in Figure 2b and Figure 3b (and also see sup. Figure 2 for results of the 

scene-based between-participant analysis), this analysis revealed effects at a very similar set 

of regions compared to the original, uncontrolled reactivation analysis (Figure 2a, 3a, sup. 

Figure 2). Indeed, overlaying the ROIs defined from the uncontrolled analyses onto the maps 

resulting from the controlled analyses revealed a substantial overlap. This was true across 

datasets and analysis methods, attesting to a robust and specific effect of reactivation of 

remote past information to event boundaries.

Hahamy et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2023 June 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The specificity of reactivation to event boundaries in the precuneus/retrosplenial cortex, 

posterior hippocampus and angular gyrus/lateral occipital cortex is clearly evident by 

examining the reactivation time-courses in these regions (the reactivation index at each 

TR around the event boundary, see Online Methods), presented in Figure 4 (also see 

supplementary Figure 5 for results of the scene-based between-participant analysis). Across 

these brain regions, the reactivation time-courses peaked 6-9 seconds after event boundaries 

(vertical red lines), in a timecourse compatible with a BOLD response.

Of importance, quantifying the effects observed in these ROI-specific reactivation 

timecourses also allowed us to test statistically whether the same brain regions are indeed 

detected across the two independent replications of our results. We conducted a direct 

cross-validation across datasets (Sherlock/21st year) by defining ROIs in one dataset and 

testing the magnitude of their reactivation signals in the other dataset, using the same 

analysis method (Figure 4). The tested brain regions showed highly replicable effects 

across these 2 independent datasets, using either analysis method, as reflected in the test-

specific p-values (supplementary Table 1, the only exception is the hippocampus in the 

within-participant analysis of the Sherlock dataset, p=0.1). Meta-analysis of p-values across 

datasets confirmed these results (within participant analysis: precuneus/retrosplenial cortex: 

χ2
4 =27.63, p<0.001; posterior hippocampus: χ2

4 =10.14, p=0.038; Ang/LOC: χ2
4 =21.36; 

p<0.001, between participant analysis: precuneus/retrosplenial cortex: χ2
4 =27.63, p<0.001; 

posterior hippocampus: χ2
4 =23.47, p<0.001; Ang/LOC: χ2

4 =27.63; p<0.001, Fisher’s test, 

a=0.017 for all tests). Very similar results were obtained in a cross-validation analysis across 

datasets using the scene-based between-participant analysis (precuneus/retrosplenial cortex: 

χ2
4 =27.63, p<0.001; posterior hippocampus: χ2

4 =23.47, p<0.001; Ang/LOC: χ2
4 =25.43, 

p<0.001, Fisher’s test, a=0.017 for all tests; supplementary Table 1, supplementary Figure 

5). The reactivation effect is therefore not only specific to event boundaries, but also highly 

replicable across datasets.

Reactivation is selective for relevant past events

Our results so far indicate a robust and reliable reactivation of remote past events, which is 

specific to event boundaries of ongoing naturalistic experience. But is there also specificity 

to the content of reactivated information? Is relevant past information reactivated more than 

irrelevant past information? To test this hypothesis, we constructed a Bag Of Words model 

of the text in each narrative (the scene descriptions and dialogues of the Sherlock movie 

and the full 21st year story). Each scene was represented by a vector, whose elements 

represented the number of occurrences of each word. For example, the Bag-Of-Words 

vector for this paragraph would have a 3 in the element that represents the word “vector” 

(see illustration at the bottom right of Figure 1d). Under the assumption that similar 

contexts share similar words, by correlating these Bag Of Words representations across 

scenes, we created a context similarity matrix for each experimental stimulus (Sherlock 

movie description/21st year story, see illustration in Figure 1d, and similarity matrices in 

sup. Figure 6b/d). Next, for each sphere in each participant’s brain, we correlated the 

neural event-boundary X scene similarity matrix with the dataset-specific Bag Of Words 

scene-similarity matrix: for the Sherlock dataset, we correlated the past and future parts of 

the matrices separately and calculated a time (past-future) main effect. For the 21st year 
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dataset, which contained two alternating narratives, we computed correlations between the 

past congruent (same narrative), past incongruent (different narrative), future congruent and 

future incongruent entries of the matrices, and computed a time X congruency interaction 

(see Online Methods).

In the Sherlock dataset, a wide network of brain regions (including the precuneus/

retrosplenial cortex, angular gyrus/lateral occipital cortex and hippocampus) showed a 

positive modulation of fMRI reactivation by context-similarity across analysis methods 

(Figure 5a). The 21st year dataset showed weaker effects (as expected due to methodological 

constraints, see Online Methods), which replicated across datasets only in the precuneus/

retrosplenial cortex (whole-brain corrected in the between-participant, but not the within-

participant analysis, Figure 5b). This effect in the precuneus/retrosplenial cortex was also 

evident in a mega-analysis across datasets (whole-brain corrected in the between-participant, 

but not the within-participant analysis, Figure 5c. For additional results on the entire 

context-similarity matrices, see Online Methods and sup. Figure 6). Significant results were 

also obtained using the scene-based between-participant analysis (sup. Figure 7). These 

results suggest that in the precuneus/retrosplenial cortex, reactivation at event boundaries 

is selective for remote past events that are relevant (have similar context) to the current 

situation.

Whilst it is encouraging that most of these effects survive whole-brain correction, the critical 

question is whether the same voxels that reactivate past scenes on average (Figure 2, Figure 

3, sup. Figure 2), also do so selectively. To test this, we used an independent ROI analysis. 

We defined precuneus/retrosplenial cortex ROIs, separately from each dataset (Sherlock/21st 

year) and analysis method (within/between participant) in the reactivation analysis (Figure 

2a, Figure 3a), and tested the context specificity within each ROI in the same dataset 

and using the same analysis method (Figure 5, sup. Figure 7). Precuneus/retrosplenial 

cortex ROIs showed significant context-specific reactivations with each approach and 

dataset (Sherlock within participant analysis: t=5.98, p<0.001, Sherlock boundary-based 

between participant analysis: t=4.86, p<0.001, Sherlock scene-based between participant 

analysis: t=10.55, p<0.001, 21st year within participant analysis: t=1.92, p=0.02, 21st 

year boundary-based between participant analysis: t=1.51, p=0.039, 21st year scene-based 

between participant analysis: t=2.11, p=0.019, one-tailed permutation tests, see sup. Table 2 

for means, SEMs and effect sizes). A meta-analysis conducted across the two independent 

datasets for each analysis method confirmed a robust replication of this effect (within 

participant analysis: χ2
4 =21.64, p<0.001; boundary-based between participant analysis: χ2

4

=20.3, p=0.001; scene-based between participant analysis: χ2
4 =21.36, p<0.001, Fisher’s 

test). Mega-analyses, pooling together all participants from the two datasets also confirmed 

these results (all p<0.001, Figure 5c, supplementary Figure 7c). Thus, the reactivation seen 

in the precuneus/retrosplenial cortex at event boundaries (Figure 2, Figure 3, sup. Figure 2) 

is selective for relevant past information.

Discussion

How do we make sense of our ongoing experiences? Our findings propose that past 

information that is relevant for the comprehension of the current situation is reactivated 
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at event boundaries. We found evidence for reactivation of past events in the same 

brain regions (precuneus/retrosplenial cortex, posterior hippocampus, angular gyrus/lateral 

occipital cortex) across 2 independent datasets, that are vastly different from one another 

(Table 1), suggesting that this reactivation represents a general attribute of the processing 

of ongoing experiences. These results, observed both within and between individuals, 

demonstrates that this reactivation exists both at the local (voxel-specific) scale and at the 

mesoscale (Figures 2 and 3). We further established that the observed reactivation is not 

only specific to event boundaries (Figure 4), but also to selected past events: the reactivation 

of events in the precuneus/retrosplenial cortex is modulated by semantic context, such that 

past events with a similar context as the current event were more likely to be reactivated 

(Figure 5). Taken together, these findings demonstrate that reactivation of past events at 

event boundaries is a selective mechanism that can piece together relevant parts of an 

ongoing experience.

Previous studies of replay have used experimental designs based on multiple repetitions 

of the same task13, 14, 44. Such experiments demonstrated that past knowledge (e.g. the pre-

learned structure of a maze) and current learning (e.g. the position of a new reward location 

in the maze) can be combined through replay33, 44. However, the documented replay was 

not selective for specific past events, but rather represented a whole knowledge-structure, 

acquired across repeated trials. In other words, replay has been shown to reflect the 

assimilation of information into a previously-acquired schema. Contrary to such over-trained 

experiments, in the naturalistic processing of a narrative, each event is only experienced 

once. Accordingly, we designed an analysis method which allowed us to treat events as 

unique pieces of information whose inter-relations can be inferred as a narrative unfolds. 

Indeed, our observation of a selective reactivation of unique events that are semantically-

related to one another suggests the formation of relations between these individual events. 

Inferring these relations lies at the heart of understanding unfolding events, and we therefore 

suggest reactivation as the mechanism that constructs this relational understanding while 

events unfold.

Reactivation was observed in the hippocampus and in regions of the DMN. Indeed, 

hippocampal replay and sharp wave ripples have been documented simultaneously with 

activity in DMN regions in the human27, 28, primate29 and rodent brain26, 30. Interestingly, 

replay/reactivation are commonly interpreted as supporting memory of past events and 

planning of future behavior13, 31. The DMN is also commonly believed to be an “offline” 

(resting-state) network, involved in remembering the past and envisioning the future, 

but to be disengaged from processing immediate external information45, 46. However, 

in naturalistic experiments, the DMN has been hypothesized to have an online function 

in interpreting ongoing information in light of prior knowledge9, 10, 40, 47, though the 

mechanism underlying the continuous binding of information has not yet been characterized. 

The naturalistic paradigm used here in combination with the mechanistic insights offered 

by our analytic approach indicate that, during an unfolding experience, the DMN processes 

online information by employing a reactivation mechanism that binds the present with 

related past events. The online nature of this computation can therefore construct our 

understanding of current events. Note that, it is not under dispute that reactivation or 

the DMN support offline functions, such as memory or planning. The online-constructed 
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links between events could build our understanding of the present, and simultaneously 

be consolidated into memory and inform subsequent decisions. We therefore suggest that 

reactivation in the DMN may do more than consolidating past events into memory or 

informing future decisions; it may serve as an information-binding mechanism that underlies 

the understanding of the present.

Not all regions of the DMN have been detected to reactivate remote past information in 

our results. However, both implicated nodes, the precuneus/retrosplenial cortex and the 

angular gyrus, have been highlighted as particularly likely to represent event models4, 5, 48. 

In addition, these two regions have been shown to have long timescales of neural 

dynamics9, 48, 49, and were therefore suggested to be able to intrinsically retain past 

information throughout an uninterrupted movie viewing9. It is therefore possible that, at 

event boundaries, the precuneus/retrosplenial cortex and the angular gyrus can reactivate 

specific remote event-models out of all past models they hold for the duration of the movie. 

Interestingly, the detection of neural signatures of event boundaries in these particular 

regions has been demonstrated to predict hippocampal response during movie watching48. 

It is therefore possible that, after the selection of events to be reactivated in these DMN 

regions, the hippocampus can bind these events with the current event-model, resulting in an 

inter-connected representation of an unfolding experience7, 50–53.

These regions were reliably detected in both datasets using a time main effect as a 

reactivation index, but not when using a time X congruency interaction in the 21st year 

dataset. This could be due to the fact that the 21st year story has an alternating narrative 

structure. At the end of each narrative-specific scene, the listeners likely predict that the 

following scene will be of the other (incongruent) narrative. It is therefore plausible that 

event boundaries will not only trigger reactivations that encode the content of the just-ended 

scene, embedded in its narrative. Event boundaries may also trigger reactivations of the 

incongruent narrative, to set the context for the predicted upcoming scene. If this is true, 

event boundaries would display reactivations of both narratives (congruent and incongruent 

with the just-ended scene), that will be evident in the time main effect but not in the time X 

congruency interaction. Future studies will be needed to investigate interaction effects in a 

story that contains two narratives with an unpredictable structure.

We note that, of the three brain regions detected to reactivate past information, only the 

precuneus/retrosplenial cortex showed a context-selective modulation of this reactivation 

which was reproducible across datasets. The retrosplenial cortex is indeed believed to 

process relational and contextual information that is needed for the consolidation of 

events into memory54. In addition, naturalistic experiments have repeatedly identified the 

precuneus/retrosplenial cortex as the main brain region involved in context processing9, 40, 47 

and in the representation of semantically-central events (showing dense semantic relations to 

other events) during recall of a narrative55. It therefore seems reasonable that, as our results 

indicate, the precuneus/retrosplenial cortex has a unique contribution to the selection of 

contextually-relevant events for reactivation during narrative processing. Nevertheless, our 

results also hint that other brain regions may take part in this process, as evidenced by the 

results obtained from the Sherlock dataset (Figure 5a). Since these other brain regions were 
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not replicated in the 21st year dataset, future work, using a larger number of datasets, will be 

needed to target the contextual modulation of reactivation in additional brain region.

It is also noteworthy that our analyses detected regions that reactivated past events, but 

no regions where representations at event boundaries were more similar to (and hence 

predictive of) future events. In theory, such predictive coding could have been detected in 

our analyses, since prediction and planning for the near future have been postulated to be 

integral to perception, and to be represented in event models1, 2, 5. Indeed, in the rodent 

literature, replay has been documented to inform immediate goal-directed choices33, 56, 57 

(but also see58). Future studies will be needed to characterize the conditions under which 

predictive coding could also be detected in naturalistic narrative processing experiments in 

humans.

In conclusion, by the end of this paper, the reader’s brain should have constructed an 

interconnected set of representations, relating our experimental hypotheses (presented 

in the Introduction), our findings (presented in the Results), and our interpretations of 

these findings, as just described (we assume not all readers will have read the Methods 

section). We propose that hippocampus and DMN regions in the reader’s brain formed this 

complex structure of knowledge via a selective reactivation of relevant information at event 

boundaries, such as endings of paragraphs. If this knowledge structure has indeed been 

formed during the reading, the reader should have been able make sense of this paper, and 

perhaps even remember it in the long run, or make use of it in her/his own future work.

Online Methods

Overview

Here, we aimed to study reactivation of temporally-remote events (i.e. further than the 

just-ended event) at event boundaries of naturalistic stimuli. For this purpose, we analyzed 

two naturalistic datasets, where participants either watched a movie or listened to a story 

while undergoing a whole-brain fMRI scan. We measured reactivation as the correlation 

between fMRI representations at event boundaries (the endings of scenes, Figure 1a), and 

representations of previous scenes (Figure 1b). The lower/upper triangular parts of the 

resulting similarity matrix reflected similarities between each event boundary and earlier/

later scenes (Figure 1c, orange/blue, respectively).

We wanted to look for reactivation of remote scenes, so we removed the immediately 

preceding scene of each event boundary. However, one possibility is that each event 

boundary correlates with its immediately preceding scene, and the preceding scene 

correlates with other scenes. Thus, correlations between event boundaries and remote 

scenes may in fact reflect between-scene correlations, rather than reactivation of remote 

information. Yet, correlating between scenes results in a symmetrical similarity matrix, in 

which the same inter-scene correlations exist for both past scenes (scene 8 vs. scene 4) or 

future scenes (scene 4 vs. scene 8, Figure 1c). It is therefore possible to control perfectly 

for this potential confound by computing a reactivation measure that contrasts the past with 
the future (thus cancelling out symmetric similarities). By computing this reactivation index 

using a whole-brain searchlight approach (namely, using a sphere centred on each fMRI 
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voxel in each participant’s data), we were able to test in which brain regions representations 

at event boundaries correlate with (i.e. reactivate) past scene-representations.

In this within-participant analysis, we calculated correlations between representations at 

event boundaries and scenes, extracted from a single brain. We also performed a between-

participant analysis, in which representations of scenes were extracted from the brain of 

one participant and correlated with the averaged event-boundaries representations extracted 

from the brains of the remaining participants of the same dataset. Note that for the within-

participant reactivation analysis we needed to carefully control for autocorrelations in the 

raw data, since representations of event boundaries and scenes were extracted from the 

same fMRI signals. This problem will be discussed in the section “Autocorrelations in 

within-participant analyses”, and does not apply to the between-participant analysis, which 

correlates representations between signals of independent participants.

Finally, to test whether reactivation is selective for scenes with relevant semantic context, we 

used the overlap in words between scenes to further characterize the observed reactivation 

(Bag Of Words model, Figure 1d).

Data

This study reports findings from two naturalistic fMRI datasets (see Table 1): The Sherlock 

dataset41 downloaded from Princeton University’s DataSpace repository38; and the 21st year 

dataset40, downloaded from the Narratives repository39.

Participants

Sherlock. 22 participants (10 female, age range 18-26) were recruited for the original study, 

of which 17 met the original study’s inclusion criteria, and were therefore also analysed in 

the current study.

21st year. 25 participants (14 female, age range 18-40) were analysed in the original and 

current study.

All participants were right handed native English speakers, and none had been exposed to 

the experimental stimulus prior to the scanning session.

Experimental stimuli

Sherlock. Here we analysed data from participants who watched the first 48 minutes of 

Episode 1 of the BBC's television series “Sherlock”. The plot had a continuous structure, 

with varying scene-lengths (median 51 seconds, range 12 - 184.5 seconds). Scene timings 

were taken from the original study, where they were manually defined based on major 

shifts in the narrative41. The experimental stimulus was divided into two segments of 

23/25 minutes, and a 30 seconds audiovisual cartoon (unrelated to the main stimulus) was 

presented prior to each segment.

21st year. Participants listened to a 56 minute-long story, which was segmented into scenes 

by design. These scenes had relatively constant lengths (median 67.5 seconds, range 60 - 84 

seconds), and were separated by 4.5-6 seconds of silence. The narrative was composed of 
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two unrelated storylines that alternated during the first 30 story-scenes, and then merged into 

a unified storyline during the last 15 story-scenes.

fMRI acquisition

Sherlock. Imaging was performed on a 3T full-body scanner (Siemens Skyra) with a 20-

channel head coil. Functional images were acquired using a T2*-weighted echo planar 

imaging (EPI) pulse sequence (TR 1500 ms, TE 28 ms, flip angle 64°), each volume 

comprising 27 slices of 4 mm thickness, in-plane resolution 3 × 3 mm2, FOV 192×192 

mm2), with ascending interleaved acquisition.

21st year. Imaging was performed on a 3T full-body MRI scanner (Skyra, Siemens) with 

a 20-channel head coil. Functional images were acquired using the same parameters as in 

the Sherlock dataset. Anatomical images were acquired using a T1-weighted magnetization-

prepared rapid-acquisition gradient echo (MPRAGE) pulse sequence (TR 2300 ms; TE 3.08 

ms; flip angle 9°; 0.86 x 0.86 x 0.9 mm3 resolution; FOV, 220 x 220 mm2).

Data preprocessing

Sherlock. The fully preprocessed images from the Sherlock dataset were downloaded and 

used. Preprocessing was performed in FSL (http://fsl.fmrib.ox.ac.uk/fsl), and included slice 

time correction, motion correction, linear detrending, temporal high-pass filtering (140s 

cutoff), and coregistration and affine transformation of the functional images to an MNI 

template brain. Functional images were resampled to 3 mm isotropic voxels.

21st year. Raw images from the narrative dataset were downloaded and then preprocessed 

using FSL and in-house Matlab code (version 2018a, Mathworks, Natick, MA, USA). 

Functional data were analysed using FMRIB’s expert analysis tool (FEAT, version 6). The 

following preprocessing steps were applied to each participant’s data: motion correction 

using FMRIB’s Linear Image Registration Tool (MCFLIRT), brain extraction using BET 

and high pass temporal filtering (120s cutoff). Functional images were aligned to structural 

images initially using FMRIB’s Linear Image Registration Tool (FLIRT)59, 60 and then 

optimized using Boundary-Based Registration (BBR)61. Structural images were transformed 

into MNI space using FMRIB’s Nonlinear Image Registration Tool (FNIRT) and the 

resulting warp fields were applied to the functional images. Tissue-type segmentation was 

carried out using FAST to create white matter/CSF nuisance masks. To avoid the inclusion 

of grey matter voxels in these nuisance masks, these masks included only voxels identified 

as white matter/CSF with probability of 1, restricted by an anatomically-based bounding box 

(-44<x<42, -84<y<42, -4<z<34 for white matter; -42<x<38, -64<y<38, -22<z<28 for CSF), 

and eroded by a sphere of radius 5 and 2 mm for white-matter and CSF, respectively62. 

White-matter and CSF time-courses were extracted for each functional scan, and their 

contribution to the BOLD signal, as well as the contribution of motion parameters, was later 

removed. Functional images were resampled to 3 mm isotropic voxels.

Across all analyses, unless otherwise specified, fMRI BOLD responses were shifted by 4 

TRs (6 seconds) in relation to the experimental stimuli to account for the canonical HRF 

delay (Figure 1a).
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Data analysis

fMRI representations

To test reactivation across the entire brain, a searchlight approach was employed, 

with spheres of 3 voxel (9mm) radius confined by a standard MNI mask. Extracting 

representations (time-specific voxel patterns) from each sphere necessitated the separation 

of fMRI BOLD signals of event boundaries from the signals of whole scenes. Therefore, 

as illustrated in Figure 1b, in each participant, representations of event boundaries were 

defined as the voxel pattern in the single TR that ends each scene. Representations of scenes 

were defined as the average representation across all within-scene TRs that are 5 TRs (7.5 

seconds) remote from adjacent event boundaries. The selection of a 5 TR gap was based 

on the estimation that the canonical HRF peaks at 4-6 seconds (3-4 TRs) of stimulus onset, 

hence a minimal gap was chosen as to avoid the HRF peak but also to allow sufficient 

scene-TRs to be analysed.

Note that within-scene averaging of representations is a common practice40–42, 63, 64, which 

is consistent with the pattern of whole-scene reactivation at event boundaries seen in EEG 

data17. This averaged scene representation ignores rapidly changing scene-information and 

likely reflects more stable elements of the scene, or its gist, as believed to be captured by 

event models4.

Due to the need to separate between the BOLD signals of event boundaries and scenes, 5 

scenes from the Sherlock dataset that were shorter than 10 TRs were excluded from further 

analyses, along with their corresponding event boundaries. In the same dataset, the two 

scenes corresponding to the unrelated cartoon added to the experimental stimulus were also 

removed, along with the final scene of each scan, which did not have enough TRs following 

it to account for the HRF delay.

Within/between-participant similarity matrices

In order to detect similarities in representations that would indicate information reactivation, 

the Pearson correlations between event boundary representations and scenes representations 

were calculated (Figure 1c). This yielded an event boundary X scene similarity matrix, in 

which the lower triangular part reflected correlations between each event boundary and its 

previous scenes, and the upper triangular part reflected correlations between each event 

boundary and its following scenes. The main diagonal of this matrix was removed, as it 

reflected similarities between each event boundary and its immediately preceding scene, 

rather than reflecting similarities with remote scenes.

Importantly, this similarity matrix was computed using two related analytic approaches: 

a within-participant analysis and a between-participant analysis. In the within-participant 

analysis, for each sphere in each participant, representations of event boundaries and of 

whole scenes were derived from a single brain, and correlated to create a within-participant 

(event boundary X scene) similarity matrix. Thus, this approach allowed the detection of 

reactivation of remote scene representations at event boundaries within a single brain.
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However, under the assumption that brain activity is modulated by naturalistic stimuli in 

a similar fashion across participants, correlations between brains could also be calculated 

(inter-subject correlations65). This approach has been implemented in the analysis of 

naturalistic data, demonstrating that representations of scenes have structure at a meso-scale 

in which functional anatomy is shared across participants40–42. Hence, reactivation too 

may have a structure at a meso-scale, and could be detected in the similarity between the 

representations of event boundaries in one brain and the (shared) representations of scenes 

averaged across all other brains.

However, it is also possible that the representations at event boundaries may be shared 

across brains. This previously unexplored possibility would suggest that the reactivated 

pattern itself, rather than the representations of scenes, is common across all participants. 

To test this hypothesis, for each sphere in each participant, representations of scenes were 

extracted and correlated with the same-sphere event-boundary representations, which were 

averaged across all other participants of the same dataset. This resulted in an event boundary 

(group-averaged) X scene (of one participant) similarity matrix.

Note that, the brain regions showing reactivation would not necessarily be similar across 

these two types of analysis. First, the within-participant analysis should be equally 

sensitive for the detection of reactivation across all brain regions. This is unlike the 

between-participant reactivation, which could only be detected in brain regions in which 

representations are shared across participants. Second, compared to the within-participant 

analysis, the higher SNR of the between-participants analysis, resulting from the averaging 

of signals across many brains, may allow an easier detection of areas that show a 

reactivation effect (thus resulting in stronger effects).

Furthermore, autocorrelations needed to be controlled for in the within-participant 

reactivation analysis, since representations of event boundaries and scenes were extracted 

from the same fMRI signals (as will be discussed in the “Autocorrelations in within-

participant analyses” section).

However, in the between-participant analysis, the representations of event boundaries were 

temporally independent of the scene representations (as they came from different brains), 

and therefore no autocorrelation issues existed.

All following analyses reported here were conducted using both the within-participant 

approach and the boundary-based between-participant approach. In addition, results from 

the scene-based between-participant analysis, using an event boundary (of one participant) 

X scene (averaged across all other participants) similarity matrix, are presented in the 

supplementary materials.

Finally, it is possible that greater correlations between representations at event boundaries 

and past scenes (compared to future scenes) representations reflect event representations 

that are rapidly “flushed” after event boundaries43. This would entail that representations 

at the event boundaries resemble the pre-flush representation more than the post-flush 

representation. To rule out this possibility, the between-participant analyses were repeated 

while excluding the post-boundary events (in addition to the pre-boundary events). Note 
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that this control analysis was not needed for the within-participant analysis, as the related 

events were already removed to control for autocorrelation-related biases (see section 

“Autocorrelation in within-participant analyses”).

Reactivation analysis

Correlations between event boundary- and scene-representations were meant to detect 

reactivation of remote scenes at event boundaries. However, it is also possible that 

these correlations would simply reflect similarities between scene representations, for two 

reasons: 1) due to the low temporal resolution of fMRI data, event boundaries are likely 

correlated with their surrounding scenes; 2) If each event boundary representation contains 

reactivation of its immediately preceding scene17, the representation at the boundary 

would be similar to the scene representation. Since same-narrative scenes are likely to 

have shared features, and therefore similar representations, the representation at the event 

boundary of a certain scene may be similar to remote scenes, not due to reactivation, but 

merely due to between-scene similarities (the event boundary representation is similar to 

its containing scene representation, the containing scene representation is similar to other 

scene representations). However, between-scenes similarities necessarily yield a symmetric 

similarity matrix, in which the same inter-scene correlations exist for both past scenes (e.g. 

scene 8 vs. scene 4) or future scenes (e.g. scene 4 vs. scene 8, Figure 1c). Therefore, to rule 

out the possibility that between-scene similarities were measured, rather than reactivation of 

remote scenes at event boundaries, a “reactivation index” was used. This index was defined 

as the difference between the mean of the lower triangular part of the similarity matrix (past 

part), and the mean of the upper triangular part of the similarity matrix (future part):

n n − 1
2 ∑

i = 2

n
∑

j = 1

i − 1
Mij − ∑

i = 1

n − 1
∑

j = i + 1

n
Mij

Where M is an n X n matrix, i and j are row and column indices, respectively.

This index controls for any effects of scene similarities, since it cancels out symmetric 

entries in the lower and upper triangular parts of the matrix, and thus isolates the asymmetric 

components of the matrix as a probe for reactivation.

For the 21st year datasets, we also repeated the between-participant reactivation analyses 

using only the congruent entries of the similarity matrix, and also using a reactivation index 

based on a Time (past/future) X Congruency (same/different narrative) interaction.

Thus, our analytic approach consisted of the following steps: for each sphere in each 

participant, event boundary and scene representations were extracted. An event boundary 

X scene similarity matrix was calculated, from which the main diagonal was removed. 

Correlation coefficients in the matrix were Fisher transformed, and a reactivation index 

was then calculated, and assigned to the anatomical coordinates of the sphere center. This 

procedure was repeated for all brain spheres, creating a single-subject map. Within each 

of the Sherlock/21st year datasets, single-subject maps were submitted to a voxel-wise 

two-tailed group t-test, creating a dataset-specific group map, thresholded at p<0.05. These 
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group maps were corrected for multiple comparisons using a permutation test, with the 

null distribution of the maximal cluster mass, as implemented in FSL’s randomise, and 

thresholded at p<0.005. Finally, the corrected maps were projected onto a template MNI 

brain using the connectome workbench.

ROI definition

Regions that showed consistent effects across datasets were detected visually. The 4 

reactivation group maps (resulting from the Sherlock/21st year datasets in the within/

between participant analyses) were masked by relevant regions from anatomical atlases to 

define 4 sets of ROIs, as detailed below.

All ROIs were defined based on group maps in a statistically significant threshold, 

and after correction for multiple comparisons. Anatomical definitions of the precuneus 

and lateral occipital cortex (joining the superior and inferior sub-divisions) from Harvard-

Oxford cortical structural atlas were used to mask the group maps, creating dataset/analysis-

specific precuneus/retrosplenial cortex and angular gyrus/lateral occipital cortex ROIs. All 

hippocampal subregions of the Julich histological atlas were merged to create an anatomical 

definition of the hippocampus, which was used to mask all group maps and create dataset/

analysis-specific hippocampal ROIs.

Time-specificity of Reactivation

To test whether the observed reactivation is specific to event boundaries, representations at 

event boundaries must be contrasted with those of a control time-point. But which control 

time-point should be chosen? Event boundaries are by definition positioned between two 

adjacent scenes. A control time-point that precedes an event boundary will be much closer 

to the past period (as defined by the boundary) and a control time-point that follows an 

event boundary will be much closer to the future period. Due to autocorrelations in fMRI 

signals, the choice of each of these time-points to serve as a control will bias our analyses 

(as detailed in the section “Autocorrelations in within-participant analyses”). This problem 

can be tackled by choosing both a past and a future control time-point that are both equally 

distant in time from the event boundary, and thus have symmetric time-biases that will 

cancel out.

Therefore, a balanced control was defined as the averaged reactivation indices computed 

for two symmetrical timepoints on both sides of each event boundary. Contrasting the 

reactivation indices of event boundaries with those of the balanced controls was defined as:

Indexevent boundary − 1
2 Indexpast control + Indexfutur control

Control time-points should be chosen such that they would not include any contribution 

from their adjacent event boundaries, otherwise the experimental effects seen at the event 

boundaries would be diminished by the contrast. Given the sluggish nature of the BOLD 

response, control points that are 10 TRs (15 seconds) distant from the event boundaries 

were chosen for the Sherlock dataset. This optimal choice, however, could not be made 
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for the 21st year dataset, given its experimental design. Since most event boundaries are 

preceded by a scene of the same narrative and followed by a scene from a different 

narrative, the past and future controls would potentially be contaminated by congruency 

effects (higher reactivation indices for past vs. future control points). For this reason, 

control time-points that are only 5 TRs (7.5 seconds) distant from the event boundaries 

were chosen for the 21st year dataset. Since scenes in this dataset were separated by 

3-4 TRs of silence, these control time-points were the furthest possible from the event 

boundary while not introducing any incongruent effects into the future control time-point. 

Both control time-points were therefore well within a “congruent” BOLD response, thus 

eliminating unbalanced congruency effects. Yet this congruent response was shared with the 

event boundary itself. For this reason, the contrast between event boundaries and control 

reactivation indices, calculated for the 21st year dataset, was suboptimal.

The contrast between the reactivation index of event boundaries and control timepoints 

was calculated for each sphere in each participant’s brain. Single-subject and group maps 

were created as described previously. For consistency, a controlled reactivation analysis was 

additionally performed with control points that are 5 TRs away from event boundaries for 

the Sherlock dataset.

Reactivation across time

To visualize and measure the reproducibility of the observed reactivation effects across 

datasets (Sherlock/21st year) and using the two analysis methods (within/between 

participants), the time-courses of reactivation were drawn. These time-courses were 

extracted from the previously described ROIs of brain areas that showed consistent 

reactivation effects across datasets: the bilateral precuneus/retrosplenial cortex, bilateral 

posterior hippocampus and the bilateral angular gyrus/lateral occipital cortex.

Reactivation signals from these ROIs were extracted from independent datasets and using 

the same analysis method: ROIs defined from the Sherlock dataset were tested on the 21st 

year dataset, and vice versa. ROIs defined based on the within/between-participant analysis 

were tested using the same analysis method. This procedure allowed the conduction of 2 

cross-validation tests across the independent datasets using each of the 2 analysis method.

Statistical analysis

For each of these ROIs, and in each participant’s data, reactivation indices were extracted 

for single TRs around the event boundaries, in the same manner described in the section 

“Reactivation analysis”. However, the current reactivation indices were uncorrected for 

the HRF delay, to demonstrate the true temporal correspondence between the reactivation 

indices and event boundaries. The time window chosen for this analysis included 3 TRs 

before event boundaries and 12 TRs after the event boundaries. Since fMRI autocorrelations 

are substantial in short time-periods (see section “Autocorrelations in within-participant 

analyses”), this analysis was restricted to event boundaries that originated from scenes with 

a minimum of 20 TRs. To provide a visual demonstration of the changes in reactivation 

across time, the reactivation indices were averaged across events within participant, and then 

averaged across participants of the same dataset.
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To test the magnitude of reactivation at event boundaries across datasets and analysis 

methods, the following procedure was employed: the TR-specific reactivation values were 

divided into a baseline (the HRF-uncorrected event boundary and the TR that precedes it) 

and signal (TRs 1-6 after the HRF-uncorrected event boundary, to account for the HRF 

delay). For each participant, the averaged reactivation value of the baseline was subtracted 

from the averaged reactivation value of the signal. This resulted in a single reactivation index 

for each participant and dataset/analysis method. Note that this index is different than the 

original reactivation index, which measured the magnitude of reactivation at a specific TR 

(the HRF-corrected event boundary). Cohen’s D effect sizes were calculated by dividing 

each group’s mean by the groups’ standard deviation.

Group statistics were carried out using permutation tests. Single-subject indices were 

submitted to a one-sample t-test, and the group level t-value was defined as the statistic 

for the permutation test. Under the null hypothesis of no reactivation (a flat signal), the 

sign of single-subject reactivation indices could be flipped. Thus, for each dataset/analysis 

method, reactivation indices of single participants were randomly flipped, and a random 

group t-value was calculated. This procedure was repeated 1,000 times, resulting in 1,000 

random t-values that constructed the null distribution. The position of the true test statistic in 

relation to the null distribution was used to determine the two-tailed p-value of the test.

To test the reproducibility of results across datasets, for each ROI separately, the 2 dataset-

specific p-values resulting from the above described permutation tests were meta-analysed 

using Fisher’s method66, 67. To correct for multiple hypotheses testing across the 3 ROIs 

(precuneus/retrosplenial cortex, hippocampus, angular gyrus/lateral occipital cortex), the 

alpha level was adjusted to 0.017 based on the conservative Bonferroni correction.

Context-specificity of reactivation

whole-brain analysis

Is reactivation of remote past information context-selective? In other words, would past 

scenes that share a similar context with the current scene (i.e. more relevant to the event 

model) be reactivated more than scenes with a different context? To assess this, the full 

text of each experimental stimulus was analysed: descriptions of the scenes (including 

transcript of dialogues) in the Sherlock movie55, and the text of the 21st year story. Under 

the assumption that word cooccurrences between scenes would represent context similarity, 

for each experimental stimulus separately, the words comprising each scene were used to 

construct a Bag Of Words model, as implemented in Matlab. The Bag Of Words model 

listed all words across each full experimental stimulus (excluding stop words, such as “the”, 

“a” etc., that have no specific semantic meaning), and counted the number of occurrences 

of each word in each scene. These scene-specific occurrence vectors were then transformed 

into probability vectors. Thus, for each scene, a probability vector the length of all words 

in the experimental narrative was created (see illustration in Figure 1d, bottom right). To 

measure context similarities between scenes, the Jensen-Shannon distance was calculated 

between each two scene-vectors, and the resulting between-scene distance matrix was 

converted to a similarity matrix. This matrix was meant to be correlated with the neural 

event-boundary X scene similarity matrix.
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However, visual inspection of the Bag Of Words scene-similarity matrices of both datasets 

revealed a time-related bias of similarity values (sup. Figure 6a/c). Bag Of Words scene-

similarities were significantly correlated with time (the serial position of scenes) in the 

Sherlock data (r(901) = 0.69, p<0.001). This bias was related to the first 15 scenes of the 

movie, which were either very short (and thus had unreliable Bag Of Words representations) 

or less related to the overall narrative (containing non-central characters/events, which 

resulted in unique Bag Of Word representations). The first 15 scenes were indeed less 

similar to all other scenes, compared to the between-scene similarities of the remaining 

scenes (t(901) = -25.9, p<0.001, sup. Figure 6a). Thus, correlating the Bag Of Words 

scene-similarity matrix with the neural similarity matrix would capture time-related effects, 

rather than the more subtle modulation of reactivation by semantic context. A similar 

time-related bias was apparent across the congruent entries of the 21st year Bag Of Words 

scene-similarity matrix (r(763) = -0.08, p=0.03). This bias was related to the merging of 

the two separate narratives in the last 15 scenes of the story. By definition, the congruent 

entries of each separate narrative would be more similar to each other (as they contain 

very similar words) compared to the similarities between the entries of the joint narrative 

and each of the separate narratives (since the joint narrative contains a mixture of words 

from both narratives, and would therefore be less similar to each separate narrative). The 

between-scene similarities of the last 15 scenes (which are by definition congruent with all 

other scenes) were indeed lower compared to the congruent entries of the between-scene 

similarities of the first 30 scenes (t(553) = -10.22, p<0.001, sup. Figure 6c). To prevent 

these time-related biases from masking true experimental effects, the first 15 scenes of 

the Sherlock dataset and the last 15 scenes of the 21st year dataset were excluded from 

the context-similarity matrices. This procedure successfully eliminated the time biases 

(r(433) = 0.05/0.02, p = 0.3/0.7, for Sherlock/21st year, sup. Figure 6b/d, respectively). 

For transparency, a whole-brain Bag Of Words analysis was also conducted using the full, 

time-biased Bag Of Words context-similarity matrices.

Thus, for the Sherlock dataset, the following analysis was performed: for each participant 

and sphere, a neural event-boundary X scene similarity matrix was computed using either a 

within- or between-participants analysis, as previously described. A context scene-similarity 

matrix was also calculated. Due to the variable scene-length in the Sherlock movie (Table 1), 

which could affect the context similarity values of short scenes (with very sparse vectors), 

a third matrix indicating the minimal number of words in each scene-pair was also created. 

Next, the past part of the neural similarity matrix was correlated with the past part of the 

context similarity matrix, and the future part of the neural similarity matrix was correlated 

with the future part of the context similarity matrix (which is symmetric to the past part 

of the same matrix). In both computations, the contribution of the minimal-word matrix 

was partialled out of the correlation. Finally, the difference between the Fisher-transformed 

past and future correlation coefficients was computed, cancelling out any effect of scene-

similarities, which is symmetric in time. This difference value was assigned to the center 

of the sphere. Single-subject and group maps were created as described for the reactivation 

analysis. However, given the clear directionality of the experimental hypothesis (similarity in 

context will induce more reactivation), one-tailed p-values were computed.

Hahamy et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2023 June 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The same analysis could not be performed for the 21st year dataset, due to its experimental 

design. Due to the alternating narratives across the first 30 scenes, a checkerboard pattern 

of similarity was captured by the Bag Of Words model (sup. Figure 6c/d). Similarly to 

the previously described time-bias, correlating the context scene-similarity matrix with the 

neural similarity matrix would capture the robust congruency effect, rather than the more 

subtle modulation of reactivation by sematic context in the congruent scenes. For this 

reason, rather than using the main effect of time as the basis for the neural reactivation 

index, a time X congruency interaction was used. Specifically, for each participant and 

sphere, event-boundary X scene similarity matrices were calculated, as previously described. 

Next, separately for the past and future parts of each neural similarity matrix, the congruent 

entries were correlated with the corresponding entries in the context similarity matrix, and 

the incongruent entries were correlated with corresponding entries in the context similarity 

matrix. Finally, the difference between the Fisher-transformed congruent and incongruent 

correlations of the past part of the matrix were contrasted with the difference between the 

Fisher-transformed congruent and incongruent correlations of the future part of the matrix. 

This index was assigned to the center of each sphere. Single-subject and one-tailed group 

maps were created as described for the reactivation analysis.

ROI analysis

To test whether the same regions that showed a reactivation effect also showed modulation 

of this reactivation by semantic context, an ROI analysis was performed. This analysis was 

confined to the precuneus/retrosplenial cortex, since this was the only region that showed 

a reproducible context modulation effect across datasets and analysis methods in the whole-

brain analysis. The same precuneus/retrosplenial cortex ROIs that were defined from the 

reactivation analysis group maps were used. Since these ROIs were based on the reactivation 

analysis, they were independent with regards to context modulation analysis. Thus, the ROIs 

defined from the reactivation analysis for each dataset (Sherlock/21st year) and analysis 

method (within/between-participants) were used to test the modulation of reactivation by 

semantic context for the same dataset and analysis method. Specifically, for each participant, 

the relevant (dataset- and analysis-specific) ROI was used to extract event-boundaries and 

scene representations. Neural similarity matrices were constructed, and correlated with a 

context similarity matrix, as previously described. This resulted in 4 sets of values derived 

from single-participants (Sherlock/21st year participants in the within/between-participants 

analysis).

Group statistics were carried out using permutation tests. Each set of single-subject values 

was submitted to a one-sample t-test, and the group level t-value was defined as the 

statistic for the permutation test. Under the null hypothesis of no contextual modulation 

of reactivation, the sign of single-subject values could be flipped. Thus, for each dataset/

analysis method, values of single participants were randomly flipped, and a random group 

t-value was calculated. This procedure was repeated 1,000 times, resulting in 1,000 random 

t-values that constructed the null distribution. The position of the true test statistic in relation 

to the null distribution was used to determine the one-tailed p-value of the test.
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To test the reproducibility of the contextual modulation of reactivation in the precuneus/

retrosplenial cortex, the 2 dataset-specific p-values resulting from the above described 

permutation tests were meta-analysed using Fisher’s method. This was done separately for 

each of the analysis methods (within/between participants).

Mega analyses

A pooled whole-brain analysis across datasets was conducted using FSL’s randomise. 

Single-subject maps of all participants were mega-analysed using a second-level GLM 

design, where each dataset was modelled with a dummy regressor. Resulting mega-analysis 

maps were thresholded and corrected for multiple comparisons, as described for the within-

dataset group analyses.

A mega-analysis of the context-specificity of reactivation in the precuneus/retrosplenial 

cortex was also conducted using a permutation test. The only difference to the permutation 

test previously described for the within-dataset analysis was the inclusion of dummy 

regressors for each dataset.

Autocorrelations in within-participant analyses

Calculating correlations between representations of single TRs (event boundaries) and 

other timepoints of the same fMRI signals is problematic, since these representations are 

embedded in 1/f noise (slow trends in the time domain, which contribute to the lower 

frequencies of the power spectrum)68. This noise is typically removed by applying a linear 

high-pass filter, which removes from each TR the commonalities with its weighted temporal 

neighbourhood. By doing so, the correlations between each TR and its environment are 

removed, thus “flattening” the linear trend induced by the 1/f noise (sup. Figure 8a). 

However, this procedure changes the autocorrelation structure of fMRI data: prior to 

filtering, each TR has positive correlations with neighbouring TRs that slowly decline in 

time, but high-pass filtering induces a more complex structure of alternating positive and 

negative correlations that decline in time (sup. Fig. 8b). Thus, correlations between event 

boundaries and scenes will have a temporal structure, which is symmetric in time, because 

event boundaries are symmetric with regards to past and future scenes. However, since the 

scenes that immediately precede event boundaries are removed from the similarity matrices, 

past scenes are further away from event boundaries compared to future scenes. This entails 

that the temporal structure introduced by autocorrelations will be asymmetric with respect to 

past and future scenes, thus biasing the reactivation index.

Moreover, this temporal bias will also interact with any temporal asymmetries introduced 

by the structure of the experimental stimulus. Datasets based on experimental stimuli with 

short scenes (e.g. Sherlock dataset) will be more heavily impacted by autocorrelation biases 

compared to datasets based on experimental stimuli with longer scenes (e.g. 21st year 

dataset). The relative position of short scenes will also determine the magnitude of bias 

(series of adjacent short scenes will be heavily impacted). For example, the beginning of the 

movie Sherlock has a cluster of short scenes, and therefore, on average, event boundaries 

will be closer in time to past scenes than to future scenes. In addition, inter-scene intervals, 
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such as those in the 21st year story, entail that event boundaries are closer to their past 

(containing) scenes, compared to the future (non-continuous) scenes. Finally, datasets based 

on experimental stimuli with a time-alternating structure (e.g. 21st year dataset) will have 

a different bias compared to datasets devoid of such a structure (e.g. Sherlock dataset), 

as will be discussed below. Therefore, to determine what would be the most suitable 

unbiased statistic for each dataset (Sherlock/21st year), simulations based on the unique 

characteristics of each dataset and its related experimental stimulus were employed.

Note again that these autocorrelation biases do not exist in the between-participant analysis, 

where the representations of event boundaries and scenes are extracted from different 

brains (independent signals). The fact that the between-participant effects cleanly replicate 

the within-participant effects should increase confidence that autocorrelations have been 

suitably accounted for using the approach described in the following sections.

Reactivation index

To control for the autocorrelation bias, adjacent scenes on both sides of event boundaries, 

which are heavily impacted by the bias, must be remove from our analyses. To assess 

the number of scenes that must be removed, 10 “single subject” simulated datasets of 

120 voxels with a 1/f power spectrum were created and high-pass filtered. These datasets 

were created based on either the characteristics of the Sherlock experiment (TR=1.5, scan 

length=1,976 TRs, high-pass filter of 140 sec) or the 21st year experiment (TR=1.5, scan 

length=2,242 TRs, high-pass filter of 120 sec). In each simulated dataset, representations of 

event boundaries and scenes were extracted based on the specific timings of scenes in the 

experimental stimuli. Representations of event boundaries and scenes were then correlated 

within each simulated dataset, yielding 10 random similarity matrices. These 10 matrices 

were used to calculate 10 random reactivation indices, which were then averaged into a 

group index. The 10 similarity matrices were later averaged across the simulated datasets 

to create a group similarity matrix. This procedure was repeated 10,000 times, resulting in 

10,000 group reactivation indices and 10,000 group similarity matrices. The group similarity 

matrices were further averaged for display purposes.

As evident in the upper left panels of sup. Figure 8c/d, both the averaged Sherlock and 

21st year similarity matrices showed artefactual correlations around their main diagonals 

(the missing rows/columns in the Sherlock matrix correspond to excluded scenes and event 

boundaries, as described above). The lower left panels of sup. Figure 8c/d demonstrate 

that these artefactual correlations were reflected in positively biased distributions of the 

reactivation indices. However, removing 10 diagonals from the random Sherlock matrices 

and 6 diagonals from the random 21st year matrices removed the artefactual correlations 

(upper right panels of sup. Figure 8c/d) and centred the reactivation index distributions on 0 

(lower right panels of sup. Figure 8c/d), thus removing autocorrelation-related biases from 

our analysis.

Note that removing diagonals from the similarity matrix means discarding of scenes that 

precede or follow each event boundary (5/3 scenes on each side of event boundaries in 

the Sherlock/21st year datasets, respectively). An equal number of diagonals from the past 
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and future parts of the similarity matrix must be discarded, since high-pass filtering has a 

symmetric effect on timepoints that precede of follow each event boundary. For this same 

reason, the main diagonal must belong to the past part of the similarity matrix, since it 

contains the scenes immediately preceding each event boundary. Removal of n diagonals 

from the similarity matrix therefore entails the removal of n/2 diagonals from the upper 

triangular part of the matrix (future part), and the removal of the main diagonal and 

additional n/2-1 diagonals from the lower part of the matrix (past part). The reactivation 

index would therefore take the following form:

n − d n − d + 1
2 ∑

i = d + 1

n
∑

j = 1

i − d
Mij − n − d n − d + 1

2 ∑
i = 1

n − 1
∑

j = i + d + 1

n
Mij

Where M is an n X n matrix, i and j are row and column indices, respectively, and d is the 

number of diagonals removed from the upper triangular part of the matrix.

Though our analyses create a slightly unbalanced partition of the similarity matrix (more 

past than future entries), the simulations presented in the lower right panels of sup. Figure 

8c/d demonstrate that this imbalance does not bias the reactivation index distribution.

To assess whether stable scene patterns may also introduce some bias into the analysis, the 

simulations described above were repeated while adding in random scene representations 

drawn from a uniform distribution. These added representations were given weights of 0.1, 

0.5, 1 and 1.5 with regards to the averaged scene representations derived from the random 

1/f signals. As demonstrated in sup. Figure 9 (for weights 0.5 and 1), the higher the weight, 

the more the added patterns masked the autocorrelation bias, as scene representations no 

longer reflected solely the 1/f signals they arose from. Yet the removal of diagonals was 

still needed to center the reactivation index distribution on zero. In other words, these 

uncorrelated scene patterns simply added unexplained variance to the analysis, suggesting 

that it is clearly not mere scene representations that cause the observed bias.

To investigate whether autocorrelations between scene representations could cause the 

bias, simulations were repeated while adding in weighted scene patterns drawn from 

a 1/f distribution. As demonstrated in sup. Figure 10, adding in autocorrelated scene 

representations did not bias the analysis, but only masked the time bias, as scene patterns no 

longer solely reflect the originating 1/f signals (and again, removal of diagonals was needed 

to control for the signal autocorrelation bias). This is because scene autocorrelations are 

a function of scene order and not of time. This means they are perfectly symmetric with 

regards to event boundaries and will get subtracted out by our measure.

To assess whether a congruency structure, as in the 21st year dataset, could underlie the 

bias, random template representations were drawn for narrative A and for narrative B of 

the story. These representations were added to the simulated scene representations in an 

interleaved manner, and were added gaussian noise to create correlations between congruent 

scene representations. As demonstrated in sup. Figure 11, adding in these weighted scene 

patterns again masked the observed bias, overruling the possibility that mere congruency 

structure caused the autocorrelation bias.
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However, the congruency structure of the 21st year dataset does interact with the time-related 

autocorrelation bias, which prevented the use of a Time (past/future) X Congruency (same/

different narrative) interaction in the calculation of the reactivation index. As previously 

described, and schematically illustrated in sup. Figure 12a, the first 30 scenes of the 21st 

year datasets consisted of alternating narratives, that later converge. The similarity matrices 

calculated for this dataset would therefore contain alternating entries of congruent (same 

narrative) or incongruent (different narrative) correlations between event boundaries and 

scenes. These entries are arranged by diagonals, which create an asymmetric congruency 

structure with regards to event boundaries. For example, the main diagonal contains 

correlations between event boundaries and their immediately preceding scenes, which are 

congruent. The superdiagonal contains correlations between event boundaries and their 

immediately following scenes, which are incongruent. However, autocorrelations have a 

symmetric effect in time. In raw data, event boundaries are more correlated to closer 

points in time, and are hence more correlated to congruent scenes in the past and to 

incongruent scenes in the future (this trend flips after applying high-pass filtering). As a 

result, any congruency-based analysis, such as a Time X Congruency interaction, will suffer 

from autocorrelation biases. This bias cannot be fixed by removing diagonals from the 

analysis, since an equal number of diagonals must be removed from the past/future parts 

of the matrix, which will maintain an asymmetric congruency structure in time. Indeed, 

when repeating the simulations of our analysis with random 1/f data, as described above, 

but this time defining the reactivation index as a Time X Congruency interaction, the 

removal of the diagonals failed to remove the autocorrelation artefact from the reactivation 

index distribution (the distribution is positively biased, sup. Figure 12b). For this reason, a 

reactivation index that captures the main effect of time (past-future) was chosen for both the 

Sherlock and 21st year datasets. For consistency, the same reactivation index was also used 

in the main between-participant analyses.

Control time-points

As explained in the section “Time-specificity of reactivation”, the choice of an appropriate 

time-point to serve as a control is non-trivial, due to the influence of autocorrelations. Event 

boundaries are by definition positioned between two adjacent scenes. Due to this position, 

the effect of high-pass filtering on the event boundary is symmetric with respect to time, 

since the local temporal environment of the event boundary contains equal time-points 

from past and future scenes (this is true for the Sherlock dataset, where no time-gaps exist 

between scenes. This is marginally true for the 21st year dataset, where inter-scene intervals 

were inserted, making event boundaries slightly closer to past scenes than to future scenes). 

However, a control time-point that precedes an event boundary will be much closer to the 

past period (as defined by the boundary) and a control time-point that follows an event 

boundary will be much closer to the future period (sup. Figure 13a). In both cases, high-pass 

filtering will induce unbalanced temporal autocorrelations between the control point and 

past/future scenes, and will therefore introduce a temporal bias into our analyses.

To illustrate this point, simulations of random high-pass filtered 1/f data were repeated 

for the two experiments, as described above, but this time, past (10 timepoints before 

event boundaries) and future (10 timepoints after event boundaries) control timepoints were 
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added to the analysis. For each of these timepoints separately (event boundaries, past/future 

controls), representations of the relevant timepoints were extracted. These representations 

were then correlated with scene representations to construct similarity matrices, diagonals 

were discarded as described above, and reactivation indices were computed. As depicted in 

sup. Figure 13b, and as previously demonstrated, the distribution of the reactivation index 

at event boundaries was centred on zero in the datasets of both experiments. However, the 

distributions of reactivation indices of both the past and future control timepoints were not 

centered on zero, indicating a high-pass-filtering artefact that interacts with time (sup. Figure 

13c/d). The results of these simulations indicate that contrasting the reactivation indices of 

the event boundaries with those of either past or future control timepoints would introduce 

biases into our analyses. However, since high-pass filtering is symmetric in time, using 

both control timepoints, which are equally distant from the event boundary, would cancel 

out the temporal bias and create a balanced control. Simulation analyses indeed revealed 

that contrasting the reactivation index of event boundaries with that of the balanced control 

yielded distributions centered on zero (sup. Figure 13e), indicating an unbiased analysis.

Context-modulation of reactivation in the 21st year dataset

As previously demonstrated, using a time X congruency interaction-based reactivation index 

for the 21st year dataset inherently induced biases into the analysis. To evaluate whether 

the context-modulation analysis would be similarly affected by this bias, simulations were 

performed. In these simulations, the interaction of correlations between the random neural 

similarity matrices and the context similarity matrices was computed. This procedure was 

repeated 1,000 times, constructing a random distribution of interaction values, which showed 

a negative bias (sup. Figure 12c). Since this bias was in the opposite direction to the 

experimental hypothesis, it would attenuate rather than enhance any experimental effect. 

Thus, weaker results were expected to be found for this analysis in the 21st year dataset 

compared to the Sherlock dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analysis pipeline
(a) Participants watched a movie/listened to a story while being scanned. We defined event 

boundaries as TRs in which scenes transitioned (TR=1.5 sec). We next shifted these TRs by 

6 seconds (4 TRs) to account for the hemodynamic delay. (b) For each sphere in the brain, 

we extracted fMRI representations of event boundaries (black vertical lines). To separate 

the BOLD signals of event boundaries and scenes, we defined scene-representations as the 

average representation across all within-scene TRs that are 5 TRs (7.5 seconds) remote 

from adjacent event boundaries. (c) For each sphere, we created a similarity matrix by cross-

correlating the representations of event boundaries and scenes. The lower/upper triangular 

parts of the matrix contained the similarities between event-boundary representations and 

the representations of preceding/following scenes (past/future parts of the matrix, orange/

blue colours, respectively). We removed the main diagonal to measure only reactivation 

of temporally-remote scenes. Note that if similarities between event boundaries and scenes 

merely reflected scene-similarities, this similarity would be reflected in both the past and 

future parts of the matrix. For example, if the similarity between event boundary 8 and 

scene 4 (entry (8,4), bright orange) in fact reflected the similarity between scene 8 and 

scene 4, then the same similarity should be evident in the future part of the matrix (entry 

(4,8), bright blue). To control for this possibility, we defined a reactivation index as the 

difference between the means of the past and future parts of the matrix, thus cancelling 

out any symmetric scene-similarity effects. (d) Bag Of Words analysis. We represented 

each scene according to the occurrences of words, from across the entire narrative, that 

were used in that scene (illustrated for scenes 4 and 8). We then cross-correlated these 

scene-representations to create a context similarity matrix. Next, we correlated the past/

future part of the neural similarity matrix with the past/future part of the context similarity 
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matrix, respectively. Finally, we subtracted the future correlation coefficient from the past 

correlation coefficient, thus controlling for scene-similarities. See Methods for the variations 

of this method used for different datasets and analysis method.
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Figure 2. Within-participant reactivation of remote past events at event boundaries
(a) Within-participant reactivation, where reactivation indices were derived from event 

boundary and scene representations that were extracted from the same brain. (b) Controlled 

within-participant reactivation, where the within-participant reactivation indices at event 

boundaries were contrasted with those computed for control timepoints. Rows depict within-

dataset group maps of the Sherlock dataset (1st row), the 21st year dataset (2nd row) 

and a mega-analysis pooling together the two datasets (3rd row). Maps are presented 

on both flat cortical surface and on 3D slices (dataset-specific MNI coordinates are 

depicted). Across all datasets, reactivation of temporally-remote past events (as reflected 

in positive t-values) was consistently found in the bilateral precuneus/retrosplenial cortex 

(PCUN), the Angular gyrus/Lateral Occipital Cortex (Ang/LOC) and hippocampus (HIP). 

To illustrate the resemblance in results between the uncontrolled and controlled analyses, 

we superimposed regions of interest based on the uncontrolled within-participants analyses 

of each dataset ((a), marked in black contours) on the corresponding controlled reactivation 

maps (b). LH, left hemisphere; RH, right hemisphere. All maps were created using two-

sided t-tests, and were cluster-corrected for multiple comparisons across the entire brain 

(p<0.005).
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Figure 3. Between-participant reactivation of remote past events at event boundaries
(a) Between-participants reactivation, where reactivation indices were derived from the 

scene representations of one participant and the event boundary representations from all 

other participants of the same dataset. (b) Controlled between-participant reactivation, where 

the between-participant reactivation indices at event boundaries were contrasted with those 

computed for control timepoints. Rows depict within-dataset group maps of the Sherlock 

dataset (1st row), the 21st year dataset (2nd row) and a mega-analysis pooling together 

the two datasets (3rd row). Maps are presented on both flat cortical surface and on 3D 

slices (dataset-specific MNI coordinates are depicted). Across all datasets, reactivation of 

temporally-remote past events (as reflected in positive t-values) was consistently found in 

the bilateral precuneus/retrosplenial cortex (PCUN), the Angular gyrus/Lateral Occipital 

Cortex (Ang/LOC) and hippocampus (HIP). To illustrate the resemblance in results between 

the uncontrolled and controlled analyses, we superimposed regions of interest based on the 

uncontrolled between-participants analyses of each dataset ((a), marked in black contours) 

on the corresponding controlled reactivation maps (b). LH, left hemisphere; RH, right 

hemisphere. All maps were created using two-sided t-tests, and were cluster-corrected for 

multiple comparisons across the entire brain (p<0.005).
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Figure 4. Reactivation is specific to event-boundaries − replication across datasets
(a) Group maps of each dataset (Sherlock/21st year) superimposed with the ROIs defined 

from the other dataset, using the same analysis method (within/between-participant 

analysis). For example, in the first row, the within-participant reactivation group map of 

the Sherlock dataset (Figure 2a, 1st row) is superimposed with ROIs defined from the 

within-participant reactivation group map of the 21st year dataset (Figure 2a, 2nd row). (b) 

Group-averaged reactivation indices derived from the ROIs in (a) are presented for the time 

period of 3 TRs prior to event boundaries until 12 TRs after event boundaries, uncorrected 

for the HRF delay. Event boundaries are depicted as red vertical lines. Grey error bands 

represent SEMs. (c) ROI analysis used to quantify the significance in (b). Reactivation 

indices are derived from each of the datasets and ROIs presented in (a) and TRs 1-6 (minus 

baseline) presented in (b). Single-participant values are represented as circles and group 

means are represented as bars. n=17/25 participants for the Sherlock/21st year datasets, 

respectively, see sup. Table 1 for exact p-values. PCUN, Precuneus/retrosplenial cortex; 

Ang/LOC, Angular gyrus/Lateral Occipital Cortex; HIP, Hippocampus. *p<0.05; ** p<0.01; 

*** p<0.001, two-sided permutation tests.
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Figure 5. 
Relevant past events are preferentially reactivated at event boundaries. We measured the 

level to which reactivation is modulated by semantic context (as defined by a Bag Of 

Words model, Figure 1d) across the entire brain. Rows show results from the Sherlock 

dataset (n=17 participants) (a), the 21st year dataset (n=25 participants) (b), and a mega-

analysis pooling together the two datasets (n=42) (c). Columns depict results obtained using 

different analysis methods (within/between-participant analysis). All maps were created 

using one-sided t-tests, and were cluster-corrected for multiple comparisons across the entire 

brain (p<0.005), except for the within-participant analysis of the 21st year dataset (b, 1st 

column), and the within-participant mega-analysis (c, 1st column). Maps are projected onto 

a flat cortical surface. Across datasets and analysis methods, the precuneus/retrosplenial 

cortex showed a consistent positive modulation of reactivation by semantic context (scenes 

with semantic context similar to that of each event boundary were reactivated more than 

scenes with different semantic contexts). To confirm that the same regions that showed a 

reactivation effect also showed a significant modulation of reactivation by semantic context, 

we tested independent precuneus/retrosplenial cortex ROIs (depicted in black contours), 

separately defined for each dataset (Sherlock/21st year) and analysis method (within/

between participant) in the reactivation analysis (Figure 2a, Figure 3a). We calculated the 

participant-specific reactivation effect sizes in these ROIs as the Time (pats-future) main 

effect / Time X Congruency (same/different story) interaction in the Sherlock/21st year 

datasets, respectively (see Online Methods). Single-participant effect sizes are represented 

as circles and group means are represented as bars (Sherlock within/between participant 

analysis, p<0.001; 21st year within/between participant analysis, p=0.02/0.039, respectively; 
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mega analyses, p<0.001, one-sided permutation tests). LH, left hemisphere; RH, right 

hemisphere; * p<0.05; *** p<0.001.
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Table 1
Details of datasets

SHERLOCK 21ST YEAR

# PARTICIPANTS
STIMULUS TYPE

GENRE

17
Audio-visual movie

Mystery

25
Auditory story

Drama

STIMULUS STRUCTURE A single main narrative

Two alternating narratives
(scenes 1-30), which join into a

single narrative at the final
part of the story (scenes 31-

45)

TOTAL LENGTH 48 minutes 56 minutes

# SCENES 48 (+2 audio-visual cartoons) 45

MEDIAN SCENE LENGTH
(RANGE) 51 (12 - 184.5) seconds 67.5 (60 - 84) seconds
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