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Abstract

Response-Adaptive Randomization (RAR) is part of a wider class of data-dependent sampling 

algorithms, for which clinical trials are typically used as a motivating application. In that context, 

patient allocation to treatments is determined by randomization probabilities that change based 

on the accrued response data in order to achieve experimental goals. RAR has received abundant 

theoretical attention from the biostatistical literature since the 1930’s and has been the subject 

of numerous debates. In the last decade, it has received renewed consideration from the applied 

and methodological communities, driven by well-known practical examples and its widespread 

use in machine learning. Papers on the subject present different views on its usefulness, and these 

are not easy to reconcile. This work aims to address this gap by providing a unified, broad and 

fresh review of methodological and practical issues to consider when debating the use of RAR in 

clinical trials.
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1 Introduction

Randomization to allocate patients to treatments is a defining element of a well-conducted 

study, ensuring comparability of treatment groups, mitigating selection bias, and providing 

the basis for statistical inference (Rosenberger and Lachin, 2016). In clinical trials, a 

randomization scheme which remains unchanged with patient responses is still the most 

frequently used patient allocation procedure. Alternatively, randomization probabilities 

can be adapted during the trial based on the accrued responses, with the aim of 

achieving experimental objectives. Objectives that can be targeted with a Response-Adaptive 
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Randomization (RAR) procedure include maximizing power of a specific treatment 

comparison and assigning more patients to an effective treatment during the trial.

Few topics in the biostatistical literature have received as much attention over the years 

as RAR (also known as outcome-adaptive randomization). RAR has been a fertile area of 

methodological research, as illustrated by the reference section of this paper. Despite this, 

the uptake of RAR in clinical trial practice remains disproportionately low in comparison 

with the theoretical interest it has generated since first proposed by Thompson (1933). Its 

value in clinical trials remains a subject of active debate within biostatistics, especially 

during health care crises such as the Ebola outbreak (Brittain and Proschan, 2016; Berry, 

2016) or the COVID-19 pandemic (Proschan and Evans, 2020; Magaret, 2020; Villar et al., 

2021).

This continued conversation has been enriching, but is also often presented in papers geared 

towards arguing either in favor or against its use in clinical trials, which has given RAR 

a controversial flavour. As well, some of these debates have been somewhat repetitive, as 

seen by how many of the points raised by Armitage (1985) over 35 years ago continue to be 

revisited. Examples of possibly conflicting views on the use of RAR are given below.

If you are planning a randomized comparative clinical trial and someone proposes 

that you use outcome adaptive randomization, Just Say No. (Thall, 2020)

…optimal [RAR] designs allow implementation of complex optimal allocations 

in multiple-objective clinical trials and provide valid tools to inference in the 

end of the trial. In many instances they prove superior over traditional balanced 

randomization designs in terms of both statistical efficiency and ethical criteria. 

(Rosenberger et al., 2012)

RAR is a noble attempt to increase the likelihood that patients receive better 

performing treatments, but it causes numerous problems that more than offset any 

potential benefits. We discourage the use of RAR in clinical trials. (Proschan and 

Evans, 2020)

The above examples help explain why the use of RAR in clinical trials remains rare and 

debated. It also suggests that, given the many different classes of RAR that exist, making 

general statements around the relative merits of RAR may well be an elusive goal. This 

paper therefore aims to give a balanced and fresh perspective. Instead of conveying a 

position in favor or against the use of RAR in clinical trials in general, we emphasize the 

less commonly known arguments (which also tend to be ones that are more positive towards 

the use of RAR).

In parallel and in stark contrast to this discussion, in machine learning the uptake and 

popularity of Bayesian RAR (BRAR), also referred to as Thompson Sampling (TS), has 

been incredibly high (Kaufmann and Garivier, 2017; Kaibel and Biemann, 2021; Lattimore 

and Szepesvári, 2020). Their use in practice has been driven by substantial gains in system 

performances. Meanwhile, in the clinical trial community, a crucial development was the use 

of BRAR in some well-known biomarker led trials such as I-SPY 2 (Barker et al., 2009) or 

BATTLE (Kim et al., 2011). The goal of these trials was to learn which subgroups (if any) 
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benefit from a therapy and to change the randomization to favor patient allocation in that 

direction. While these trials include other elements besides RAR, they have set a precedent 

that RAR is feasible (at least in oncology), and have set expectations which, contrary to 

what the ECMO trials did in the 1980s (see Section 2), are driving investigators towards 

RAR in other contexts. Both in the machine learning literature and in these trials, the BRAR 

methodology used is a subclass of the larger family of RAR methods.

After an extensive review of the literature, we recognized the need for an updated and 

broad discussion aimed at reconciling apparently conflicting arguments. We believe this is 

important because some of these (mostly negative) positions on RAR persist, despite recent 

methodological developments over the past 10 years directly addressing past criticisms (see 

for example Section 3.4). We compare recently proposed RAR procedures and use a new 

simulation study (in Section 3.1) to illustrate how some viewpoints can tell only part of the 

story while a broad look can change conclusions. Additionally, we hope this paper will drive 

methodological research towards areas that are less developed and help those considering 

the use of RAR in a specific experiment to navigate the relevant literature in light of recent 

opposing views (Proschan and Evans, 2020; Villar et al., 2021; Magaret, 2020). Overall, our 

ultimate message is a call for careful thinking about how to best deliver experimental goals 

through the appropriate use of trial adaptations including (but not limited to) RAR.

We end this section by providing some general notation, basic concepts and metrics to 

assess RAR. We give a historical overview of RAR in Section 2, including a summary of 

classification criteria of different procedures (Section 2.3). We subsequently explore some 

key established views about RAR in Section 3. We conclude with final considerations and a 

discussion in Section 4.

1.1 Some notation and basic concepts

We first describe the setting and notation necessary for a rigorous presentation of the debate 

around RAR. Note that Table A1 in the Appendix provides a summary of all the acronyms 

used in this paper. Our focus is on clinical trials in which a fixed number of experimental 

treatments (labeled 1, …, K with K ≥ 1) are compared against a control or standard of care 

treatment (labeled 0) in a sample of n patients. The sample size n is also assumed fixed. This 

can, in principle, be relaxed to allow for early stopping of the trial, but for the purposes of 

this paper we consider early stopping as a distinct type of adaptation. When treatment k ∈ 
{0, 1, …, K} is assigned to patient i (for i ∈ {1, …, n}), this generates a random response 

variable Yk,i, which represents the primary outcome measure of the clinical trial.

We let ak,i be a binary indicator variable denoting the observed treatment allocation for 

patient i, with ak,i = 1 if patient i is allocated to treatment k and ak,i = 0 otherwise. 

Each patient is allocated to one treatment only, and hence ∑k = 0
K ak, i = 1. Typically patients 

enter the trial and are treated sequentially, either individually or in groups. In most of the 

RAR literature, patients are assumed to be randomized and treated one after another, with 

each patient’s outcome being available before the next patient needs to be treated. This 

assumption can be relaxed and incorporate delayed patient outcomes (e.g. for time-to-event 

data).
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We assume Yk,i depends on a treatment-specific parameter of interest θk. For notational 

convenience, we let Yi denote the realised outcome of patient i. We assume a parametric 

model for the primary outcome, ignoring nuisance parameters and other parameters of 

secondary interest for the final analysis. For example, one could have a Bernoulli model for 

binary responses, where θk = pk (the probability of a successful outcome for a patient on 

treatment k):

Pr Y k, i = y ak, i = 1 = pk
y 1 − pk

(1 − y) fory = 0, 1. (1)

Other examples include a normal or exponential model for continuous outcome variables.

As a general way to represent treatment allocation rules, we let πk,i = P (ak,i = 1) denote the 

probability that patient i is allocated treatment k. Note that we require ∑k = 0
K πk, i = 1 and πk,i > 

0 ∀i. Also note that our definition excludes non-randomized response-adaptive methods like 

the Gittins Index (Villar et al., 2015a). Traditional (fixed) randomization has πk,i = ck for all 

i, and for implementing Equal Randomization (ER) we set ck = 1/(K + 1) for all k. Finally, 

we let Nk denote the total number of patients that are allocated to treatment k by the end of 

the trial. In general, Nk = ∑i = 0
n ak, i is a random variable, with the constraint ∑k = 0

K Nk = n.

In a RAR procedure, the allocation probabilities that define the sampling strategy are 

adapted based on the past treatment allocations and response data. More formally, let ai = 

(a0,i, a1,i, …, aK,i) denote the allocation vector for patient i. We also let a(j) = {a1, …, aj} and 

y(j) = {y1, …, yj} denote the sequence of allocations and responses observed for the first j 
patients (where both a(0) and y(0) are defined as the empty set). RAR defines the allocation 

probability πk,i conditional on a(i−1) and y(i−1), i.e.

πk, i = Pr ak, i = 1 a(i − 1), y(i − 1) . (2)

Note that for a procedure to be response-adaptive, the πk,i must depend on both a(i−1) 

and y(i−1). This framework is flexible enough to allow for the RAR procedure to also 

depend on covariates that may affect the primary outcome. Letting x(j) = {x1, …, xj} be a 

vector of observed covariates, we define a Covariate-Adjusted Response-Adaptive (CARA) 

procedure by letting πk,i = Pr(ak,i = 1 | a(i−1), y(i−1), x(i)). With the increasing interest in 

“precision medicine”, the role of covariates is crucial in developing targeted therapies for 

patient subgroups. Many of the issues we discuss here for RAR are directly applicable 

(to some degree) to CARA. However, we do not include a specific discussion for CARA 

to preserve the focus of our work on RAR. We instead refer the reader to the review by 

Rosenberger and Sverdlov (2008), more recent papers by Atkinson, Biswas and Pronzato 

(2011); Baldi-Antognini and Zagoraiou (2011, 2012); Metelkina and Pronzato (2017) and 

the book by Sverdlov (2016). Zagoraiou (2017) discusses how to choose a CARA procedure 

in practice.

A final concept to introduce is that of hypothesis testing. We focus on the case where there is 

a global null hypothesis 0: θk = θ0 ∀k versus one-sided alternatives 1,k: θk > θ0 for some 

k (assuming a larger value of θk represents a desirable outcome). At the end of the trial, a 
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test statistic denoted Tn = t(a(n), y(n)) is computed based on the observed data. The specific 

form of the test statistic depends on the outcome model and the hypothesis of interest. For 

example, if the primary outcome is binary, the Maximum Likelihood Estimator (MLE) of 

the success rate on treatment k is pk = ∑i = 1
n ai, kyi, k

∑i = 1
n ai, k

. In a two-arm trial, one could use a Z-test 

based on the MLE of the success rates:

Zn = p1 − p0

p0 1 − p0 /N0 + p1 1 − p1 /N1
. (3)

.

1.2 Assessing the performance of RAR procedures

In the literature, many ways of assessing RAR have been considered. Most metrics used 

in the clinical trial setting focus on inferential goals. Terms such as ‘power’ and ‘patient 

benefit’ can have very different meanings depending on the trial context. Here, rather than 

providing an exhaustive list of all possible metrics for comparing variants of RAR, we 

present some of the most relevant ones in three categories: testing, estimation and patient 
benefit.

Testing metrics: type I error and power—For confirmatory trials, the control of 

frequentist errors is especially important from a regulatory perspective. A type I error is 

defined as falsely rejecting a null hypothesis 0. For a trial with a single null hypothesis 0: 

θ = θ0, the type I error rate is defined as α = Pr(rejecting 0 | θ = θ0), and for confirmatory 

trials this is controlled below some fixed level (typically 0.05 or 0.025). When there are 

multiple null hypotheses, various generalizations can be considered, the most common being 

the familywise error rate, which is the probability of making at least one type I error. This 

reflects the inherent multiplicity problem and type I error inflation that can occur if multiple 

hypotheses are tested without adjustment.

In contrast, a type II error is failing to reject 0 when it is in fact false. For a trial with 

a single null hypothesis 0 and corresponding point alternative hypothesis 1: θ = θ1, the 

power of the trial is defined as 1 − β = Pr(rejecting 0 | θ = θ1). However, when there are 

multiple hypotheses (e.g. in the multi-arm setting with K > 1), the ‘power’ of the trial admits 

various definitions. For instance, marginal power (the probability of rejecting a particular 

non-null hypothesis), disjunctive power (the probability of rejecting at least one non-null 

hypothesis) and conjunctive power (the probability of rejecting all non-null hypotheses) 

are all used as definitions of ‘power’ (Vickerstaff et al., 2019). Additionally, some authors 

define power as the probability of satisfying a criterion that reflects the goal of the trial. 

For example, power could be defined as the probability of selecting the best experimental 

treatment at the end of the trial, or as a Bayesian concept such as posterior predictive power. 

A RAR procedure can have a high power according to one definition but not according to 

another.

Estimation metrics—There are metrics related to estimation and the information gained 

after a trial. A key consideration (particularly for adaptive designs, see Robertson et al. 
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(2021)) is bias, defined as a systematic tendency for the estimate of the treatment effect to 

deviate from its true value. More formally, the mean bias of an estimator θ k for θk is defined 

as E θ k − θk. An estimator may be biased due to the trial adaptations affecting its sampling 

distribution, or due to heterogeneity in the observed data (i.e. where the data does not come 

from the same underlying distribution, such as when there is a time trend in the response 

variable as considered in Section 3.4). Apart from bias, another important consideration 

is the variance var θ k  or mean squared error of an estimator E θ k − θk2 , reflecting the 

classical bias-variance trade-off. Although precision of the estimates is less often reported in 

the literature, this can be compared using estimation efficiency measures, see for example 

Flournoy et al. (2013); Sverdlov and Rosenberger (2013a).

Patient benefit metrics—Different metrics to capture the “ethical” or patient benefit 

properties of RAR have been considered. These are less frequently reported than testing and 

estimation metrics, which is somewhat counter-intuitive given the most common motivation 

to use RAR is to better treat more patients in a trial. Nevertheless, this lack of reporting is 

consistent with inferential goals being paramount. Some examples of patient benefit metrics 

include:

• The number of treatment successes (for binary outcomes) or the total 

response (for continuous outcomes) in the trial: ∑i = 1
n Y i. When averaged for 

binary outcomes, this is referred to as the Expected Number of Successes 

(ENS). Alternatively, some authors focus on the number of treatment failures 

∑i = 1
n 1 − Y i  and report the Expected Number of Failures (ENF).

• The proportion of patients allocated to the best arm: p∗ = ∑i = 1
n ai, k∗/n, where k* = 

argmaxkθk (if k* is not unique then one option is to sum over all arms that are 

‘best’).

The above metrics are concerned with the individual ethics of the n patients within the trial, 

which is distinct from the collective ethics of the overall population (which is related to 

testing and estimation metrics). We return to this issue of patient horizon in Section 3.6.

Other metrics—Aside from the three categories of metrics described above, there are also 

metrics focusing on the level of imbalance in the number of patients in each treatment arm 

at the end of the trial. One way of defining the imbalance in arm k is (Nk/n − 1/(K + 1)), 

which makes a comparison between the observed allocation ratio and a completely balanced 

allocation between the arms. See also Section 3.1 for other examples of imbalance metrics.

A final metric is the total sample size of the trial. Typically, this is defined as the minimum 

number of patients required to achieve a target power (given type I error constraints) under 

some pre-specified point alternative hypothesis. This is closely linked with testing metrics 

but there are patient benefit considerations as well. For example, suppose one out of the (K 
+ 1) treatment options is substantially better than the rest. Using ER means that Kn/(K + 1) 

of the patients within the trial will be allocated to suboptimal treatments. Hence, minimizing 

the sample size n has patient benefit advantages as well. In contrast (as discussed in (Berry 

and Eick, 1995)), increasing the sample size to maintain power when using RAR may 
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deliver higher overall patient benefit across the target population (i.e. including future 

patients), suggesting trade-offs between benefit for patients in the trial and those outside of 

it, see also Section 3.6.

2 A Historical Perspective on RAR

“Those who cannot learn from history are doomed to repeat it.” (Attributed to 

George Santayana)

We now give an overview of the historical development of RAR, which naturally motivates 

how we classify RAR procedures in Section 2.3. A distinguishing feature of this history is 

that a large amount of high quality theoretical work is paired with few highly influential 

examples of RAR in practice. We thus present the history of RAR in two distinct 

areas: theory (Section 2.1) and practice (Section 2.2). A timeline summarizing some key 

developments is given in Figure 1.

2.1 RAR methodology

The origins of RAR date back to Thompson (1933), who suggested allocating patients to 

the more promising treatment arm via a posterior probability computed using interim data. 

RAR seems to have been the first form of an adaptive design ever proposed. Another 

influential early procedure was the play-the-winner rule, proposed by Robbins (1952) 

and then Zelen (1969). Although partially motivated by Thompson’s idea, this is a non-

randomized (deterministic) rule, where a success on one treatment leads to the subsequent 

patient being assigned to that treatment, while a failure leads to the subsequent patient being 

assigned to the other treatment.

RAR also has roots in the methodology for sequential stopping problems (where the sample 

size is random), as well as bandit problems (where resources are allocated to maximize 

the expected reward). Since most of the earlier work in these areas is non-randomized (i.e. 

concerns deterministic solutions), we do not review them here. Rosenberger and Lachin 

(2016, Section 10.2) gives a brief summary of the history of both of these areas, and an 

overview of multi-arm bandit models is presented in Villar et al. (2015a). For a review of 

non-randomized algorithms for the two-arm bandit problem, see Jacko (2019).

An important development for the clinical trials setting was the introduction of 

randomization to otherwise deterministic response-adaptive procedures. Randomization is 

essential for mitigating biases and ensuring comparability of treatment groups and is the 

default patient allocation mode in confirmatory clinical trials (Rosenberger and Lachin, 

2016). An example of this is the Randomized Play-the-Winner (RPW) rule proposed by 

Wei and Durham (1978). The RPW rule can be viewed as an urn model: each treatment 

allocation is made by drawing a ball from an urn (with replacement) and the composition of 

the urn is updated based on the responses. In the following decades, many RAR rules based 

on urn models were proposed, with a focus on generalizing the RPW rule. We refer to Hu 

and Rosenberger (2006, Chapter 4) and Rosenberger and Lachin (2016, Section 10.5) for a 

detailed description.
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Urn-based RAR procedures are intuitive, but are not optimal designs in a formal 

mathematical sense (see Section 2.3). From the early 2000s a perspective on RAR emerged 

based on optimal allocation targets, which are derived as a solution to a formal optimization 

problem. For two-arm group sequential trials, a general optimization approach was proposed 

by Jennison and Turnbull (2000, 2001), which minimizes the expected value of a loss 

function which is an arbitrary weighted average of N0 and N1. This led to the development 

of a whole class of optimal RAR designs. An early example for two-arm trials with binary 

outcomes is Rosenberger et al. (2001a). More examples are given in Section 3.2. In order 

to implement optimal allocation targets, a key development was the modification by Hu and 

Zhang (2004a) of the Doubly-adaptive Biased Coin Design (DBCD) originally described 

by Eisele (1994). Subsequent theoretical work by Hu and Rosenberger (2006) focused 

on asymptotically best RAR procedures, i.e. those with minimum asymptotic variance of 

the optimal allocation ratio (which typically depends on unknown parameters that need to 

be estimated using the response data, see the equations in Section 3.2). This led to the 

development of the class of efficient RAR designs (known as ERADE) proposed by Hu et al. 

(2009).

All the RAR procedures above are myopic, in that they use past responses Yk,i and past 

allocations ak,i to determine the allocation probabilities πk,i, without considering future 

patients to be recruited into the trial and the information they could provide. A recent 

development is non-myopic or forward-looking RAR based on solutions to the multi-bandit 

problem. The first such procedure was by Villar et al. (2015b) for binary responses, with 

subsequent work by Williamson et al. (2017) accounting for a finite time-horizon and for 

normally-distributed outcomes (see Williamson and Villar (2020)).

2.2 RAR in clinical practice

One of the earliest uses of RAR in clinical practice was the ECMO trial (Bartlett et al., 

1985). This trial used the RPW rule on a study of critically ill babies randomized either 

to ECMO or to the conventional treatment. In total, 12 patients were observed: one in 

the control group, who died, and 11 in the ECMO group, who all survived. This extreme 

imbalance in sample sizes was a motivation for running a second randomized ECMO trial, 

using fixed randomization (Ware, 1989).

These ECMO trials have been the focus of much debate, with these two papers accruing 

over 1000 citations. Indeed, to this day the first ECMO trial is regarded as a key reason 

not to use RAR in clinical practice, due to the extreme treatment imbalance and highly 

controversial interpretation (Burton et al., 1997). Most recently, Proschan and Evans (2020) 

states “[RAR] had an inauspicious debut in the aforementioned ECMO trial”. Largely due 

to the controversy around these trials, there was little use of RAR in clinical trials for the 

subsequent 20 years. The pace of methodological work on RAR and adaptive designs more 

generally was negatively impacted as well (Rosenberger, 2015). One exception was the 

Fluoxetine trial (Tamura et al., 1994), which again used the RPW rule, but with a burn-in 

period to avoid large imbalances in treatment groups. For an in-depth discussion of both 

trials we refer to Grieve (2017), which also discusses two BRAR trials from the early 2000s.
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More recently, there have been high-profile clinical trials that use BRAR as a key (but not 

the only) part of their adaptive design. Some examples in oncology include the BATTLE 

trials and the I-SPY 2 trial. The BATTLE trials (Kim et al., 2011; Papadimitrakopoulou, 

2016) used RAR based on a Bayesian hierarchical model, where the randomization 

probabilities are proportional to the observed efficacy based on the individual biomarker 

profiles. Similarly, the I-SPY 2 trial (Barker et al., 2009) used RAR based on Bayesian 

posterior probabilities specific to different biomarker signatures. These trials have generated 

valuable discussions about the benefits and drawbacks of using RAR in clinical trials (Das 

and Lo, 2017; Korn and Freidlin, 2017; Siu et al., 2017). Meanwhile, the REMAP-CAP 

platform trial (Angus et al., 2020) also incorporated BRAR as part of its design, in the 

context of community-acquired pneumonia. This trial was subsequently tailored to respond 

to the COVID-19 pandemic (REMAP-CAP Investigators, 2021).

Although the BATTLE, I-SPY 2 and REMAP-CAP trials use RAR as part of their designs, 

their primary focus was to select optimal treatments for particular biomarker signatures, and 

hence can more precisely be described as master protocol trials (Woodcock and LaVange, 

2017). Arguably the main feature of I-SPY 2 was the mechanism to ‘graduate’ or drop 

treatments and to add new ones as they arise. For recent examples of clinical trials using 

BRAR in a ‘vanilla’ fashion (although still including early stopping rules), we refer to 

Faseru et al. (2017); O’Brien et al. (2019); Barohn et al. (2021).

2.3 Classifying procedures: a taxonomy of RAR

Some papers (perhaps unintentionally) criticize the use of RAR in general or make broad 

conclusions using arguments that only apply to a specific class of procedures, as is (still) 

the case for the RPW rule and the ECMO trial (Proschan and Evans, 2020). In reality, RPW 

is just one example of a RAR procedure out of many and hence the value of other RAR 

procedures that are markedly different is harder to see. The vast number of different RAR 

procedures is a challenge that non-experts and experts alike face with when exploring the 

literature, which has accumulated (and continues to quickly evolve).

We now define several families of RAR procedures and discuss how they fit different 

classification criteria. This discussion illustrates the wealth and breadth of RAR 

methodology and its importance when assessing its value for a specific application. 

However, the criteria are not exhaustive or able to completely differentiate all types of 

RAR. As discussed next, we expect most classifications to require frequent revisiting 

given the current pace of development in the area (Villar et al., 2021). Nevertheless, these 

classifications can allow a better understanding of the many existing approaches and how 

they compare. We note that the number of references of each RAR family throughout the 

paper is a reflection of the attention each method received in the past rather than an intended 

focus.

Optimal and design-driven RAR—An important broad distinction first described by 

Rosenberger and Lachin (2002); Hu and Zhang (2004a) is between ‘optimal’ and ‘design-

driven’ RAR. In their works, this is defined as the following.
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1. ‘optimal’ RAR is based on deriving an optimal allocation target (or a sampling 

ratio), by optimizing a specific criterion based on a population response model.

E.g. In Rosenberger et al. (2001a) an optimal RAR is defined for a two-arm 

trial based on the population model for binary responses. The power at the end 

of the trial (using a Z-test as given in equation (3)) is fixed, while the ENF is 

minimized. Formally, using the notation in Section 1.1 and defining ρ = N1/n, the 

optimization problem is as follows:

min
ρ

1 − p0 N0 + 1 − p1 N1 subjectto p0 1 − p0

N0
+ p1 1 − p1

N1
= C (4)

The solution ρ* is then the optimal target ratio (given the above optimization 

criteria). To implement this in practice, it is necessary to estimate the parameters 

p0 and p1.

2. ‘design-driven’ RAR is based on rules which are established with intuitive 

motivation, but are not optimal in a formal sense.

E.g. The RPW rule for binary responses. The rules for computing and choosing 

the allocation probability can be formulated using an intuitive urn-based model 

(see Section 2.1 and Wei and Durham (1978) for details).

A key difference for these two RAR classes is the computation of allocation probabilities. 

While approaches in family (1) rely on optimizing some objective function that describes 

aspects of the population model explicitly, those belonging to family (2) typically have 

an intuitive motivation that is not defined analytically from a population model. However, 

while classifying approaches into these two families is useful, there are some important 

caveats. First, an intuitive design may eventually be formally shown optimal in some 

sense. Second, some procedures are harder to classify into the above criteria. Consider 

bandit-based designs, such as the Forward-Looking Gittins Index (FLGI) rule in (Villar et 

al., 2015b) or the design by Williamson et al. (2017). These are based on an optimization 

approach but do not explicitly target a pre-specified optimal allocation ratio like in family 

(1). In certain cases (like for FLGI), these are heuristic approximations and can be viewed as 

having a more intuitive motivation.

An final caveat is that there are different optimality notions to consider. Asymptotic 
optimality for example was first introduced by Robbins (1952). For example, TS is 

asymptotically optimal in terms of minimizing cumulative regret (see e.g. Kaufmann et 

al. (2012)). So for large trials, one could consider it as belonging to family (1). However, 

in small samples, if TS (and its generalization proposed by Thall and Wathen (2007)) is 

used for assigning more patients to the better arm, then this would be closer an intuitive 

motivation (as in family 2), as only dynamic programming achieves ENS optimality in a 

finite sample.

Parametric and non parametric RAR—A classification that follows naturally from 

the previous one is that of parametric and non-parametric (or distribution free) RAR. This 

classification captures some of the spirit of the optimal versus design-driven while being 
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possibly less subject to caveats. Parametric RAR procedures rely on assumptions that the 

response data are drawn from a given parametric probability distribution to compute and 

update the allocation probabilities πk,i.

E.g. the optimal RAR procedure proposed in Rosenberger et al. (2001a) and 

defined above requires estimates of p0 and p1 in order to determine πk,i.

In contrast, non-parametric RAR procedures do not explicitly rely on a parametric 

probability distribution nor on the corresponding parameter estimates to compute and update 

πk,i.

E.g. the RPW rule (and urn designs) are non-parametric designs that can be used 

for any binary data, regardless of the underlying probability distribution.

Bayesian and frequentist RAR—The distinction of RAR based on the frequentist or 

Bayesian approach to statistics may apply to the inference procedure used for the final 

analysis and/or to the design of the RAR itself. In our opinion, the inferential classification 

may not be helpful, since the choice of inference procedure depends on the experimental 

goals and regulators’ preferences between these approaches. Moreover, some innovative 

approaches have Bayesian design aspects but the inference focuses on the frequentist 

operating characteristics, see e.g. Ventz et al. (2017). Arguably a more relevant element 

to consider is the objective(s) of RAR (see the subsection ‘RAR with different objectives’ 

below). Readers interested in understanding the pros and cons of frequentist and Bayesian 

inference are referred to Wagenmakers et al. (2008); Samaniego (2010) as this is outside 

the scope of our review. For references on the use of Bayesian designs in the clinical trial 

context, we refer to Chow and Chang (2007); Chevret (2012); Rosner (2020); Stallard et al. 

(2020).

A common definition of a Bayesian design is that a prior distribution is explicitly 

incorporated into the design criteria/optimization problem and/or into the calculation of the 

allocation probabilities. However, the use of a prior distribution is not the defining element 

of BRAR as one can sometimes find equivalent frequentist designs using penalized MLEs 

or a specific prior distribution. For example, where the posterior mode with a uniform prior 

coincides with the MLE in a RAR procedure then an update of probabilities is the same 

from a frequentist and Bayesian perspective (see also a hybrid formulation for the RPW rule 

given in Atkinson and Biswas (2014, pg. 271)).

Hence, in the context of RAR, we define a Bayesian design as “a design rule that depends 

recursively on the posterior probability of the parameters” (Atkinson and Biswas, 2014), 

where the recursive updating of the allocation probabilities is done via Bayes Theorem. The 

prior information itself can be updated at time points when accrued trial data is available, see 

Sabo (2014). Such designs are called “fully Bayesian” in Ryan et al. (2016), and allow the 

full probabilistic description of all uncertainties, including future outcomes (i.e. predictive 

probabilities).

E.g. In TS with K = 1 and binary responses, the randomization probability is the 

posterior probability that p1 > p0 (given the prior information and available trial 

data), i.e. π1,i = P(p1 > p0 | ai−1, yi−1).
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A RAR procedure is frequentist if a frequentist approach is used for both estimating the 

unknown parameter(s) and, more importantly, for updating the allocation probabilities.

E.g. the DBCD can be used to target different allocations (see Section 3.2), where 

the πk,i are given as functions of the MLE.

RAR methodological families—RAR procedures can be classified in terms of the broad 

methodological ‘families’ they belong to: RAR based on TS (e.g. those suggested by Thall 

and Wathen (2007)), RAR based on urn models (e.g. RPW), RAR that target a pre-specified 

(optimal) allocation ratio (e.g. as in Hu and Zhang (2004a)) or bandit-based RAR procedures 

(e.g., the FLGI). This classification naturally follows from the historical developments in the 

area. However, RAR procedures could conceivably belong to more than one family and new 

types of RAR are continuously being developed.

RAR with different objectives—RAR procedures differ in the goal they are designed 

to achieve, either formally or intuitively. While some consider competing objectives such as 

both power and patient benefit (see Section 1.2 for definitions), others prioritize one over the 

other. Additionally, procedures can be non-myopic or myopic in their objective formulation. 

For some RAR procedures, such as those targeting an optimal allocation, the optimization 

problem can account for multiple objectives, see e.g. Hu et al. (2015); Baldi-Antognini and 

Giovagnoli (2010, 2015). More generally, within a Bayesian framework there is scope for 

composite utilities for multi-objective experiments (McGree et al., 2012; Baldi-Antognini 

and Giovagnoli, 2015; Metelkina and Pronzato, 2017). The selection of an objective may 

also require computational considerations.

Therefore, a good classification for comparing performance of RAR procedures is that of 

single objective procedures versus those that have composite objectives (reflecting trade-offs 

and constraints between possibly competing goals of an experiment).

E.g. FLGI in Villar et al. (2015b) has a non-myopic patient benefit goal, while 

Neyman allocation (see Section 3.2) has a power goal.

E.g. the design in Williamson et al. (2017) has a non-myopic patient benefit goal 

subject to a power constraint, while the ‘optimal’ allocation of Rosenberger et al. 

(2001a) has a myopic patient benefit goal also subject to a power constraint.

3 Established Views on RAR

In this section, we critically examine some published views on RAR. We present them 

labeled as questions because we have received them as such during informal exchanges 

with trial statisticians. We provide a complementary view of the use of RAR procedures, 

which acknowledges problems and disadvantages, but also emphasizes the solutions and 

advantages.

In what follows, we base our discussion on specific examples of RAR procedures only as a 

way to illustrate how some established views on RAR do not hold in general. The examples 

used below are by no means presented as the ‘best’ RAR procedures, or even necessarily 

recommended for use in practice − such judgments critically depend on the context and 
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goals of the specific trial under consideration. We direct the reader to Section 4 for the latter 

point.

3.1 Does RAR lead to a substantial chance of allocating more patients to an inferior 
treatment?

Thall et al. (2016) give a number of undesirable properties of RAR, including the following:

…there may be a surprisingly high probability of a sample size imbalance in the 

wrong direction, with a much larger number of patients assigned to the inferior 

treatment arm, so that [RAR] has an effect that is the opposite of what was 

intended.

In simulation studies of two-arm trials with a binary outcome in Thall et al. (2015, 2016) 

TS is shown to have a substantial chance (up to 43% for the parameter values considered) 

of producing sample size imbalances in the wrong direction (i.e. the inferior arm) of more 

than 20 patients out of a maximum of 200. While this result holds for the specific BRAR 

procedure in the scenarios under consideration in that work, these conclusions do not hold 

for all types of RAR. These authors were among the first to compute this metric of sample 

size imbalance, and most of the RAR literature does not report it (or related ones). Hence 

it is unclear how other families of RAR procedures perform in this regard. To address this, 

we perform a new simulation study in the two-arm trial setting with a binary outcome. We 

compare the following range of RAR procedures:

• Permuted block randomization [PBR]: patients are randomized in blocks to the 

treatments so that exact balance is achieved for each block (and hence at the end 

of the trial).

• Thall and Wathen [TW(c)]: randomizes patient i to treatment k = 1 with 

probability

π1, i =
P p1 > p0 ai − 1, Y i − 1 c

P p1 > p0 ai − 1, Y i − 1 c + 1 − P p1 > p0 ai − 1, Y i − 1 c

Here P(p1 > p0 | ai−1, Yi−1) is the posterior probability that the experimental 

treatment has a higher success rate than the control treatment. The parameter c 
controls the variability of the procedure. Setting c = 0 gives ER, while setting c = 

1 gives TS as described in Section 2.3. Thall and Wathen (2007) suggest setting c 
equal to 1/2 or i/(2n).

• Randomized Play-the-Winner Rule [RPW]: see Section 2.1 and Wei and Durham 

(1978).

• Drop-The-Loser rule [DTL]: a generalization of the RPW proposed by Ivanova 

(2003).

• Doubly-adaptive Biased Coin Design [DBCD]: a response-adaptive procedure 

targeting the optimal ratio of Rosenberger et al. (2001a). For details, see Hu and 

Zhang (2004a).
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• Efficient Response-Adaptive Randomization Designs [ERADE]: a response-

adaptive procedure targeting the optimal allocation ratio of Rosenberger et al. 

(2001a). It attains the lower bound of the allocation variances, see Hu et al. 

(2009) for further details.

• Forward-looking Gittins Index [FLGI(b)]: a RAR procedure with near-optimal 

patient benefit properties proposed in Villar et al. (2015b). This depends on a 

block size b.

• Oracle: hypothetical non-randomized rule that assigns all patients to the true 
best-performing arm (i.e. πk*,i = 1 for k* = maxk pk and πk,i = 0 otherwise for all 

i).

In our simulations, we initially set p0 = 0.25 and vary the values of p1 (with p1 > p0) and 

n. Unlike in Thall et al. (2016), we do not include early stopping in order to isolate the 

effects of using RAR procedures. We evaluate performance in terms of several imbalance 

metrics including E(N1 − N0) and the (2.5 percentile, 97.5 percentile) of (N1 − N0); the 

probability of a imbalance of more than 10% of the total sample size in the wrong direction 

(i.e. allocating more patients to the inferior arm), denoted Ŝ0.1 = Pr(N0 > N1 +0.1n) when p1 

> p0; the ENS and its standard deviation. Note that our measure of Ŝ0.1 coincides with the 

single imbalance measure used in Thall et al. (2016) when n = 200.

Table 1 shows the results for p1 = 0.35 and n ∈ {200, 654}. When n = 200, TS has a 

substantial probability (Ŝ0.1 ≈ 14%) of an undesirable imbalance in the wrong direction, 

while using the Thall and Wathen (TW) procedure reduces this probability, which (as 

expected) agrees with Thall et al. (2016). Unsurprisingly, the bandit-based procedures (i.e. 

FLGI) also has relatively large values of Ŝ0.1, although interestingly these are still smaller 

than for TS which could be due to their non-myopic nature. Meanwhile, ER has Ŝ0.1 ≈ 0.07, 

which provides a simple theoretical baseline (although in practice, for larger trials a form of 

PBR would be most suitable). In contrast, the RPW, DBCD, ERADE and DTL procedures 

all have values of Ŝ0.1 of 0.01 or less, which is also reflected in the ranges for the sample 

size imbalance. These procedures are hence comparable to PBR in terms of this imbalance 

metric.

The total sample size (in comparison to the treatment effect) can have a large impact on 

these imbalance metrics. When n = 200, the trial has low power to declare the experimental 

treatment superior to the control. If the sample size is chosen so that ER yields a power 

of at least 80% (when using the standard Z-test), then we require n ≥ 654. For n = 654, 

Table 1 shows that the values of Ŝ0.1 are substantially reduced for TS, the TW procedure and 

the bandit-based procedures. The ranges for N1 − N0 suggest that TS and the bandit-based 

procedures still have a small risk of getting ‘stuck’ on the wrong treatment.

Another important factor is the magnitude of the difference between p0 and p1 or the 

treatment effect. The scenario considered above with p0 = 0.25 and p1 = 0.35 is a relatively 

small difference (as shown by the large sample size required to achieve a power of 80%), 

and the more patient-benefit oriented rules would not perform well in terms of sample size 

imbalance in this case. Table A2 (in the Appendix) shows the results when p1 = 0.45 and 

n = 200. The values of Ŝ0.1 are substantially reduced for TS as well as for the TW and 
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bandit-based procedures, being much less than for ER and not substantially greater than 

using PBR. In terms of the mean and ranges for N1 − N0, these are now especially appealing 

for FLGI. Figure 2 extends this analysis by considering the value of Ŝ0.1 for a range of 

values of p1 from 0.25 to 0.85 when n = 200 to illustrate how this issue evolves as we move 

away from the null hypothesis scenario (while recognising that small differences of p1 from 

p0 may not be practically important). For p1 greater than about 0.4, the probability of a 

substantial imbalance in the wrong direction is higher for a simple ER design than for all of 

the other RAR procedures considered.

Figure 2 demonstrates another issue of Ŝ0.1 as a performance measure. This probability of 

imbalance increases for the RAR procedures considered as the difference p1 − p0 decreases, 

but as this difference decreases, so do the consequences of assigning patients to the inferior 

treatment. Table 1 depicts trade-offs between sample size imbalance (as measured by N1 

− N0 and Ŝ0.1) and the ENS. The most patient-benefit oriented RAR procedures (TS and 

FLGI) have the highest ENS, which are in fact close to the highest possible ENS (the 

‘Oracle’ procedure). However, these procedures also perform the worst in terms of sample 

size imbalance. This demonstrates our general point that careful consideration is needed by 

looking at a variety of performance measures instead of focusing on a single measure such 

as Ŝ0.1.

Summary—In summary, RAR procedures do not necessarily have a high probability of a 

substantial sample size imbalance in the wrong direction, when compared with using ER or 

PBR. This probability crucially depends on the true treatment effect, as well as the planned 

sample size of the trial. These results suggest that sample size imbalance may be larger when 

the effect size is smaller (i.e. being close to the null), and we hypothesize that this may 

generalize beyond the binary context.

If sample size imbalance is of particular concern in a specific trial context, an option is 

to consider the use of constraints to avoid imbalance, such as the constrained optimization 

approach of Williamson et al. (2017). Recently Lee and Lee (2021) also proposed an 

adaptive clip method (i.e. having a lower bound on the allocation probabilities) that can be 

used in conjunction with BRAR to reduce the chance of imbalance. Potential sample size 

imbalances need to be carefully evaluated in light of other performance metrics: restricting 

imbalance limits the potential for the patient benefit gains RAR can attain. Of course, if 

sample size imbalance needs to be strictly controlled in a trial, a restricted randomization 

scheme (such as PBR) may be more appropriate than using RAR.

3.2 Does the use of RAR reduce statistical power?

Perhaps one of the most well established views about RAR procedures is that their use 

reduces statistical power, as stated in Thall et al. (2015):

Compared with an ER design, [RAR] …[has] smaller power to detect treatment 

differences.

Similar statements appear in Korn and Freidlin (2011a) and Thall et al. (2016). Through 

simulation studies, these papers (all focused on the two-arm setting with binary outcomes) 

show that ER can have a higher power than BRAR for a fixed sample size, or equivalently 
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that a larger sample size is needed for BRAR to achieve the same power and type I error rate 

as an ER design.

These papers only consider the BRAR procedure proposed by Thall and Wathen (2007) 

(see Section 3.1 for a formal definition). As shown in Hu and Rosenberger (2006), 

RAR procedures will have additional variability introduced by the correlation between the 

outcome Yk,i and allocation ak,i, and this will in turn translate into a higher variability 

var(Tn) of a statistical test Tn (hence reducing power). Yet, as we discuss, there exist RAR 

procedures that control for this, so that their use does not necessarily reduce power. In 

this section, we focus solely on power considerations and we assume the use of standard 

(frequentist) inferential tests to make power comparisons, which we return to in Section 3.3. 

Finally, we present the two-arm and multi-arm trial settings in distinct subsections below, 

since (as discussed in Section 1.2) the definition of ‘power’ becomes more complex in the 

latter setting.

Two-arm trials—Some RAR procedures formally target optimality criteria as a reflection 

of the trial’s objectives, including power. In a binary outcome setting, as in Rosenberger 

and Hu (2004) with the Z-test given in equation (3) and defining ρ = N1/n, one strategy is 

to fix the power of the trial and find (N0, N1) to minimize the total sample size n. This is 

equivalent to fixing n and finding (N0, N1) to maximize the power. This gives the optimal 

ratio known as Neyman allocation, ρNeyman
∗ :

ρNeyman
∗ = p1 1 − p1

p0 1 − p0 + p1 1 − p1
. (5)

In general, ρNeyman
∗ ≠ 1/2 and hence ER does not maximize the power for a given n when 

responses are binary. The notion that ER maximises power in general is an established belief 

that appears in many papers (see e.g. Torgerson and Campbell (2000)) but it only holds 

in specific settings (e.g. if comparing means of two normally-distributed outcomes with a 

common variance).

An ethical problem with this allocation maximising power is that if p0 + p1 > 1, more 

patients will be assigned to the treatment with the smaller pk. This shows the potential 

trade-off between power and patient benefit and motivated the alternative approach by 

Rosenberger et al. (2001a) as in Section 2.3 − see equation (4). The optimal solution ρR
∗ is as 

follows:

ρR
∗ = p1

p0 + p1
. (6)

Figure 3 shows the optimal allocation ratios ρNeyman
∗  and ρR

∗ as a function of p1 for different 

values of p0. Both coincide with ER only when p1 = p0 while ρR
∗ always allocates more 

patients to the treatment which has the higher success rate. Looking at ρNeyman
∗ , for p1 + p0 < 1 

a higher allocation to the treatment with the higher success rate will be more powerful than 

ER.
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For many types of endpoints, such as binomial and survival outcomes, the model parameters 

in the optimization problem are unknown and need to be estimated from the accrued data. 

These estimates can then be used (for example) with DBCD (Hu and Zhang, 2004a) or 

ERADE (Hu et al., 2009) to target the optimal allocation ratio. Using the DBCD in this 

manner, Rosenberger and Hu (2004) found in their simulation studies that it was

…as powerful or slightly more powerful than complete randomization in every case 

and expected treatment failures were always less

Similar theoretical results are in Yuan and Yin (2011). This is consistent with a general 

guidelines given by Hu and Rosenberger (2006) for using RAR procedures in a clinical trial, 

one of which is that power should be preserved. RAR procedures that achieve this aim have 

been derived (in a similar spirit to the optimal allocation above) for continuous (Zhang and 

Rosenberger, 2006) and survival (Zhang and Rosenberger, 2007) outcomes. Another line of 

work by Baldi-Antognini et al. (2018a,b) has looked at modifying the classical Wald test 

statistic for normally distributed outcomes in order to simultaneously improve power and 

patient benefit.

Multi-arm trials—Similar concerns about ‘power’ for multi-arm RAR procedures have 

been discussed. For example, Wathen and Thall (2017) simulate a variety of five-arm trial 

scenarios and conclude

In multi-arm trials, compared to ER, several commonly used adaptive 

randomization methods give much lower probability of selecting superior 

treatments.

Similarly, Korn and Freidlin (2011b) simulate a four-arm trial and find that a larger average 

sample size is needed when using a RAR procedure instead of ER in order to achieve the 

same marginal power. As discussed in Section 1.2, there are different power definitions 

in this case. Lee et al. (2012) reach similar conclusions in the three-arm setting for 

disjunctive power. However, all these papers only consider variants of the TW procedure 

(the “commonly used adaptive randomization methods” quoted above) for multi-arm trials, 

and these conclusions may not hold for RAR procedures in general.

The optimal allocation in Rosenberger et al. (2001a) can be generalized for multi-arm trials, 

assuming a global null hypothesis. The allocation is optimal in that it fixes the power to 

reject the global null and minimizes the ENF. This was first derived by Tymofyeyev et al. 

(2007), who showed through simulation that for three treatment arms, using the DBCD to 

target the optimal allocation

…provides increases in power along the lines of 2–4% [in absolute terms]. The 

increase in power contradicts the conclusions of other authors who have explored 

other randomization procedures [for two-arm trials]

Similar conclusions are given in Jeon and Hu (2010), Sverdlov and Rosenberger (2013a) and 

Bello and Sabo (2016).

These optimal allocation procedures maintain (or increase) the power of the test to reject 

the global null, but may have low marginal powers compared with ER in some scenarios, 
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as shown in Villar et al. (2015b). However, even considering the marginal power to reject 

the null hypothesis 0,k⋆: θk⋆ = θ0 for the best treatment k*, Villar et al. (2015b) propose 

non-myopic RAR procedures (i.e. the “controlled” FLGI rules) that in some scenarios have 

both a higher marginal power and a higher ENS when compared with ER with the same 

sample size.

Finally, the power comparisons made throughout this section have been against ER. 

A different comparison would be against group-sequential and Multi-Arm Multi-Stage 

(MAMS) designs using ER in each stage. Both Wason and Trippa (2014) and Lin and Bunn 

(2017) show that BRAR can have a higher power than MAMS designs when there is a single 

effective treatment. More recently, Viele et al. (2020a) show that the control allocation plays 

a part in achieving the power of a study when a variant of the TW procedure is implemented. 

These authors also explore other design aspects in conjunction with the control allocation, 

and find that RAR can have acceptable power in some settings (Viele et al., 2020b).

Summary—In conclusion, if RAR is used to improve patient benefit properties (in terms 

of ENF or ENS), then the power compared to ER can be preserved through an appropriate 

choice of the RAR procedure for the trial setting. Of course, this needs to be made with 

the objectives of the trial in mind (see Section 4). If maximizing power is a key objective, 

then using ER (instead of RAR) may not necessarily achieve this, even for two-arm trials. 

As discussed above, the nature of the response distribution plays an important role in these 

considerations, with much of the RAR literature focusing on binary responses.

3.3 Does RAR make valid statistical inference (more) challenging?

The Bayesian approach to statistical inference allows the seamless analysis of results of a 

trial that uses RAR. However, as noted in Proschan and Evans (2020),

The frequentist approach faces great difficulties in the setting of RAR …Use of 

RAR eliminates the great majority of standard analysis methods …

Rosenberger and Lachin (2016) comment on the reason for this:

Inference for [RAR] is very complicated because both the treatment assignments 

and responses are correlated.

This raises a key question: how can an investigator validly analyze a trial using RAR in a 

frequentist framework? In terms of the notation in Section 1.1, this can be formalized as 

determining whether standard test statistics Tn can be relied on for hypothesis testing (i.e. 

without inflation of type I error rates), and whether standard estimators θ k are biased (and 

if so, by how much). Such questions are important for adaptive trial designs in general and 

not only for those using RAR. The challenge of statistical inference (within the frequentist 

framework) is naturally still seen as a key barrier to the use of RAR in clinical practice. We 

next discuss how valid statistical inference, especially in terms of type I error rate control 

and unbiased estimation, is possible for a wide variety of RAR procedures. Note that in what 

follows, we do not consider time trends and patient drift, as a separate discussion is given in 

Section 3.4.
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Asymptotic inference—A straightforward approach to frequentist inference for a trial 

using RAR is to use standard statistical tests and estimators without adjustment. This is 

justified by asymptotic properties that hold for a large class of RAR procedures, including 

in the multi-arm setting. Firstly, Melfi and Page (2000) proved that an estimator θ k that is 

consistent (i.e. θ k θk as the sample size n → ∞) when Yk,i are independent and identically 

distributed will also be consistent for any RAR procedure for which Nk → ∞.

Secondly, Hu and Rosenberger (2006) showed that when responses Yk,i follow an 

exponential family, simple conditions on the RAR procedure ensure the asymptotic 

normality of the MLE. The condition is that the allocation proportions for each arm 

∑i = 1
n 1 ai, k = 1 /n ρ, where ρ ∈ (0, 1). This implies that the RAR procedure cannot ‘select’ 

a treatment during the trial by having allocation probabilities tending to 1 or 0. Since 

many test statistics are functions of the MLE, this also implies that the asymptotic null 

distribution of such test statistics is not affected by the RAR. Furthermore, if a given RAR 

procedure does not have this property, then there is a straightforward modification to ensure 

it holds by bounding (or ‘clipping’) the allocation probabilities πi,k, see Baldi-Antognini et 

al. (2022a). These asymptotic results are the justification for the first guideline given by Hu 

and Rosenberger (2006) on RAR procedures, which states that “Standard inferential tests 

can be used at the conclusion of the trial.”

Finite sample inference—The validity of asymptotic results to use standard tests and 

estimators requires a sufficiently large sample size, and the effect of a smaller sample size 

on inference is greater the more imbalanced the RAR procedure is (e.g. see the results 

in Williamson and Villar (2020)). As noted by Rosenberger et al. (2012), for some RAR 

procedures in a two-arm setting, there is extensive literature on the accuracy of asymptotic 

approximations under moderate sample sizes using simulations (Hu and Rosenberger, 2003; 

Rosenberger and Hu, 2004; Zhang and Rosenberger, 2006). For the DBCD, sample sizes of 

n = 50 to 100 are sufficient, while for urn models reasonable convergence is achieved for n = 

100. For these procedures, Gu and Lee (2010) explored which asymptotic test statistic to use 

for a clinical trial with a small to medium sample size and binary responses.

When the asymptotic results above cannot be used, either because of small sample sizes 

or because the conditions on the RAR procedures are not met, then alternative methods 

for testing and estimation have been proposed. We summarize the main methods below, 

concentrating on type I error rate control and unbiased estimation.

A common method for controlling the type I error rate, particularly for BRAR procedures, 

is a simulation-based calibration approach, see e.g. see the FDA guidance on simulations for 

adaptive design planning (FDA, 2019, Section VI.A). Given a trial design that uses RAR 

and an analysis strategy, a large number of trials are simulated under the null. Applying the 

analysis strategy to each of these trial realizations gives a Monte Carlo approximation of 

the relevant error rates (see Section 1.2). If necessary, the analysis strategy can be adjusted 

to satisfy type I error constraints. Variations of this approach have been used in Wason and 

Trippa (2014); Wathen and Thall (2017); Baldi-Antognini et al. (2022b). These approaches 

can be computationally intensive, and there are no guarantees beyond the parametric space 

explored in the simulations.
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A related approach is to use a re-randomization test, also known as randomization-based 
inference. In such a test, the outcomes y(n) are taken as fixed, but the allocations a(n) 

are regenerated many times using the RAR procedure under the null hypothesis. For 

each replicate, the test statistic Tn is recalculated, and a consistent estimator of the 

p-value is given by the proportion of test statistics that are at least as extreme as the 

value actually observed. Intuitively, this is valid because under the null hypothesis of no 

treatment differences, y(n) and a(n) are independent. Simon and Simon (2011) give general 

conditions under which the re-randomization test guarantees the type I error rate for all RAR 

procedures. Galbete and Rosenberger (2016) showed that 15, 000 replicates are sufficient 

to accurately estimate even very small p-values. An advantage of re-randomization tests is 

that they protect against unknown time trends (see Section 3.4). However, re-randomization 

tests can suffer from a lower power compared with using standard tests (Villar et al., 

2018), particularly if the RAR procedure has allocation probabilities that are highly variable 

(Proschan and Dodd, 2019).

The implementation of these methods may lead to computational cost and Monte Carlo error 

concerns. There have been a few proposals that do not rely on simulations. Robertson and 

Wason (2019); Glimm and Robertson (2022) proposed a re-weighting of the usual Z-test that 

guarantees familywise error control for a large class of RAR procedures for multi-arm trials 

with normally-distributed outcomes, although with a potential loss of power. Galbete et al. 

(2016) derived the exact distribution of a test statistic for a family of RAR procedures in 

the context of a two-arm trial with binary outcomes, and hence showed how to obtain exact 

p-values.

Turning now to estimation bias, the MLEs for the parameters of interest for a trial using 

RAR will typically be biased in small samples. This is illustrated for a number of RAR 

procedures for binary outcomes through simulation in Villar et al. (2015a); Thall et al. 

(2015). However, the latter point out that in their setting, which incorporates early stopping,

…most of the bias appears to be due to continuous treatment comparison, rather 

than AR per se.

Hence it is important to distinguish bias induced by early stopping from that induced by 

the RAR procedure. In a binary setting and for multi-arm RAR procedures without early 

stopping, the bias of the MLE pk is given in Bowden and Trippa (2017):

bias pk = E pk − pk = − Cov Nk, pk

E Nk
. (7)

In a typical RAR procedure that assigns more patients to treatments that appear superior 

(i.e. Cov Nk, pk > 0), equation (7) shows the bias of the MLE is negative. The magnitude of 

this bias is decreasing with the expected number of patients assigned to the treatment (i.e. 

as E(Nk) → ∞). When estimating the treatment difference however, the bias can be either 

negative or positive, which agrees with the results in Thall et al. (2015).

Bowden and Trippa (2017) showed that if there is no early stopping, the magnitude of the 

bias tends to be small for the RPW rule and the BRAR procedure proposed by Trippa 
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et al. (2012). For more imbalanced RAR procedures, the bias can be larger however, e.g. 

see Williamson and Villar (2020). As a solution, Bowden and Trippa (2017) proposed 

using inverse probability weighting and Rao-Blackwellization to produce unbiased MLEs, 

although these can be computationally intensive. For urn-based RAR procedures, Coad 

and Ivanova (2001) also proposed bias-corrected estimators. For sequential maximum 

likelihood procedures and the DBCD, Wang et al. (2020) evaluate the bias issue and propose 

a solution. Meanwhile, Marschner (2021) proposed a general framework for analysing 

adaptive experiments, included trials using RAR, and explored the merits of both conditional 

and unconditional estimation.

Finally, adjusted confidence intervals for RAR procedures have received less attention in 

the literature. Rosenberger and Hu (1999) proposed a bootstrap procedure for multi-arm 

RAR procedures with binary responses, while Coad and Govindarajulu (2000) proposed 

corrected confidence intervals for a sequential adaptive design in a two-arm trial with binary 

responses. Recently, Hadad et al. (2021) proposed a strategy to construct asymptotically 

valid confidence intervals for a large class of adaptive experiments (including RAR).

Summary—For trials with sufficiently large sample sizes, asymptotic results justify the 

use of standard tests and frequentist inference procedures when using many types of RAR. 

When asymptotic results do not hold, inference does become more challenging compared 

with using ER but it is possible. There is a growing body of literature demonstrating how 

a trial using RAR, if designed and analyzed appropriately, can control the type I error rate 

and correct for the bias of the MLE. All this should give increased confidence that the results 

from a trial using RAR can be both valid and convincing. We reiterate that from a Bayesian 

viewpoint, the use of RAR does not pose additional inferential challenges.

3.4 Does using RAR make robust inference difficult if there is potential for time trends?

The occurrence of time trends caused by changes in the standard of care or by patient drift 

(i.e. changes in the characteristics of recruited patients over time) is seen as a major barrier 

to the use of RAR in practice

One of the most prominent arguments against the use of [RAR] is that it can lead to 

biased estimates in the presence of parameter drift. (Thall et al., 2015)

A more fundamental concern with adaptive randomization, which was noted when 

it was first proposed, is the potential for bias if there are any time trends in the 

prognostic mix of the patients accruing to the trial. In fact, time trends associated 

with the outcome due to any cause can lead to problems with straightforward 

implementations of adaptive randomization. (Korn and Freidlin, 2011a)

Both papers cited above show (for BRAR procedures) that time trends can substantially 

inflate the type I error rate when using standard analysis methods, and induce bias into the 

MLE. Further simulation results are given in Jiang et al. (2020). Villar et al. (2018) present 

a simulation study for different time trend assumptions and a variety of RAR procedures in 

trials with binary outcomes including the multi-arm setting.
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As an illustrative numeric example from Villar et al. (2018), consider a two-arm trial with 

binary outcomes, where n = 100 and patients are randomized in groups of size 10. Suppose 

there is a linear upward trend in p0, so that the overall time trend within the trial

D = Pr Y 0, i = 1 90 < i ≤ 100 − Pr Y 0, i = 1 0 < i ≤ 10

varies in D ∈ {0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.24}. In this case, under the null scenario 

where p0 = p1 at all time points, the optimal allocation of Rosenberger et al. (2001a) has 

an almost constant type I error rate, just above the nominal 0.05 level. The TW procedure 

(Thall and Wathen, 2007) has an inflated type I error rate (about 0.09) even without any 

time trend (i.e. D = 0), which increased to almost 0.15 when D = 0.24. Finally, the patient-

benefit oriented FLGI rule (Villar et al., 2015b) has a type I error rate going from 0.05 to 

almost 0.25 as D increased from 0 to 0.24. These results show that for RAR procedures, 

even changes in just p0 (or p1) over time can have a considerable impact on operating 

characteristics. Hence time trends in the treatment effect (however defined) will also be 

expected to have similar impacts.

Although time trends can inflate the type I error when using RAR procedures, there are 

two important caveats given in Villar et al. (2018). Firstly, certain power-oriented RAR 

procedures appear to be effectively immune to the time trends considered in their paper. 

In particular, RAR procedures that protect the allocation to the control arm are particularly 

robust. A possible explanation is that those rules have a smaller imbalance, as suggested 

in Baldi-Antognini et al. (2022a). Secondly, as discussed in Villar et al. (2018), a largely 

ignored but highly relevant issue is the size of the trend and its likelihood of occurrence in a 

specific trial:

…the magnitude of the temporal trend necessary to seriously inflate the type I error 

of the patient benefit-oriented RAR rules need to be of an important magnitude (i.e. 

change larger than 25% in its outcome probability) to be a source of concern.

A more general issue around time trends is that they can invalidate the key assumption 

that observations about treatments are exchangeable (i.e. that subjects receiving the same 

treatment arm have the same probability of success). This, in turn, invalidates commonly 

used frequentist and Bayesian models, and hence the inference of the trial data. Type I error 

inflation and estimation bias can be seen as examples of this wider issue.

As Proschan and Evans (2020) put it, temporal trends are likely to occur in two settings:

…1) trials of long duration, such as platform trials in which treatments may 

continually be added over many years and 2) trials in infectious diseases such 

as MERS, Ebola virus, and coronavirus.

Despite this, little work has looked at estimating these trends, especially to inform trial 

design in the midst of an epidemic. Investigating these points is essential to make a sound 

assessment of the value of using RAR. A recent exception is in Johnson et al. (2022), where 

a two-arm vaccine trial for COVID-19 using RAR is studied using a model to simulate the 

epidemic (including linear trends).
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As mentioned in Section 3.2, a robust method to prevent type I error inflation is to use 

a re-randomization test. Simulation studies illustrating the use of this test can be found in 

Galbete et al. (2016); Villar et al. (2018); Johnson et al. (2022). However, this can come 

at the cost of a considerably reduced power compared with using an unadjusted testing 

strategy. More recently, Wang and Rosenberger (2021) showed how to construct confidence 

intervals for randomization tests that are robust (in terms of coverage) to time trends.

An alternative to randomization-based inference is to use a stratified analysis. This was first 

proposed by Jennison and Turnbull (2000) for group-sequential designs, with subsequent 

work by Karrison et al. (2003); Korn and Freidlin (2011a). These papers show that a 

stratified analysis can eliminate the type I error inflation induced through time trends. 

However, Korn and Freidlin (2011a) also showed that this strategy can reduce the trial 

efficiency (see also Korn and Freidlin (2022) for similar arguments), both in terms of 

increasing the required sample size and the chance of patients being assigned to the inferior 

treatment.

Another approach is to explicitly incorporate time-trend information into the regression 

analysis. Jennison and Turnbull (2001) developed theory that allows the incorporation of 

polynomial time trends as covariates in a general normal linear regression model for group 

sequential designs, while Coad (1991) modified a class of sequential tests to incorporate a 

linear time trend for normally-distributed outcomes. Meanwhile, Villar et al. (2018) assessed 

incorporating the time trend into a logistic regression (for binary responses), and showed 

that this can alleviate type I error inflation if the trend is correctly specified However, 

this leads to a loss of power and complicates estimation (due to the technical problem of 

separation).

Finally, it is possible to try to control the impact of a time-trend during randomization. 

Rosenberger et al. (2001b) proposed a CARA procedure for a two-armed trial that can take 

a specific time trend as a covariate. More recently, Jiang et al. (2020) proposed a BRAR 

procedure that includes a time trend in a logistic regression model, and uses the resulting 

posterior probabilities as the basis for the randomization probabilities. This model-based 

procedure controls the type I error rate and mitigates estimation bias, but at the cost of 

reduced power.

Summary—Large time trends can inflate the type I error when using RAR, and this 

inflation becomes worse the more imbalanced the RAR procedure is. However, RAR 

procedures that protect the allocation to the control arm or impose restrictions to avoid 

extreme allocation probabilities are particularly robust. For other RAR procedures, analysis 

methods exist to mitigate the type I error inflation caused by time trends, although with a 

loss in power. Finally, we note that time trends can affect inference in all types of adaptive 

clinical trials, and not just those using RAR.

3.5 Is RAR more challenging to implement in practice?

In addition to the statistical aspects discussed in Sections 3.1−3.4, there are practical 

questions to consider to best implement RAR in the context of the study at hand. Most 
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of these practical issues apply to other randomized designs (both adaptive and non-adaptive), 

so we focus here on a few that merit a specific discussion for RAR.

Measurement/classification error and missing data—Measurement error (for 

continuous variables) or classification error (for binary variables) and missing data are 

common in medical research. There are many approaches proposed to reduce the impact of 

these on statistical inference (see e.g. Guolo (2008); Little and Rubin (2002); Blackwell et 

al. (2017)) but very little literature on this in the context of RAR. The distinctive concern 

is that the sequentially updated allocation probabilities may be biased, and hence the design 

will not have its expected properties e.g. in terms of patient benefit.

A few articles looking at classification (or measurement) error in RAR include Li and Wang 

(2012), who derive optimal allocation targets under constant misclassification probabilities 

that differ between the arms, and Li and Wang (2013), who explore through simulation the 

effect of misclassification (in the two-arm setting) on optimal allocation designs.

As for missing data, Chen et al. (2022) consider the performance of BRAR procedures under 

the assumption of missing at random (see Rubin (1976)) and with a single imputation for 

the missing responses. They found that these procedures encourage more assignments in the 

arm with missing data, and that simple mean imputation can largely mitigate this effect. 

Williamson and Villar (2020) propose an imputation method for a bandit-based RAR when 

the outcome is undefined. Incomplete data for such extreme cases is imputed with random 

samples drawn from the tails of the distribution. Simulations suggest that imputing in this 

way is better than ignoring missingness in terms of patient benefit and other metrics. More 

complex scenarios, e.g. data not missing at random, remain unexplored, but this is the case 

for adaptive trials in general except for some simple settings (see e.g. Lee et al. (2018)).

Delayed responses and recruitment rate—The use of RAR is not feasible if the 

patient outcomes are only observed after all patients have been recruited and randomized. 

This is rare but may happen if the recruitment period is short (e.g. due to a high recruitment 

rate), or when the outcome of interest takes a long time to observe. One way to address the 

latter is to use a surrogate outcome that is more quickly observed as for example in Tamura 

et al. (1994). Another possibility is to use a randomization plan that is implemented in stages 

as more data becomes available (like for FLGI).

In general, as stated in Hu and Rosenberger (2006, pg. 105):

From a practical perspective, there is no logistical difficulty in incorporating 

delayed responses into the RAR procedures, provided some responses become 

available during the recruitment and randomization period.

However, statistical inferences at the end of the trial can be affected. This is explored 

theoretically for urn models (Bai et al., 2002; Hu and Zhang, 2004b; Zhang et al., 2007) as 

well as the DBCD (Hu et al., 2008). These papers show that the asymptotic properties of 

these RAR procedures are preserved under widely applicable conditions. In particular, when 

more than 60% of responses are available by the end of the recruitment period, simulations 

show that the power of the trial is essentially unaffected.
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Patient consent to be randomized—Patient consent protects patients’ autonomy, 

and requires an appropriate balance between information disclosure and understanding 

(Beauchamp, 1997). There is evidence that the basic elements to ensure informed consent 

(recall and understanding) can be difficult to ensure even for non-adaptive studies 

(Sugarman et al., 1999; Dawson, 2009). The added complexity of allocation probabilities 

that may change in response to accumulated data only makes achieving patient consent more 

challenging. Moreover, since these novel adaptive procedures are still rarely used, there is 

little practical experience to draw upon.

Implementing randomization changes during a study—Randomization of patients, 

whether adaptive or not, must be done in accordance with standards of good clinical 

practice. As such, in most clinical trials randomization is done through a dedicated and 

secure web-based system that is available 24/7. In the UK, for example, most clinical 

trials units will outsource their randomization to external companies. This outsourcing is 

practical but costly, and limits the ways in which randomization can be implemented to 

those currently offered by such companies. To the best of the authors’ knowledge, in the UK 

common providers treat every change in a randomization ratio as a trial change (which is 

charged as such), rather than being considered an integral part of the trial design. Beyond the 

extra costs and limitations to the use of RAR that this brings, it also introduces unnecessary 

delays as randomization is stopped while the change is implemented.

A related issue is that of preserving treatment blinding, which is key to the integrity of 

clinical trials. This is particularly important when using RAR, as if an investigator knows 

which treatment is more likely to be allocated next, selection bias is more likely to occur. 

In most cases, preserving blindness will require an independent statistician (which requires 

extra resources) to handle the interim data and implement the randomization, or a data 

manager can provide data to an external randomization provider who can then update 

the randomization probabilities independently of the clinical and statistical team. Further 

discussion on these issues can be found in Sverdlov and Rosenberger (2013b).

3.6 Is using RAR in clinical trials (more) ethical?

Ethical reasons are the most cited arguments in favor of using RAR to design clinical trials.

Our explicit goal is to treat patients more effectively, but a happy side effect is that 

we learn efficiently. (Berry, 2004)

Research in [RAR] developed as a response to a classical ethical dilemma in 

clinical trials. (Hu and Rosenberger, 2006)

Nevertheless, there are also arguments that RAR may not be ethically preferred.

For RCTs [Randomised Controlled Trials] where treatment comparison is the 

primary scientific goal, it appears that in most cases designs with fixed 

randomization probabilities and group sequential decision rules are preferable to 

AR [RAR] scientifically, ethically and logistically (Thall et al., 2016)

Clinical research poses several ethical challenges. There is an inevitable tension between 

clinical research and clinical practice, as the latter is concerned with best treating an 
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individual patient while the former is focused on ‘future’ patients. Clinical research is 

associated with a clinical trial whose main aims are the testing and estimation goals as in 

Section 1.2. Clinical practice is directly concerned with patient benefit goals which are, at 

best, secondary aims in traditional clinical trials. Such ethical questions are becoming more 

discussed as personalized treatment becomes more embedded into research, as is the case for 

oncology (London, 2018).

Although treating patients in the trial “more effectively” using RAR appears to be ethically 

attractive, particularly from the recruited patients’ perspective, the extent to which these 

and other adaptive designs are more “ethical” than traditional designs is only starting to be 

addressed by ethicists. Thus, we do not aim to answer the question whether RAR is (more) 

ethical or not, as this requires a specific answer for each method and trial context. Instead, 

we review key concepts that could affect this answer and that come from formal discussions 

by ethicists.

The “equipoise” concept and the ethical grounds for randomizing patients
—Equipoise is typically defined as a state of uncertainty of the individual investigator 

regarding the relative merits of interventions for a population of patients. Such uncertainty 

justifies randomizing patients to treatments as this does not imply knowingly disadvantaging 

patients. This concept may extend to include “honest, professional disagreement among 

expert clinicians” about the relative merits of interventions (Freedman, 1987). This broader 

definition is known as ‘clinical equipoise’ while the former is ‘theoretical equipoise’.

An argument against the use of RAR is that it violates the principle of equipoise on which 

clinical trials is based upon (Laage et al., 2017). Changing the randomization probabilities 

in light of patients’ responses may be viewed as breaking equipoise, because the updated 

allocation weights reflect the relative performance of the interventions in question. Once 

the randomization weights become unbalanced, the study has a preferred treatment and 

allocating participants to treatments regarded as inferior could be considered unethical. 

However, this argument that RAR is unethical because it breaks equipoise is based on two 

assumptions: 1) randomization ratios reflect a single agent’s beliefs about the relative merits 

of the interventions being tested; and 2) equipoise is a state of belief in which the relevant 

probabilities are assumed to be equally balanced. Neither of these two assumptions are 

consistent with the definition of ‘clinical equipoise’ as the clinical community is multi-agent 

and disagreement among these agents will not necessarily correspond to a 50%-50% split of 

opinions.

Patient horizon (individual and collective ethics)—The ethical value of RAR (and 

of other trial designs) depends directly on the trial’s specific aim in relation to its context. 

For example, a feature that considerably affects comparisons of design options is disease 

prevalence (a concept linked to that of patient horizon (Anscombe, 1963; Colton, 1963)). 

Suppose a clinical trial is being planned where T denotes the “patient horizon” for that 

study, i.e. those patients within and outside of the trial who will benefit from its conclusions. 

The exact value of T is never known but its order of magnitude considerably impacts the 

relative merits of competing trial goals. A trial relevant to patients with coronary artery 

disease will have the vast majority of the patient horizon outside of the trial, making the 

Robertson et al. Page 26

Stat Sci. Author manuscript; available in PMC 2023 June 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



inferential goals of the study of paramount importance. On the other hand, a rare pediatric 

cancer is likely to have a large proportion of the patient population in the trial, heightening 

the tension between patient benefit and inferential goals. Similar considerations apply for 

emerging life-threatening diseases (e.g. the Ebola outbreak or the COVID-19 pandemic), 

where the patient horizon can be short for reasons other than prevalence. When the choice of 

design is based only on inferential considerations, there will be many instances in which a 

design may be considered inferior from a patient benefit viewpoint.

The impact of T on the ethical comparison of designs depends on considerations around 

individual and collective ethics and potential conflicts between these two. As Tamura et al. 

(1994, pg. 775) express it, RAR “represents a middle ground between the community benefit 

and the individual patient benefit” and because of this “it is subject to attack from either 

side”. This point has been well discussed and formally studied in the statistical literature 

(see Berry and Eick (1995); Cheng et al. (2003); Berry (2004)). Despite this, prevalence of 

a disease is almost never taken into account, neither in practice when designing trials nor in 

many methodological articles comparing RAR from an ethical point of view. See Lee and 

Lee (2021); Metelkina and Pronzato (2017) for recent attempts to address this.

Summary—We believe that the ethics of RAR needs more attention from ethicists, 

including collaborations between ethicists and statisticians to address the caveats and 

complexities of this broad family of methods. Positions based purely on statistical or ethical 

arguments in isolation are likely to be inadequate and arguments that involve ethical metrics 

should ideally be jointly discussed with multiple stakeholders. It is important to bear in mind 

that compromises between statistical and ethical objectives have very different implications 

under different settings. For example, the trade-offs between these two objectives may look 

very different in a two-arm trial setting compared to a multi-arm trial.

Ideally, how this interaction between ethics and statistics can proceed is as follows (as 

suggested by an anonymous reviewer). Ethics informs the relative importance of a trial’s 

goals, in particular the balance between individual and collective benefit. Once these 

priorities are in place, a statistical design that achieves these goals can be proposed. The 

ethical aspects can be revisited in light of the resulting properties of the statistical design. 

For example, suppose RAR is chosen to deliver a certain level of benefit to patients in the 

trial. This may require an increase in the trial size to preserve the inferential properties for 

future patients to be “ethical”. In that case, depending on the prevalence of the disease and 

the general context, a larger trial using the original RAR procedure may still deliver the 

most benefit to all patients and remain the preferred option. If this is not the case, then the 

ethics-design choice can be revisited.

4 Final Considerations and Discussion

The pace of methodological work on RAR and the debate over its use has certainly sped up 

in recent years, driven by the response to challenges during health crises like the COVID-19 

pandemic and the increase uptake of these methods in machine learning and data science 

more generally. However, to some extent, the debate and methodological progress remain 

disconnected from each other. It is important to bear in mind that generalizations within such 
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a large class of methods run the risk of being partial and misleading. Even for a single RAR 

procedure, its performance may vary considerably across the parameter space of interest. 

In this paper we have aimed to illustrate the breadth of RAR procedures by presenting a 

critical (but balanced) appraisal of well established views about RAR, and to help guide 

future research efforts towards areas that have received less attention.

We emphasize that this paper does not advocate for the use of RAR in all trial settings 

(but we also do not intend to discourage trialists from considering its use in general). 

There are contexts where other trial adaptations or even a fixed randomization design may 

be preferable for both methodological or practical reasons. This is important to consider 

with adaptive trials in general − sometimes it may be better to ‘keep it simple’ and use 

traditional non-adaptive designs instead (Wason et al., 2019). However, when the use of 

RAR is considered, it is helpful to remember that RAR encompasses a large set of possible 

design (and analysis) options, rather than being a homogeneous technique to either include 

or not. Indeed, many of the recent general criticisms and praise for RAR in clinical trials has 

been driven by arguments that apply to the particular subclass of BRAR, but may well not be 

as relevant for other RAR procedures.

Trade-offs in terms of different metrics are ubiquitous and in many cases unavoidable in 

clinical trials, as RAR procedures can address a specific need at the expense of a cost 

in a different area. Hence, a RAR procedure should be chosen carefully according to the 

specific context and goals of a trial, in light of the practical challenges and constraints that 

implementing RAR poses. Indeed, as noted by an anonymous reviewer, the approach of 

starting with a set of different RAR procedures and then choosing one based on comparing 

their performance as measured by different metrics is arguably going in the wrong direction. 

Instead, a preferable approach is to explicitly start by defining the type of trial and the 

investigators’ priorities in setting goals for the trial, and to then select a RAR design suited 

to these goals (see also Pitt (2021)).

Starting with the type of trial, factors such as the phase of clinical development, the number 

of treatment arms and the clinical endpoint will naturally influence the aims of the trial 

and the appropriateness of a design including RAR. Some types of clinical trial may be 

particularly suited to the use of a well-chosen RAR procedure − for example, in multi-arm 

trials it is natural to consider dropping poorly performing treatment arms, and RAR offers an 

intermediate option of reducing numbers on such treatments.

Given a particular type of trial, the aims of the trial can then be considered. Broadly 

speaking, these aims fall into two categories:

1) Determine how best to treat future patients after the trial concludes while 

avoiding (or minimizing) harm to patients in the trial;

2) Optimize treatment of patients in the trial itself (i.e. treat patients in the trial as 

effectively as possible).

Depending on the relative importance of these two, different RAR rules may be appropriate.
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Once the aims of a study, their relative importance, and the corresponding metrics have all 

been agreed upon, the question of what an optimal RAR procedure is in terms of those 

metrics can be addressed. Ideally (as suggested by an anonymous editor), an optimal trial 

design can be found within this framework, rather than proposing ad hoc procedures and 

testing them against different metrics. However, in the literature reviewed we found the use 

of the term ‘optimal’ in relation to RAR procedures can have many different meanings. A 

broader definition of optimality may be beneficial to consider, not only including optimal 

allocation targets but also RAR families that have some other form of optimality (or near 

optimality). In any case, it is important to explicit say in what sense a procedure is ‘optimal’ 

when using this terminology.

As a general point (and one we more fully appreciate following recent discussions with 

applied trial statisticians), it is crucial to not consider statistical or methodological issues in 

isolation of practical issues. This may be key for the design of any experiment, but is more 

important for RAR and adaptive designs in general. For example, selection bias may be a 

big issue in some contexts, and if blinding is not possible, then the use of RAR may be 

less appropriate. Hence, greater collaboration and discussion between methodologists and 

applied trialists is useful to ensure that methods are developed with practical considerations 

in mind.

We would like to end with a short summary as to what we feel the future for RAR methods 

research should bring to improve its usefulness in clinical practice. We wrote this paper 

in a attempt to reconcile conflicting perspectives as much as to motivate researchers to 

address the issues mentioned here with new ideas. New work is needed to realise most of 

the potential advantages of RAR with fewer of its downsides while taking the trial context 

into account. With the increasing use of response-adaptive procedures in machine learning 

and data science more generally, this presents a golden opportunity for biostatisticians to 

embrace and lead the development of this wide adaptive class in both theory and practice.

As a general point, our hope is that any contribution to RAR methodology should be 

well contextualised within the ongoing debate in order to achieve practical impact and to 

avoid repeating common arguments that are already well-represented in the literature. When 

developing new proposals, it can be helpful to define terminology carefully, report a wide 

range of metrics and to be explicit about the potential limits of the conclusions made.

Firstly, we encourage the explicit definition and clear reporting of the metrics used to 

evaluate RAR procedures, as well as a broad look at multiple metrics (not just standard 

operating characteristics). For example, estimation and sample size imbalance metrics are 

relatively under-reported in the literature. Similarly, since many RAR procedures impact 

patient benefit, including at least one such metric (see Section 1.2) is useful when comparing 

RAR procedures.

Exploring a wide parametric space in simulations (and not only subsets of interest) can 

also be key. For example, Neyman allocation maximizes power, but for p0 + p1 > 1 

assigns more patients to the inferior arm (see Section 3.2). Similarly, for the RPW rule 

the limiting distribution of the allocation proportion depends on whether p0 + p1 > 3/2 
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(Rosenberger and Lachin, 2016). Given the above, it is also important to discuss when 

certain properties may not apply to other RAR families. This could reduce the chances 

of readers misunderstanding the scope of conclusions about a specific family of RAR 

procedures. More generally, definitive statements based only on simulation results should be 

regarded with an appropriate degree of caution. There are no universal set of rules on how to 

conduct simulation studies (although useful guidelines are proposed by Morris et al. (2019)).

In terms of specific methodological research areas, a key open area is that of efficient and 

valid inference methods for RAR. As discussed in Section 3.3, a simple asymptotic approach 

for inference is valid in many case but it does not apply to all RAR procedures. On the 

other hand, valid methods for small samples (or time trends) such as randomization-based 

inference suffer from low power. Hence, the development of new inferential procedures for 

finite samples that do not suffer from a large loss in power would be very useful (as a recent 

example along these lines, see Barnett et al. (2021); Deliu et al. (2021)). For time trends in 

particular, there has been little work estimating the likelihood and magnitude of such trends 

in practice, especially in contexts such as emerging epidemics. More research would help to 

determine whether RAR would be appropriate for specific trial contexts.

Another open research question is how to account for missing data or measurement error 

when using RAR. Adjusted confidence intervals have also received little attention in the 

literature. More generally, further work is needed to expand the comparison of multi-arm 

RAR procedures (particularly in terms of different power definitions) beyond BRAR. In 

terms of design aspects, RAR has the under-explored potential for addressing delicate issues 

when designing studies with composite or complex endpoints. Another consideration is that 

block-randomized versions of RAR methods are much more likely to be applied in practice 

than fully sequential schemes, but open questions remain about how these implementations 

compare in terms of power and patient benefit. As well, it is still unclear in general how trial 

designs incorporating RAR compare with well-chosen group sequential and MAMS designs.

Finally, regardless of methodological considerations and future development, the use of 

RAR in practice would stil require the availability of user-friendly software for both the 

implementation of the randomization algorithm as well as for the analysis approaches that 

were mentioned in Section 3 of this paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG 1. 
Timeline summarizing some of the key developments around the theory and practice of RAR 

in clinical trials. J&T = Jennison and Turnbull (2000), RSIHR = Rosenberger et al. (2001a).
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FIG 2. 
Plot of Ŝ0.1 for various RAR procedures as a function of p1, where p0 = 0.25 and n = 200. 

Each data point is the mean of 104 trial replicates.
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FIG 3. Plot of the optimal allocation ratios ρNeyman
∗

 and ρR
∗
 as a function of p1, for p0 ∈ {0.3, 0.5, 

0.7}.
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TABLE 1

Properties of various patient allocation procedures, where p0 = 0.25 and p1 = 0.35. Results are from 104 trial 

replicates.

n Procedure N1 − N0 Ŝ 0.1 ENS

200 ER 0 (-28, 28) 0.069 60 (6.4)

(Low power) PBR 0 0 60 (6.4)

Oracle 200 0 70 (6.7)

TS 95 (-182, 190) 0.137 65 (8.5)

FLGI(b = 5) 114 (-176, 190) 0.111 66 (8.3)

FLGI(b = 10) 115 (-172, 190) 0.100 66 (8.2)

TW(1/2) 74 (-90, 174) 0.085 64 (7.5)

TW(i/2n) 50 (-28, 122) 0.038 63 (6.8)

RPW 14 (-16, 44) 0.011 61 (6.5)

DBCD 17 (-10, 46) 0.003 61 (6.4)

ERADE 16 (-6, 42) 0.000 61 (6.4)

DTL 14 (-4, 32) 0.000 61 (6.6)

654 ER 0 (-50, 50) 0.005 196 (11.7)

(High power) PBR 0 0 196 (11.6)

Oracle 654 0 229 (12.2)

TS 461 (-356, 640) 0.042 220 (17.0)

FLGI(b = 5) 511 (-619, 645) 0.054 222 (18.5)

FLGI(b = 10) 511 (-617, 645) 0.051 222 (18.0)

TW(1/2) 384 (44, 594) 0.011 215 (14.2)

TW(i/2n) 272 (54, 456) 0.010 210 (13.0)

RPW 46 (-8, 100) 0.000 199 (11.8)

DBCD 55 (8, 106) 0.000 199 (11.8)

ERADE 54 (16, 96) 0.000 199 (11.7)

DTL 46 (14, 80) 0.000 198 (11.7)
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