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Abstract

Although the plant kingdom provides an enormous diversity of metabolites with potentially 

beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic 

pathways remains unknown. Resolving metabolite structures and their biosynthetic pathways is 

key to gaining biological understanding and to allow metabolic engineering. In order to retrieve 

novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted 

system-wide method in Arabidopsis thaliana, subjecting qualitative metabolic traits to a genome-

wide association study (designated as Qualitative Trait GWAS or QT-GWAS), along with the more 

conventional metabolite GWAS (mGWAS) that considers the quantitative variation of metabolites. 

As proof of the validity of the QT-GWAS and mGWAS, 23 and 15 of the retrieved associations 

were supported by previous research. Furthermore, seven gene-metabolite associations retrieved 

by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics 

and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 

(CYP706A5) is involved in the biosynthesis of chroman derivatives, UGT76C3 is able to 
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hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) 

catalyzes the sulfation of neolignans in vitro.

Introduction

Plant metabolism entails a complex network of biochemical pathways, in which enzymes 

perform conversions that connect a wide variety of structurally diverse metabolites. The 

diversity and abundance of metabolites can be considered as a phenotypic output of the 

genome (Contrepois et al., 2016). The plant metabolome can be classified into the primary 

and secondary/specialized metabolome. The former describes the collection of metabolites 

involved in processes essential for growth and development, whereas the latter comprises 

a specialized assortment of metabolites that allow the proper functioning and adaptation of 

an organism in a particular environment. Many metabolites in the specialized metabolome 

offer a use for humankind. They can lead to the development of medicines (Bishayee 

and Sethi, 2016; Desborough and Keeling, 2017), or commercially valuable products such 

as cosmetics, dyes, and oils (Loza-Tavera, 1999; Shin et al., 2013; Rose et al., 2018; 

Góral and Wojciechowski, 2020). They can also contribute attractive properties to food, 

improve feed quality (Ricachenevsky et al., 2019), and present agricultural benefits such 

as enhanced biotic (Fürstenberg-Hägg et al., 2013; Arbona and Gomez-Cadenas, 2016; 

Chowański et al., 2016) and abiotic stress tolerance (Varela et al., 2016; Peng et al., 

2017), enhanced yield (Steenackers et al., 2019), or improved interaction with beneficial 

organisms such as pollinators (Dudareva et al., 2013) or micro-organisms (Bouwmeester et 

al., 2019). Exploring the genetic mechanisms controlling the abundances of such metabolites 

is therefore crucial for both fundamental biological understanding and the engineering of 

plants to enhance metabolic traits.

Because of the vast amount of both metabolites and the genes underlying their biosynthesis, 

systems-wide tools are often employed to unravel biosynthetic pathways of specialized 

metabolites (Desmet et al., 2021a). By exploiting natural genomic variation, genome-wide 

association studies (GWAS) permit the search for associations of genomic markers, such as 

single-nucleotide polymorphisms (SNPs), with phenotypic traits of interest. In case the traits 

are metabolite abundances, this procedure is referred to as metabolite GWAS (mGWAS). 

mGWAS has become a valuable tool for uncovering new and uncharacterized genes/

pathways using either targeted or untargeted metabolomics. For example, in Arabidopsis 
thaliana (Arabidopsis), mGWAS led to the discovery of genes involved in biosynthetic 

pathways of both primary (Strauch et al., 2015; Wu et al., 2016; Angelovici et al., 2017) 

and specialized metabolism (Chan et al., 2010; Routaboul et al., 2012; Li et al., 2014). An 

mGWAS study on Arabidopsis employed under different environmental conditions led to a 

list of 70 candidate genes putatively involved in the metabolism of several metabolic classes, 

of which five genes were experimentally validated by means of reverse genetics (Wu et al., 

2018). mGWAS has been successfully used to discover genes controlling natural variation 

of metabolite abundances in crop plants such as rice (Chen et al., 2014; Dong et al., 2015; 

Matsuda et al., 2015; Chen et al., 2016; Brotman et al., 2021), maize (Wen et al., 2014; Wen 

et al., 2015; Chen et al., 2016; Baseggio et al., 2020), wheat (Chen et al., 2020; Shi et al., 

2020) and tomato (Nunes-Nesi et al., 2019; Alseekh et al., 2020; Tohge et al., 2020).
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In mGWAS, the number of loci that significantly contribute to the variation in metabolite 

abundance is often lower for specialized metabolites than for primary metabolites (Fernie 

and Tohge, 2017). Because of the highly polygenic basis underlying primary metabolism, 

loci determining variation in primary metabolism are often of relatively small effect (<30% 

for a given locus) (Schauer et al., 2008; Wen et al., 2015; Wu et al., 2016; Knoch et 

al., 2017), whereas for specialized metabolism, loci with larger effect sizes (>30%) can 

often be identified (Chen et al., 2014; Wen et al., 2014; Luo, 2015), suggesting that 

the abundance of such specialized metabolites is predominantly affected by only a small 

number of major genes. Many specialized metabolites are decorated derivatives of common 

core structures (Morreel et al., 2014; Wang et al., 2019). Because many of the genes 

involved in this variety of decorations are conserved only among the most closely related 

species, specialized metabolism pathways are likely the result of neo-functionalizations 

following tandem gene duplications (Moghe and Last, 2015). This allows the creation of 

novel specialized metabolites of which the abundance is affected mostly by those specific 

duplicated genes. Furthermore, specialized metabolic pathways tend to be less subjected 

to natural selection compared with primary metabolic pathways. In primary metabolism, 

a major selective pressure is generally enforced by the large metabolic flux requirements 

inherent to the crucial role of primary metabolites. This high selective pressure ensures 

high precision of metabolic conversions and catalytic efficiency of enzymes in primary 

metabolism (Mukherjee et al., 2015). Genes underlying primary metabolism therefore tend 

to be highly conserved across the plant kingdom (Weng, 2014). In contrast, the selective 

pressure on specialized metabolism drives the variation in secondary metabolites rather 

than flux increases(Mukherjee et al., 2015). For example, when a particular specialized 

metabolite is no longer required for a specific subpopulation of a certain species to thrive 

(e.g., when the species enters a new niche), this metabolite could completely disappear in 

that subpopulation as a result of the accumulation of mutations in biosynthetic genes for 

that specialized metabolite. Such metabolites then represent distinct features in a natural 

population, only occurring in specific accessions (Sotelo-Silveira et al., 2015). The presence/

absence of such a metabolite can be considered as a qualitative rather than a quantitative 

trait. The absence of a qualitative metabolic trait can be expected to show monogenic 

inheritance, considering that a knock-out mutation in one of the biosynthetic genes, will 

result in the loss of that metabolite. Such inheritance facilitates the discovery of the 

underlying genes (Kushalappa and Gunnaiah, 2013). In addition, because of their major 

effect, it is reasonable to hypothesize that, when subjecting qualitative metabolic traits 

to genetic analysis, biosynthetic genes can readily be identified. For example, surveying 

leaf sinapate esterprofiles from 96 Arabidopsis accessions demonstrated that the Pna-10 

accession, which accumulates sinapoylglucose instead of sinapoylmalate, is a natural 

deletion mutant of SNG1 encoding sinapoylglucose:malate sinapoyltransferase (Li et al., 

2010). Similarly, a novel flavonol phenylacyltransferase gene (FPT2) has been identified 

based on a targeted study of saiginols present only in a subset of the analyzed accessions 

(Tohge et al., 2016). The absence of flavonol 3-O-gentiobioside 7-O-rhamnoside in 42 out 

of 81 analyzed Arabidopsis accessions led to the identification of an acyl-glucose-dependent 

glucosyltransferase (BGLU6) (Ishihara et al., 2016). This rather limited number of examples 

illustrates that analyses of qualitative metabolic traits (metabolic traits that are absent in 

part of the studied population) can pinpoint enzyme-encoding genes that underlie these 
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metabolic conversions. Here, we performed an untargeted association analysis of 4,479 

qualitative metabolic traits (Qualitative Trait GWAS or QT-GWAS) and 1,147 quantitative 

metabolic traits (mGWAS) obtained from liquid-chromatography–mass spectrometry (LC-

MS) chromatograms with 250K SNPs of 183 Arabidopsisaccessions. Both methods enriched 

for genes labelled with “metabolic process” related GOterms, but QT-GWAS did so more 

significantly. When focussing on associations involving characterised metabolites, we found 

30 valid associations retrieved by the QT-GWAS of which 23 were supported by previous 

research and seven (involving the three genes UGT76C3, CYP706A5 and SULT202B1) 

were newly confirmed in this study. Our results show that through an untargeted QT-GWAS, 

valid gene–metabolite associations can be retrieved at the level of enzyme-encoding genes 

involved in metabolic conversions, and can retrieve new associations not found by mGWAS. 

This is, to our knowledge, the first time an untargeted GWAS approach has been combined 

with qualitative metabolic traits.

Results

LC–MS based metabolic profiles

An LC–MS analysis was performed on methanol extracts prepared from 14-day-old 

seedlings belonging to 183 accessions (Supplemental Table 1). A total of 5,082 metabolic 

features (peaks) was detected across all chromatograms (Supplemental Data Set 1), of 

which 603 were detected in all accessions. The other 4,479 features that were below the 

detection limit (ion intensity of 500 in this study) in at least 1 of the 183 accessions were 

considered as qualitative traits. Features with an average abundance above 500 and that were 

present in at least 100 accessions (to reduce the false-positive rate resulting from too-small 

sample sizes and to ensure a continuous distribution of quantitative traits across the used 

population), were selected as quantitative traits (Wu et al., 2018). Based on the applied 

filtering, 1,147 of the 5,082 features were selected as quantitative traits, 702 of which could 

be identified as both qualitative and quantitative traits in this study (Figure 1).

Associations between qualitative metabolic traits and SNP data

SNP data were used from a previously published 250K SNP data set (Horton et al., 

2012) for the 183 selected Arabidopsis accessions. SNPs that were monomorphic in all 

accessions were removed from the data set. Significant associations of qualitative features 

with SNPs were retrieved by a Fisher’s exact test using a P-value <10-6 threshold. Of the 

4,479 qualitative features, 709 features (16%) were involved in 53,464 associations. After a 

filtering step to remove (i) redundant associations between a particular feature and SNPs that 

are located within a 20-kb window (10 kb up- and 10 kb downstream of the most significant 

SNP) based on the average linkage disequilibrium (LD) size in Arabidopsis (Kim et al., 

2007), and (ii) redundant associations between a particular SNP and features representing 

the same metabolite [most metabolites are represented by multiple features in LC-MS 

(Mahieu et al., 2016)], 515 features (hereafter referred to as metabolites) remained that 

were involved in 2,931 associations (Figure 1A, Supplemental Data Set 2). MS/MS spectra 

were recorded for 140 of the 515 metabolites, of which 57 were tentatively characterized 

(Supplemental Table 2) using the DynLib spectral database (Desmet et al., 2021b). The 

metabolites were characterized as glucosinolates (13 metabolites), (neo)lignans/oligolignols 
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(11, of which 5 were found to be sulfated); flavonoids (6), jasmonates (5), organic acids 

(4), aromatic polyketides (3), phenylpropanoids (3), benzenoids/coumarins (2), lipids (2), 

purines (2), an amino acid (1), and others (5).

From the 515 metabolites, 397 (77%) were associated with one locus and 118 (23%) 

with multiple loci (Figure 2). Here a locus is defined as the 10-kb upstream and 10-kb 

downstream region of the associated SNP based on the average size of LD in Arabidopsis. 

Considering loci with 10 or more associated metabolites (threshold based on the observed 

elbow in Supplemental Figure 1) as pleiotropic loci, 23 such loci (L1-23) of the 2931 loci 

were found of which 1, 2, 1, 4, and 15 loci mapped on chromosomes 1 to 5, respectively 

(Figure 3, Supplemental Table 3). The pleiotropic locus L17 showed 83 associations, 

the highest number of associations of all loci in this data set, of which seven involved 

characterized glucosinolates, known to be affected by the METHYLTHIOALKYLMALATE 
1 (MAM1), MAM2 and MAM3 genes within this locus (Textor et al., 2004).

Associations between quantitative metabolic traits and SNP data

Next, we investigated the continuous variation of metabolic features in our data set. For 

the 1,147 quantitative features, the average abundance across the five replicates of each 

accession was calculated, and these averages were then subjected to a quantitative mGWAS 

following the EMMAX procedure (Kang et al., 2010). A genomic locus was considered as 

significantly associated with a particular feature, when at least 1 SNP in that locus showed 

a P-value <10-6 (the most significant SNP is then defined as the lead SNP) and at least 

an additional 5 of 40 SNPs in a region upstream and downstream of the lead SNP showed 

a P-value ≤10-3. When such associations were retrieved, an associated locus was defined 

as the window of SNPs still in LD (showing a significant association) with the lead SNP. 

In this way, 288 quantitative traits (of which 71 were also defined as qualitative traits), 

estimated to correspond to 248 metabolites after feature grouping, were associated with 577 

loci (Figure 1, Supplemental Data Set 3). Of the 248 metabolites, 31 could be characterized, 

all of which were also present in the QT-GWAS data set. The characterized metabolites 

contained glucosinolates (10), jasmonates (5), (neo)lignans/oligolignols (4), organic acids 

(3), flavonoids (2), phenylpropanoids (2), purines (2), aromatic polyketides (2), and an 

amino acid (1). Of the quantitative traits, 223 (90%) had only one significant association, 

whereas 25 (10%) showed multiple associations (Figure 2).

For the mGWAS, six pleiotropic loci could be identified (involved in associations with ten or 

more metabolites; Supplemental Figure 2, Supplemental Table 4). Two of the six pleiotropic 

loci were shared with the QT-GWAS (L5 and L17). The four other pleiotropic loci (L24-27) 

were all situated on chromosome 5, surrounding the pleiotropic MAM locus (L17). Both 

L5 and L17 showed associations with glucosinolates and are both known to contribute 

to natural variation in glucosinolates (Kliebenstein et al., 2001; Kroymann et al., 2001). 

Possibly, the association of various glucosinolates to L24-27 could be explained by the 

existence of an extended LD block surrounding the MAM locus in L17 (Chan et al., 2010), 

resulting in SNPs, which are further away from the MAM locus, to still be associated with 

glucosinolates. A detailed overview of the loci and corresponding associated characterized 

metabolites can be found in Supplemental Table 4.
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Gene Ontology term enrichment and overlap analysis

To investigate whether the loci associated with the metabolic traits were enriched in genes 

involved in metabolic processes, a GOterm enrichment was performed for both approaches, 

using the PANTHER webtool. For the qualitative approach, 103 GOterms in the ‘biological 

process’ category were significantly enriched (Bonferroni corrected P-value <0.05), not 

counting the unclassified category. Of these, twenty two GOterms (21%), related to various 

metabolic processes (Supplemental Table 5). For the quantitative approach, 25 GOterms 

were significantly enriched, of which five involved metabolic processes (20%). Of these 

25 GOterms, all but one (‘seed development’ – GO:0048316) were also enriched in the QT-

GWAS (Supplemental Table 6). Consequently, all GOterms involving metabolic processes 

that were enriched in the mGWAS were also enriched in the QT-GWAS. Notably, all of 

these metabolic GOterms were more significantly enriched in the QT-GWAS, although the 

fold-changes of the enrichments were of similar size (Supplemental Table 7).

Of the 702 traits that were selected as both qualitative and quantitative metabolites, 71 traits 

yielded associations for both QT-GWAS and mGWAS. QT-GWAS and mGWAS retrieved 

2556 and 529 unique genes for these 71 traits. Of these genes, 167 were retrieved by 

both methods. The overlap coefficient (Szymkiewicz–Simpson coefficient; the ratio of the 

intersection of both gene sets and the size of the smallest gene set, here the mGWAS genes) 

is 0.32. This indicates that only 32% of the genes retrieved by mGWAS (the smallest set) 

overlapped with the genes retrieved by QT-GWAS, suggesting that the QT-GWAS is able to 

retrieve new associations not found by mGWAS.

Proof of concept

Knowing the structure of a metabolite facilitates the search for candidate enzyme-encoding 

genes involved in its biosynthesis (e.g., glycosylated metabolites associated with genes 

encoding glycosyltransferases) – in many cases not even requiring full metabolite annotation 

if key functional groups can be identified. Therefore, all associations in the filtered 

QT-GWAS data set involving the 57 characterized metabolites were investigated (758 

associations out of 2,931 associations, Figure 1; Supplemental Data Set 4). In order to 

pinpoint enzyme-encoding genes involved in metabolic processes, the QT-GWAS data 

set was further filtered for genes labeled with GOslim categories (high level summaries 

of related GOterms) related to metabolic processes. In this way, 291 associations with 

34 metabolites remained. Of this selection, at least 23 associations involving 21 of the 

34 metabolites were supported by published research (Table 1, Supplemental Results), 

demonstrating that the QT-GWAS approach allows to pinpoint enzyme-encoding genes 

affecting the biosynthesis of the associated metabolites. Similarly, in the mGWAS data set, 

67 associations out of the 577 involved the 31 characterized metabolites. After filtering 

for genes labeled with GOslims related to metabolic processes, 62 associations remained 

involving the 31 metabolites (Supplemental Data Set 5). Of these 62 associations, at least 15 

associations involving 14 of the 31 characterized metabolites were supported by published 

research (Table 1, Supplemental Results). Twelve of the supported associations overlapped 

between QT-GWAS and mGWAS.
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Retrieving new candidate genes involved in metabolic pathways

Guided by structural information of the associated metabolites, seven associations involving 

three genes were selected for validation through comparative metabolome profiling of 

knockout mutants and/or in vitro enzyme assays. Of these seven validated associations, 

five were also retrieved by the mGWAS.

CYP7065A, a gene involved in chroman biosynthesis—Chroman derivatives are 

heterocyclic compounds sharing a chroman (benzodihydropyran) backbone. Chromans 

constitute various important plant metabolites such as tocopherols, known for their 

vitamin E activity. In addition, the chroman skeletal structure occurs in specialized 

metabolites such as flavonoids (Jiang et al., 2020). In the characterized qualitative data 

set, the second most significant association (P-value = 7.12 x 10-26) in the QT-GWAS 

with characterized metabolites, was found between 6-hydroxy-2-methoxy-2-(pentane-2’,4’-

dione-5’-C-hexoside)-chroman (metabolite 48) and SNP 4_7310453 located in the 3’ 

UTR of AT4G12310 (Supplemental Data Set 4, Figure 4A and 4B). This gene encodes 

a cytochrome P450 monooxygenase (CYP706A5) and was also identified as part of a 

pleiotropic locus (locus L7, Figure 3, Supplemental Table 3). Two neighboring genes, 

AT4G12300 and AT4G12320, also encode CYP706A proteins (CYP706A4 and CYP706A6, 

respectively). Furthermore, the locus contains two copper amine oxidase genes (AT4G12280 

and AT4G12290). However, these two genes do not show expression at the seedling stage 

according to external datasets and were therefore excluded as candidate genes to be involved 

in the metabolism of metabolite 48. According to the ATTED-II database (Obayashi et 

al., 2022), CYP706A5 is strongly co-expressed with CYP706A6, suggesting they may be 

involved in the same metabolic pathway. Via QT-GWAS, also the abundances of an isomer 

of metabolite 48, i.e. metabolite 49, as well as of 6-hydroxy-2-methoxy-2-(2’-propanone-C-

hexoside)-chroman (metabolite 37, Figure 4A), were associated with SNPs located in locus 

L7 (SNP 4_7309739, P-value =3.44 x 10-23 and SNP 4_7310453, P-value =1.12 x 10-23, 

respectively; Figure 4C and 4D). In addition, metabolites 48 and 49 were also associated 

with SNP 4_7310453 located in L7 via mGWAS (Table 1, Supplemental Data Set 5). No 

significant association was found for metabolite 37 via mGWAS.Q-Q plots for metabolites 

48, 49 and 37 show a tail reflecting the small P-values of significantly associated SNPs and 

the SNPs in LD, as can be expected (Supplemental Figure 9). Nevertheless, the plots suggest 

an inflation of the P-values for QT-GWAS which could be the result of population structure. 

In conclusion, CYP706A4, A5 and A6 were considered as candidate genes underlying the 

variance in abundance of metabolites 48, 49 and 37.

In order to confirm the effect of L7 on the abundances of the chroman derivatives 37, 48 
and 49, one homozygous T-DNA insertion mutant was obtained for CYP706A4 (cyp706a4; 

Figure 4E) and one for CYP706A5 (cyp706a5; Figure 4E). No T-DNA insertion mutant was 

available for CYP706A6. The reduction in expression of CYP706A4 and CYP706A5 was 

confirmed by RT-qPCR in the corresponding mutant lines (Figure 4F), while the expression 

of the three other CYP706A genes was not altered (Supplemental Figure 3). Comparative 

metabolite profiling of seedling metabolic extracts from each of the homozygous mutants 

revealed significant reductions for metabolites 37, 48 and 39 in cyp706a5, but not in 

cyp706a4 (Figure 4G, Supplemental Data Set 6-7). These results support the hypothesis 
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that the CYP706A5 is involved in the production of chromans 37, 48 and 49, as predicted by 

the QT-GWAS approach.

UGT67C3, a gene involved in guanine glycosylation—Guanine is one of the 

five essential nucleobases that make up part of the building blocks of nucleic acids 

and are ubiquitous in all known life forms. Nucleobases such as guanine can be taken 

up from the environment (Girke et al., 2014) or can be released from nucleotides or 

nucleic acids (Barbado et al., 2018). Little is known about guanine biosynthesis and 

metabolism, especially in plants. Based on MS/MS spectral data, two metabolites were 

characterized as guanine hexoside derivatives (metabolites 28 and 22; Figure 5A). In 

the QT-GWAS data set, the variations in both guanine hexoside pools were significantly 

associated with SNP 5_1776009 located in L28 on chromosome 5 (Figure 5B and 5C). 

This locus contains seven enzyme-encoding genes: DEOXYHYPUSINE SYNTHASE 
(DHS, AT5G05920), GUANYLYL CYCLASE 1 (GC1, AT5G05930), and five UDP-
GLYCOSYLTRANSFERASE genes (UGT76C1-5). DHS is involved in hypusine synthesis 

from peptidyl-lysine, whereasGC1 is described to catalyze the formation of guanosine 3’,5’-

cyclic monophosphate (cGMP)from guanosine5’-triphosphate (GTP) (Ludidi and Gehring, 

2003; Duguay et al., 2007). UGT76C1 (AT5G05870) and UGT76C2 (AT5G05860) are 

described cytokinin UGTs (Šmehilová et al., 2016). UGT76C4 (AT5G05880) and UGT76C5 
(AT5G05890) are known nicotinate UGTs (Wang et al., 2011; Li et al., 2015). The function 

of UGT76C3 (AT5G05900) has not been reported yet. In addition, the most significantly 

associated SNP is located in the coding sequence of UGT76C3, implying UGT76C3 is 

the most likely candidate glycosyltransferase involved in the biosynthesis of the guanine 

hexoside derivatives. Analogous to the chroman derivatives, Q-Q plots for metabolites 22 
and 28 show a tail reflecting the small P-values of significantly associated SNPs and the 

SNPs in LD, and indicate some inflation of the P-values for QT-GWAS (Supplemental 

Figure 10). The associations of L28 with metabolites 28 and 22 were also retrieved in the 

mGWAS (Table 1).

To independently confirm the association between the UGT76C3 candidate gene and 

metabolites 22 and 28, two homozygous T-DNA insertion lines were obtained for UGT76C3 
(ugt76c3-1 and ugt76c3-2, Figure 5E). The reduced UGT76C3 expression in the ugt76c3 
mutant lines was confirmed by RT-qPCR (Figure 5F), whereas the expression of the 

other UGT76C genes was not altered (Supplemental Figure 4). Comparative metabolite 

profiling of ugt76c3-1 ugt76c3-2 versus WT seedling samples showed that metabolite 28 
was completely absent in both mutants and metabolite 22 was significantly decreased in 

both mutants (ANOVA; PFDR <0.05) (Figure 5G and 5H, Supplemental Data Set 8-9). Root 

tissues of both mutant lines and WT plants were subjected to metabolic profiling, given the 

relatively high expression of UGT76C3 in roots (based on external datasets and RT-qPCR, 

Supplemental Figure 4). These results were in agreement with the seedling metabolic 

profiling (Supplemental Data Set 10-11). These results support that UGT76C3 is causal 

for the natural variation in the abundance of the associated guanine hexoside derivatives in 

Arabidopsis seedlings and suggest that the glycosylation of guanine, the first step of the 

proposed metabolic pathway, is catalyzed by UGT76C3 (Figure 5D).
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To further investigate whether UGT76C3 catalyzes the glycosylation of guanine as 

suggested (Figure 5D), UGT76C3 was expressed in E. coli and purified as GST-tagged 

UGT76C3 recombinant protein (GST-UGT76C3) for enzymatic assays. Guanine was 

incubated with GST-UGT76C3 in the presence of UDP-glucose as a sugar donor. In contrast 

to the negative control, the GST-UGT76C3 reaction product gave rise to one peak at 

m/z 312.1, which was consistent with the theoretical monoisotopic mass of the guanine 

glucoside [M-H]- ion (C11H14N5O6
-; 312.09441 Da) (Figure5I). The MS/MS fragmentation 

spectrum further showed a neutral loss of 162Da, corresponding to the loss of a hexose 

(minus H2O) moiety, indicating that the glucose moiety and guanine are N-linked, not 

C-linked. These observations demonstrate that UGT76C3 can catalyze the N-glycosylation 

of guanine in vitro.

SULT202B1, a gene involved in neolignan sulfation—Sulfation of flavonoids has 

been reported in various studies (Teles et al., 2018) and several underlying genes have 

been reported in Arabidopsis (Klein and Papenbrock, 2004; Hashiguchi et al., 2014). 

However, genes responsible for the sulfation of neolignans remain unknown. Three sulfated 

neolignans, sulfo-G(8-O-4)FA (G stands for coniferyl alcohol and FA for ferulic acid, 

metabolite 21) and its isomer (metabolite 29), and sulfo-G(8-O-4)SA (SA stands for sinapic 

acid, metabolite 44) were characterized in this study (Figure 6A). In the QT-GWAS data 

set, metabolites 21 (SNP 3_16490051; P-value = 7.37 x 10-8, Figure 6B) and 44 (SNP 

3_16487258;P-value=4.92 x 10-7, Figure 6C), were associated with locus L29 that contains 

four genes: a nitrate transporter (NRT2.6; AT3G45060), a sulfotransferase (SULT202B1; 

AT3G45070) and two nucleoside triphosphate hydrolases (AT3G45080 and AT3G45090). 

The sulfotransferase SULT202B1 has been reported to operate on flavonoids (Gidda and 

Varin, 2006; Hashiguchi et al., 2013). The associations of metabolites 21 and 44 with 

L29 suggest that SULT202B1 could potentially act upon neolignans as well. Alternatively, 

the association could be the result of competition between neolignans and flavonoids for 

conjugation. Q-Q plots for metabolites 21 and 44 show a less profound tail, compared to 

the chroman and guanin derivatives under investigation as a result of the less significant 

associations (Supplemental Figure 11).In the mGWAS, an association between locus L29 

and metabolites 21 and 29 (Figure 6, B and D) could be retrieved, but not with metabolite 

44, even though it was selected as quantitative trait as well.

To test whether SULT202B1 is active on G(8-O-4)FA or G(8-O-4)SA as predicted, 

recombinant GST-tagged SULT202B1 was produced in E. coli and purified for in vitro 
enzyme assays with chemically synthesized G(8-O-4)FA and G(8-O-4)SA (Supplemental 

Methods). G(8-O-4)FA and G(8-O-4)SA were tested as potential substrates (see methods), 

whereas the flavonol galangin was used as a positive control. As previously reported, 

SULT202B1 displayed activity towards galangin (Gidda and Varin, 2006). When incubated 

with G(8-O-4)FA, the SULT202B1 reaction product gave rise to two peaks exhibiting an 

m/z value and fragmentation spectrum corresponding to sulfo-G(8-O-4)FA (Figure 6E). 

Similarly, two sulfo-G(8-O-4)SA peaks were observed when G(8-O-4)SA was incubated 

with SULT202B1 (Figure 6F). These observations illustrate that SULT202B1 can catalyze 

the sulfation of G(8-O-4)FA and G(8-O-4)SA in vitro.
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We assessed the effect of population structure correction for qualitative metabolites whose 

associations were supported by previous research or validated in this study through 

ASRgwas (Table 1). As expected, for all tested traits, the associations retrieved by 

QT-GWAS were less significantly detected by ASRgwas. Notably, 19 out of the 30 

validated associations retrieved by QT-GWAS were no longer deemed significant by 

ASRgwas (p-values > 10-6) even though they have been experimentally validated in this 

study or were supported by previous research. These results suggest population structure 

correction is in some cases too conservative and could overlook the identification of real 

associations, as also noted by (Klasen et al., 2016). We visualized the potential influence of 

population structure on the associations retrieved by QT-GWAS, through Uniform Manifold 

Approximation and Projection for Dimension Reduction (UMAP, (McInnes et al., 2020)) 

(Supplemental Figure 5, Supplemental Results, Supplemental Methods).

Discussion

QT-GWAS and mGWAS both retrieve loci involved in the biosynthesis of specialized 
metabolites and are partially complementary

Several studies have illustrated that targeted genetic analyses of qualitative metabolic traits, 

only present in a subset of a population of accessions, can efficiently pinpoint biosynthetic 

genes (Li et al., 2010; Ishihara et al., 2016; Tohge et al., 2016). Such discoveries are 

highly important both for fundamental knowledge and to open up possibilities towards 

metabolic engineering. By performing an untargeted association analysis through Fisher’s 

exact tests of 4,479 qualitative metabolic traits and 250K SNPs in Arabidopsis, we retrieved 

2,931 significant associations with 515 metabolites (11% of all qualitative traits defined 

here). In comparison, mGWAS yielded 577 associations involving 248 (22% of 1147) 

quantitative metabolites. Considering that QT-GWAS and mGWAS picked up at least 23 and 

15 literature-supported associations, respectively, both mGWAS and QT-GWAS methods 

are valid approaches to retrieve associations involved in the biosynthesis of specialized 

metabolites. The complementarity of both methods is illustrated by the observation that only 

twelve of the supported associations overlapped between both methods. Of the eight novel 

associations confirmed in this study, only five were retrieved by both methods.

The complementarity between both approaches could be explained by the fact that the 

QT-GWAS differentiates between genotypes in which the trait is absent and those expressing 

the trait, whereas mGWAS narrows associations down to those genotypes affecting the 

trait quantitatively rather than qualitatively. Nevertheless, the complementarity could also 

in part be explained by the different selection criteria for qualitative and quantitative traits. 

However, for the traits that were selected both as quantitative and qualitative traits, the 

two methods yielded different results in agreement with the different statistical strategies 

of both methods (only 32% of the genes overlapped based on the Szymkiewicz–Simpson 

coefficient). For example, QT-GWAS was able to retrieve a correct association between 6-

hydroxy-2-methoxy-2-(2’-propanone-C-hexoside)-chroman (metabolite 37) and CYP705A6 
and between sulfo-G(8-O-4)SA (metabolite 44) and SULT202B1, which were not retrieved 

by mGWAS at the current threshold, even though both metabolites were also selected as 

quantitative traits for the mGWAS. QT-GWAS was able to retrieve 11 associations that 
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were supported by previous research that were not retrieved by mGWAS, despite the fact 

that the involved metabolites were used as input in both methods. Analogously, mGWAS 

yielded three literature-supported associations that were not found by QT-GWAS. The 

complementarity could (in part) be the result of the exclusion of rare alleles (minor allele 

frequency <5%) from mGWAS. Such alleles were not excluded from the QT-GWAS.

An enrichment for ‘metabolic process’-related GOterms was observed for both the mGWAS 

and the QT-GWAS. The QT-GWAS showed a more significant enrichment for all 5 

‘metabolic process’-related GOterms that were enriched in the mGWAS, and also for 17 

additional ‘metabolic process’-related GOterms that were not enriched in the mGWAS. 

These results further support that the novel QT-GWAS is indeed able to retrieve genes 

involved in metabolism.

Novel enzyme–metabolite associations

In order to further demonstrate the validity of the QT-GWAS approach, candidate genes 

of unknown function were selected from genomic loci associated with characterized 

metabolites and subjected to reverse genetics. Comparative metabolic profiling of the T-

DNA insertion mutant in candidate CYP706A5 versus the WT showed that the abundance 

of the associated chroman derivatives 37, 48 and 49 were significantly reduced in 

cyp706a5, indicating that CYP706A5 is involved in the biosynthesis of these metabolites. 

Furthermore, these metabolites were not differential in cyp706a4, indicating that the 

functions of CYP706A4 and CYP706A5 are not redundant. Metabolites 37, 48 and 49 
have previously been reported to be highly abundant in leaf vacuoles of Arabidopsis (Dima 

et al., 2015). Moreover, the putative structures of the associated metabolites 37, 48 and 

49 resemble polyketide synthase derailment products, because of their putative polyketide 

like nature (Yamaguchi et al., 1999; Jiang et al., 2006; Lim et al., 2016). Most polyketide 

synthases are promiscuous in the number of elongation steps, causing some polyketide 

intermediates to derail, resulting in heterocyclic truncation products (Lim et al., 2016). 

Although the involvement of CYP706A5 in the production of metabolites 37, 48, and 49 was 

demonstrated by reverse genetics, the identity of its in vivo substrate remains unclear.

Similarly, the metabolite profiling of T-DNA insertion lines in UGT76C3, located in L28, 

confirmed the involvement of the UGT in the production of metabolites 22 and 28, as 

predicted by both the QT-GWAS and mGWAS. The biosynthesis of metabolites 22 and 28 
could potentially start from the hexosylation of guanine by UGT76C3 (Figure 5D). This 

hypothesis is supported by the in vitro enzyme assay, which illustrates that UGT76C3 is 

indeed capable of catalyzing the glycosylation of guanine in vitro. This is, to our knowledge, 

the first time that guanine glycosylation has been reported in plants.Here, guanine (benzoyl) 

hexoside (metabolite 28) and guanine (benzoyl)sulfo-hexoside (metabolite 22)were detected, 

instead of guanine hexoside. A possible reason is that guanine hexoside is rapidly 

conjugated with benzoate and/or sulfate. This may also explain why guanine hexoside has 

not been reported yet in other organisms. The guanine (benzoyl) hexoside and guanine 

(benzoyl) sulfo-hexoside could possibly be storage molecules, as molecules are frequently 

hexosylated for storage in the vacuole (Dima et al., 2015; Le Roy et al., 2016; Desmet et al., 

2021b). Because UGT76C3 is highly expressed in roots, it could play a role in storage of 
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excess guanine. Guanine has been shown to be taken up from the environment (Girke et al., 

2014), but could also play a role as a nitrogen storage form in nitrogen-poor or -fluctuating 

environments (Mojzeš et al., 2020).

The QT-GWAS and mGWAS suggested that in addition to flavonoids, SULT202B1 

could also catalyze the sulfation of neolignans, based on the observed associations with 

metabolites 21, 29 and 44. This hypothesis was confirmed by in vitro enzyme assays. This 

is, to our knowledge, the first report of an enzyme capable of catalyzing the sulfation of 

neolignans in vitro. The sulfation of neolignans could serve to improve their solubility in 

water, which could possibly alter their sequestration and/or transport to the vacuole or cell 

wall (Routaboul et al., 2012). Alternatively, sulfation of specialized metabolites, such as 

neolignans, could be the result of an adaptation to a specific environment. For example, a 

strong correlation was observed between the occurrence of sulfated flavonoids and plants 

growing near aquatic environments rich in mineral salts. Hence, the binding of sulfate to 

flavonoids and neolignans could be a mechanism for deactivation of excessive inorganic 

sulfate (Li et al., 2014).

QT-GWAS and mGWAS generate valuable databases

The QT-GWAS and mGWAS data sets retrieved a total of 26 literature-supported 

associations. Furthermore eight novel associations were confirmed here. These results 

illustrate that both methods lead to valuable gene–metabolite associations. In the QT-

GWAS data set, 1,057 associations involved unknown metabolites and contained genes 

categorized under GOslims categories related to metabolic processes (Figure 1). In the 

list of QT-GWAS associations with characterized metabolites, at least 30 of the 291 

associations (10%) involving metabolic genes were validated (23 through previous research 

and seven in this study). Extrapolating this percentage to the unknown associations, at 

least another 106 associations are promising leads. Analogously, in the mGWAS data set, 

450 associations involved unknown metabolites and contained genes labeled with GOslims 

related to metabolic processes. In the mGWAS associations with characterized metabolites, 

21 of the 62 associations (34%) involving metabolic genes were validated (15 through 

previous research and six in this study). Extrapolating this percentage to the unknown 

associations, at least 153 associations are predicted as promising leads. The 1,057 and 450 

‘metabolic process’-related loci involving unknown metabolites in QT-GWAS and mGWAS, 

respectively, can be mined further for additional candidate genes, which could be subjected 

to a combination of reverse genetics and metabolite profiling to investigate whether the 

abundance of the associated unknown metabolite is affected in the mutant. The identity of 

the potential substrate can be obtained through (partial) metabolite characterization, in case 

MS/MS spectral fragmentation data allows elucidation, isotope labeling (Simpson et al., 

2021) or through purification and NMR analysis of the unknown metabolite.

Methods

Plant growth and experimental setup

Seeds of 183 A. thaliana accessions (Supplemental Table 1) were sown on MS-agar plates 

(0.5X Murashige and Skoog medium, 0.5% (w/v) sucrose, 1.2% (w/v) plant tissue agar), 
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and stratified at 4°C for five days. Based on a randomize block design, 14-day-old seedlings 

(five replicates per accession) were then transferred to 96-well plates (MultiScreen, Merck 

Millipore) with two seedlings per well in 1 mL liquid MS-medium (0.5X MS medium, 0.5% 

(w/v) sucrose). The 96-well plates were placed in a growth chamber for 12 days (21°C, 

16 h light/8 h dark with 120 μEs-1m-2). For metabolite extraction, the growth medium was 

removed by vacuum filtration and samples were quenched with 1 mL dry-ice-cold methanol. 

After heating the samples to 70°C for 15 min, the methanol extract was collected in a 

receiver plate using a vacuum manifold. Subsequently, 500 μL of the collected extract was 

cleaned with a Sep-Pak C18 96-well plate (Waters), dried in a vacuum concentrator and 

suspended in 50 μL ultrapure water. The 250K SNP data was obtained from from the Gregor 

Mendel Institute (available on github: https://github.com/Gregor-Mendel-Institute/atpolydb/

tree/master/250k_snp_data).

All T-DNA insertion lines in this study were obtained from the SALK collection through 

the Nottingham Arabidopsis Stock Centre and homozygous mutants were identified by 

PCR amplification using T-DNA and gene specific primers (Supplemental Table 11). The 

Columbia-0 (Col-0) accession was used as WT.

Metabolite profiling and data processing

To obtain the metabolic profiles of all 183 A. thaliana accessions, each replicate (10 μL 

injected) was analyzed via negative ionization mode using a ultrahigh performance liquid 

chromatography (UHPLC) system hyphenated to electrospray ionization (ESI)-quadrupole-

time of flight (QTOF)-MS (Acquity UPLC system coupled to a Synapt High Definition 

MS, Waters Corporation, Manchester, UK, Supplemental Methods). T-DNA insertion lines 

were analyzed on a Vion QTOF-MS (Waters Corporation, Manchester, UK, Supplemental 

Methods).

Peak grouping on the recorded LC–MS peaks was performed following Morreel et al. (2014) 

to estimate the number of detected metabolites. Statistical tests were performed in R version 

4.0.0 (R Core Team, 2020). Data were transformed as described previously (Desmet et 

al., 2021b). Significant differences in the feature abundances between the T-DNA mutant 

lines and the WT were obtained following a one-way analysis of variance (ANOVA; lm() 
function) followed by Tukey honestly significant difference [HSD; TukeyHSD()] post hoc 

tests (α=0.05). The ANOVA model P-values were subjected to a false discovery rate [FDR, 

PFDR<0.05; p.adjust()] correction.

MS-based structural elucidation

In addition to MS/MS spectra recorded via QTOF-MS, MSn spectra were generated 

via reversed-phase UHPLC-ESI-Fourier transform ion cyclotron resonance (FTICR)-MS 

(Accela UHPLC system coupled to an LTQ FT Ultra, Thermo Scientific, Bremen, Germany) 

using the same separation conditions as mentioned for the QTOF-MS-based analyses. 

MS settings were as previously described (Desmet et al., 2021b). The MS/MS and 

MSn spectra mutually aligned and interpreted using RDynLib (Desmet et al., 2021b). 

Spectral interpretation was further assisted using CSI:FingerID (Dührkop et al., 2015) 

and competitive fragmentation modeling (CFM)-ID (Allen et al., 2014), and by applying 
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previously published MS fragmentation pathways (Morreel et al., 2006; Morreel et al., 

2010a; Morreel et al., 2010b; Desmet et al., 2021b) (Supplemental Methods).

GWAS of qualitative traits (QT-GWAS)

LC–MS processed features were converted to binary traits and subjected to Fisher exact 

tests using R version 4.0.0 [R Core Team, 2020; see “Qualitative GWAS.R available on 

Github”]. Whenever a feature was absent in more than half of the replicates for a particular 

accession (3 or more out of 5), the feature was considered absent in that accession. Some 

4,479 features remained for the QT-GWAS (after removing features either present or absent 

in all 183 accessions). Using the 250K SNP data set, cosegregation analysis between 

the presence/absence of a feature and the presence/absence of a SNP was performed 

with Fisher exact tests [fisher.test(); -log10(P-value) >6] (see “Qualitative GWAS.R”). To 

accommodate for multiple hypotheses testing a P-value threshold of P-value < 10-6 was 

selected to define associations as significant.All scripts are made available at Github (https://

github.com/mabro7766/QT). Manhattan and Q-Q plots were generated with the “qqman” 

package in R (Turner, 2014).

GWAS of quantitative traits (mGWAS)

mGWAS was performed on metabolite abundances measured in the 183 selected A. thaliana 
accessions. m/z signals with an average abundance lower than the detection limit of 500 

were put to missing. The analysis was limited to those metabolites where at least 100 

accessions had a value above the detection limit. Only SNPs were considered with a minor 

allele fraction (MAF) of at least 0.05. The association study was performed analogous to 

Kang et al. (2010), see Supplemental Methods for detailed descriptions. To accommodate 

for multiple hypotheses testing correction a P-value threshold of P-value < 10-6 was 

selected to define associations as significant. All scripts are made available at Github 

(https://github.com/mabro7766/mGWAS).

Comparative GOterm analysis and overlap coefficient

Gene Ontology data was obtained from TAIR (https://www.arabidopsis.org/). A GOterm 

enrichment was performed using the PANTHER webtool (http://pantherdb.org/) for both 

QT-GWAS and mGWAS. The inputted genes included duplicates, [genes occurring in 

more than one association were included in the enrichment as many times as they 

showed associations (13,795 genes for the QT-GWAS and 3,535 genes for the mGWAS)]. 

Enrichment was assessed versus all Arabidopsis genes present in the database through 

Bonferroni-corrected Fisher’s exact tests. The overlap coefficient (Szymkiewicz–Simpson) 

was calculated as ratio of the intersection and the size of the mGWAS gene set (equation 1).

overlap(A, B) = A ∩ B
min( A , B )

Gene expression analysis via RT-qPCR and external datasets

Shoot or root tissues of 2-week-old Arabidopsis seedlings were collected and immediately 

frozen in liquid nitrogen. Six plants were pooled per biological replicate and three replicates 
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were harvested per line. All plant materials were disrupted in 2-mL Eppendorf tubes using 

a Retsch MM300 mill (20 Hz, 3-mm bead). Total RNA was extracted using ReliaPrep 

RNA Tissue Miniprep System (Promega). A total of 1 μg RNA was used as a template 

for cDNA synthesis using the qScript cDNA SuperMix (Quantabio). RT-qPCRs were 

performed using SYBR® Green Mix (Roche)in the Lightcycler® 480 System (Roche). 

Arabidopsis UBIQUITIN CONJUGATION ENZYME 9 (UBC9, AT4G27960) and UBC21 
(AT5G25760) genes were used as reference genes. Gene expression of AT4G12280, 

AT4G12290, AT4G12300, AT4G12310, AT4G12320, and AT5G05900 was checked via eFP 

browser (Winter et al., 2007).

Enzymatic assays

In vitro enzymatic assays of UGT76C3 were performed as described (Peng et al., 

2017) enzymatic assays of SULT202B1 were conducted as described (Hashiguchi et al., 

2013).Recombinant GST-tagged red fluorescent protein (RFP) was used as negative control. 

For recombinant protein expression and purification see Supplemental Methods.

LC–MS analyses of the reaction mixtures were performed on an Acquity UPLC system 

coupled to a Synapt-XS high resolution MS (Waters Corporation, Manchester, UK). Ten μL 

reaction product was injected and analyzed as described for “Metabolite profiling and data 

processing” with the following altered parameter settings: desolvation temperature was set to 

550°C, the desolvation gas flow was set to 800L/h and transfer collision energy was set to 4 

V.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Short summary

A novel genome-wide association method to uncover biosynthetic loci underlying 

qualitative metabolic traits (designated as QT-GWAS) was developed and performed 

alongside a conventional quantitative metabolite GWAS (mGWAS). At least 26 of the 

associations found were supported by previous research and 8 associations involving 

three metabolic enzyme-encoding genes (CYP706A5, UGT76C3 and SULT202B1) were 

newly confirmed, illustrating the power of the novel QT-GWAS.
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Figure 1. Schematic overview of the qualitative and quantitative traits and their recorded 
associations.
A, 4,479 qualitative metabolic traits were used as input for the QT-GWAS. Associations 

were retrieved for 709 qualitative traits, estimated to correspond to 515 metabolites, of 

which 57 were characterized and 458 remained unknown. 2,173 associations were retrieved 

for the unknown metabolites, of which 1,057 involved loci encoding enzymes labeled 

with ‘metabolic process’-related GOslim categories. The 57 characterized metabolites 

were involved in 758 associations. In this dataset, 291 loci contained genes labeled with 

‘metabolic process’-related GOslim categories. At least 23 of these associations were 

confirmed or supported by previous research and seven (involving three loci) were newly 

confirmed in this study. B, 1,147 quantitative traits were used as input for the mGWAS. 

Associations were retrieved for 288 of estimated to correspond to 248 metabolites. Of 

these metabolites, 31 were characterized and 217 remained unknown. The unknowns were 

involved in 510 associations of which 450 encompassed loci containing genes labeled 

with ‘metabolic process’-related GOslim categories. The 31 characterized metabolites were 

involved in 67 associations. In this dataset, 62 loci contained genes labeled with ‘metabolic 
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process’-related GOslim categories, of which at least 15 were confirmed or supported by 

previous research and six (involving 3 loci) were newly confirmed in this study. In total, 

eight new associations were confirmed in this study of which five overlapped between the 

two methods.
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Figure 2. Distribution plot of the number of associations per metabolite retrieved for the 515 
metabolites in the QT-GWAS (blue) and the 248 in the mGWAS (green).
Of the 515 metabolites associated in QT-GWAS, 397 show an association with one locus, 

118 with two or more loci. In mGWAS, 223 metabolites showed an association with one 

locus and 25 to multiple loci.
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Figure 3. Overview of the pleiotropic loci (> 10 associations) obtained with the QT-GWAS.
For each locus, the number of associations is represented in dark blue, the negative 

logarithmic P-value with base 10 (-logP) of the association in green. The dashed line 

represents the cut-off of ten associations to qualify as a pleiotropic locus. Pleiotropic loci 

are numbered according to Supplemental Table S3. A locus is defined as the region 10-kb 

upstream and 10-kb downstream of the most significant SNP (lead SNP) associated with a 

particular metabolite.
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Figure 4. Overview of the CYP706A locus and its associated metabolites.
A: putative structure of associated metabolites 48, 49 and 37. B, C, D: Manhattan plots of 

metabolites 48, 49 and 37 respectively, for QT-GWAS (upper panel) and mGWAS (lower 

panel): the x-axis represents the location of the recorded SNPs on the genome, the y-axis 

represents the negative logarithmic P-value for the association of each SNP to the respective 

metabolites. E. Schematic representation of CYP706A4 and CYP706A5; intronic regions 

are represented by a line, exonic regions are indicated in black and UTR regions in white; 

T-DNA insertion locations of the mutant lines are indicated by the triangles; Scale bar 

indicates 100 basepair. F. Relative expression of CYP706A4 and CYP706A5 as determined 

by RT-qPCR, primers are indicated by the arrows. G. Comparative metabolite profiling 

shows a significant reduction in the abundance of metabolites 37, 48 and 49 in cyp706a5 
uniquely. Data are presented as mean ± standard deviation, n = 5; ND, not detected. *** 

P-value <0.001
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Figure 5. Overview of the UGT76C locus and its associated metabolites.
A: putative structure of associated metabolites 28 and 22. The sugar moiety is N-linked, but 

its exact position and that of the substituents R1 and R2 are unknown. B and C: Manhattan 

plots of metabolites 28 and 22 respectively, for QT-GWAS (upper panel) and mGWAS 

(lower panel): the x-axis represents the location of the recorded SNPs on the genome, the 

y-axis represents the negative logarithmic P-value for the association of each SNP to the 

respective metabolites. A schematic representation of the candidate gene (UGT76C3) in 

L28 is shown and the most significantly associated SNP is marked in red within the gene. 
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D. Proposed pathway for the biosynthesis of metabolites 28 and 22 in which UGT76C3 

catalyzes the first step, namely the hexosylation of guanine. E. Schematic representation 

of UGT76C3; intronic regions are represented by a line, exonic regions are indicated in 

black and UTR regions in white; insertion locations of the mutant lines are indicated by 

the triangles. F. Relative expression of UGT76C3 as determined by RT-qPCR, primers are 

indicated by the arrows. G and H. Comparative metabolite profiling shows a significant 

reduction of metabolites 28 and 22 in both mutant lines. Data are presented as mean ± SD, 

n = 5; ND, not detected. ***P-value < 0.001, **0.001 < P-value < 0.01. I. In vitro enzyme 

assays show the conversion of guanine to guanine glucoside in the UGT76C3 reaction 

exclusively (left panel). GST-tagged RFP was used as negative control. MS/MS spectral data 

confirmed the characterization of m/z 150.1 as guanine (right upper panel) and m/z 312.1 as 

guanine glucoside (right lower panel).
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Figure 6. Overview of the SULT202B1 locus and its associated metabolites.
A. Putative structure of associated metabolites 21, 29 and 44. The exact position of the 

sulfate group could not be determined based on MS/MS spectral data. B, C and D: 
Manhattan plots of metabolites 21, 44 and 29 respectively, for QT-GWAS (upper panel) 

and mGWAS (lower panel): the x-axis represents the location of the recorded SNPs on 

the genome, the y-axis represents the negative logarithmic P-value for the association 

of each SNP to the respective metabolites. The candidate gene (SULT202B1) in L29 is 

shown. E and F: Chromatograms of in vitro enzymatic reactions of SULT202B1 with 

chemically synthesized G(8-O-4)FA and G(8-O-4)SA, respectively. GST-tagged RFP was 

used as negative control. MS/MS spectral data confirmed the characterization of two m/z 
469.073 products (peaks 1 and 2) as sulfo-G(8-O-4)FA and two m/z 499.090 products 

(peaks 3 and 4) as sulfo-G(8-O-4)SA.
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Table 1
Overview of associations supported by literature and newly confirmed associations for 
QT-GWAS, mGWAS, and ASRgwas (population structure correction for qualitative 
metabolites).

“No.” refers to the corresponding metabolite number as used in the text and Supplemental Table S2. “NA” 

indicates that no association was recorded for the corresponding method. FA, ferulic acid; SA, sinapic acid, 

ISF, detected as in-source fragment.

Gene Metabolite name No. P-value QT-GWAS mGWAS ASRgwas

Associations confirmed by previous research 

DAAR1 acetyl-(iso)leucine 18 1.10 x 10-27 1.86 x 10-26 7.41 x 10-11

MAM1/2/3 3-methylsulfinylpropyl glucosinolate 1 1.58 x 10-8 NA 0.019

3-oxathiolesulfinylpropyl glucosinolate 2 NA 3.03 x 10-7 NA

butyl glucosinolate 6 4.03 x 10-8 2.17 x 10-9 0.022

3-methylsulfinylbutyl glucosinolate 7 1.48 x 10-12 NA 1.85 x 10-6

methylbutenyl glucosinolate 8 NA 2.86 x 10-7 NA

glutathionylated methylsulfinylhexyl glucosinolate 15 3.47 x 10-13 NA 1.54 x 10-5

sulfohydroxyimidazolone-G(8-O-4)FA 17 3.56 x 10-11 NA 2.17 x 10-3

dihydroxynonenyl glucosinolate 20 NA 9.64 x 10-7 NA

phenylpropyl glucosinolate 23 2.24 x 10-17 NA 6.06 x 10-5

4-benzoyloxybutyl glucosinolate 40 1.92 x 10-10 8.67 x 10-18 8.55 x 10-9

7-methylthioheptyl glucosinolate 47 1.38 x 10-8 2.69 x 10-7 4.80 x 10-4

AOP3 3-oxathiolesulfinylpropyl glucosinolate 2 8.14 x 10-12 8.92 x 10-7 5.95 x 10-5

4-O-sulfo-G(8-O-4)FA (isomer) 29 2.48 x 10-7 NA 9.24 x 10-6

GSL-OH/2OG glutathionylated methylsulfinylhexyl glucosinolate 15 3.14 x 10-8 NA 9.00 x 10-5

sinapoyl-(4-O-hexosylsinapoyl)-hexose 34 9.30 x 10-9 NA 8.78 x 10-4

sinapoyl hexose(8-8)Sred 42 4.13 x 10-9 NA 5.01 x 10-5

BGLU6 quercetin-3-O-hexosyl(1->6)hexoside-7-O-deoxyhexoside 19 5.72 x 10-23 5.80 x 10-10 3.60 x 10-4

kaempherol-3-O-hexosyl(1->6)hexoside-7-O-deoxyhexoside 25 1.49 x 10-24 9.13 x 10-9 2.09 x 10-11

isorhamnetin-3-O-hexosyl(1->6)hexoside-7-O-deoxyhexoside 27 3.50 x 10-25 NA 3.32 x 10-11

Associations supported by previous research 

GH3 12-hydroxy-4,5-didehydrojasmonoyl glutamine hexoside 24 1.50 x 10-15 4.62 x 10-19 2.71 x 10-11

12-hydroxy-4,5-didehydrojasmonoyl glutamine hexoside 
(isomer)

26 2.34 x 10-19 2.19 x 10-14 4.18 x 10-5

12-hydroxy-4,5-didehydrojasmonoyl glutamine hexoside 
(isomer)

30 1.25 x 10-15 1.94 x 10-17 2.79 x 10-8

12-hydroxy-4,5-didehydrojasmonoyl glutamine 45 6.04 x 10-20 4.68 x 10-9 4.54 x 10-5

malonyl (2-hydroxy-4,5-didehydrojasmonoyl glutamine) 46 1.06 x 10-12 1.65 x 10-10 8.19 x 10-5

SCPL13/8/9 sinapoyl-(4-O-hexosylsinapoyl)-hexose 34 3.96 x 10-9 NA 7.00 x 10-4

Newly confirmed associations 

CYP706A5 6-hydroxy-2-methoxy-2-(2’-propanone-C-hexoside)-chroman 37 1.12 x 10-23 NA 2.88 x 10-11
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6-hydroxy-2-methoxy-2-(pentane-2’,4’-dione-5’-C-hexoside)-
chroman

48 7.12 x 10-26 7.41 x 10-13 5.11 x 10-12

6-hydroxy-2-methoxy-2-(pentane-2’,4’-dione-5’-C-hexoside)-
chroman (isomer)

49 3.44 x 10-23 1.03 x 10-17 1.02 x 10-12

UGT76C3 guanine (benzoyl) sulfohexoside 22 3.25 x 10-14 1.37 x 10-14 5.11 x 10-4

guanine (benzoyl) hexoside 28 1.17 x 10-17 1.02 x 10-7 2.25 x 10-9

SULT202B1 sulfo-G(8-O-4)FA 21 7.37 x 10-8 2.55 x 10-12 6.07 x 10-7

sulfo-G(8-O-4)FA (isomer) 29 NA 1.40 x 10-10 NA

sulfo-G(8-O-4)SA 44 4.92 x 10-7 NA 3.43 x 10-5
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