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Abstract

Multiple imputation (MI) is increasingly popular for handling multivariate missing data. Two 

general approaches are available in standard computer packages: MI based on the posterior 

distribution of incomplete variables under a multivariate (joint) model, and fully conditional 

specification (FCS), which imputes missing values using univariate conditional distributions for 

each incomplete variable given all the others, cycling iteratively through the univariate imputation 

models. In the context of longitudinal or clustered data, it is not clear whether these approaches 

result in consistent estimates of regression coefficient and variance component parameters when 

the analysis model of interest is a linear mixed effects model (LMM) that includes both random 

intercepts and slopes. In the current paper, we compared the performance of seven different 

MI methods for handling missing values in longitudinal and clustered data in the context of 

fitting LMMs with both random intercepts and slopes. We study the theoretical compatibility 

between specific imputation models fitted under each of these approaches and the LMM, and 

also conduct simulation studies in both the longitudinal and clustered data settings. Simulations 

were motivated by analyses of the association between body mass index (BMI) and quality of 

life (QoL) in the Longitudinal Study of Australian Children (LSAC). Our findings showed that 

the relative performance of MI methods vary according to whether the incomplete covariate has 

fixed or random effects and whether there is missingnesss in the outcome variable. We showed that 

compatible imputation and analysis models resulted in consistent estimation of both regression 

parameters and variance-components via simulation. We illustrate our findings with the analysis of 

LSAC data.

*Corresponding author: hamidul_b7@yahoo.com. 

Europe PMC Funders Group
Author Manuscript
Biom J. Author manuscript; available in PMC 2023 July 27.

Published in final edited form as:
Biom J. 2020 March 01; 62(2): 444–466. doi:10.1002/bimj.201900051.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Keywords

Fully conditional specification; Joint modelling; Missing data; Multiple imputation; Repeated 
measurement; clustered data

1 Introduction

Longitudinal and cluster-correlated data arise in many public health settings where data 

are collected from (i) individual participants repeatedly over time and (ii) from groups 

of individuals that are clustered within natural units e.g, medical practices, geographical 

locations. Both of these settings have the common characteristic of correlated measurements 

either within an individual or within a cluster of individuals. Mixed-effects models are 

frequently used in the analysis of correlated data. However, the validity of the results 

obtained from such analyses may be compromised if some covariate values are missing 

(Laird, 1988).

Multiple imputation (MI) has become a popular tool for dealing with missing data in recent 

years (Rezvan et al., 2015). MI involves the generation of multiple copies of imputed 

datasets where missing values are replaced by imputed values sampled from their posterior 

predictive distribution (or an approximation to this) given the observed data. Each completed 

dataset is analyzed using the statistical model for the epidemiological question of interest, 

and the resulting estimates and standard errors are combined using Rubin’s rules (Rubin, 

1987). The theoretical basis of MI methods has been developed under the assumption that 

data are missing at random (MAR), which requires that the probability of data being missing 

does not depend on the unobserved data, conditional on the observed data (Sterne et al., 

2009). If the data are MAR, a correctly implemented MI method can produce unbiased 

and asymptotically efficient estimates of regression parameters and their standard errors. 

Correct implementation requires compatibility between the imputation and analysis models. 

Formally, a set of conditional models are called compatible if there exists a joint density 

function that generates them (Meng, 1994).

Two general approaches for implementing MI in the presence of multiple incomplete 

variables are available in the literature: MI based on the joint posterior distribution 

of incomplete variables, often referred to as joint modeling (JM) (Schafer, 1997), and 

fully conditional specification (FCS; also known as sequential regression and MI using 

chained equation (MICE)) (Raghunathan et al., 2001; Van Buuren et al., 2006). The JM 

approach assumes that the incomplete variables follow a multivariate distribution, usually 

a multivariate normal distribution in which case the method is referred to as multivariate 

normal imputation (Schafer, 1997). FCS, on the other hand, imputes missing values using 

univariate conditional distributions for each incomplete variable given all the other variables 

in the imputation model, cycling iteratively through the univariate imputation models 

(Raghunathan et al., 2001; Van Buuren et al., 2006). Both the JM and FCS approaches were 

originally proposed for imputing missing values in cross-sectional settings with independent 

observations, and subsequently various extensions have been proposed in the literature to 

accommodate longitudinal and correlated data.
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MI methods developed to impute missing values in both the cluster-correlated and 

longitudinal data settings include a joint multivariate linear mixed effects model (LMM) 

approach (JM-MLMM) (Schafer and Yucel, 2002), implemented in the pan software in R. 

There is also an FCS adaptation of Schafer and Yucel’s approach (FCS-LMM) implemented 

in the mice.impute.2lpan function of the mice package in R (Van Buuren and Groothuis-

Oudshoorn, 2011). Both the JM-MLMM and FCS-LMM approaches assume a constant 

residual variance across all clusters. Subsequently, Yucel and Van Buuren et al. extended 

the JM-MLMM and FCS-LMM approaches to allow for heteroscedastic (cluster-specific) 

random covariance matrices and residual error variances, respectively (Yucel, 2011; Van 

Buuren et al., 2011), hereby denoted as JM-MLMM-het and FCS-LMM-het. Both JM-

MLMM and JM-MLMM-het, and their FCS adaptations (FCS-LMM and FCS-LMM-het), 

assume normal distributions for the incomplete variables. In practice, incomplete variables 

may be a mixture of continuous and categorical variables, so the assumption of normality 

may not be realistic. Goldstein et al. proposed an extension of the JM-MLMM approach 

which uses latent normal (LN) variables to impute a mixture of discrete, normal and non-

normal continuous variables, referred to herein as JM-MLMM-LN (Goldstein et al., 2009). 

Asparouhov and Muthén suggested a method similar to JM-MLMM-LN where all variables 

in the imputation models are treated as outcomes, regardless of missing data pattern, 

hereby denoted as full joint (JM-FJ) model (Asparouhov and Muthen, 2010). More recently, 

Goldstein et al. proposed a further extension of JM-MLMM-LN where the imputation model 

is defined as the product of the substantive model and the joint distribution of the covariates, 

to ensure congeniality (substantive model compatible, denoted JM-SMC) (Goldstein et 

al., 2014). The JM-MLMM-LN and JM-SMC approaches have been implemented in the 

REALCOM and Stat-JR software packages, respectively (see http://www.bristol.ac.uk/cmm/

software/) and both were later adopted in the R software package jomo (Quartagno and 

Carpenter, 2016). The jomo implementations for JM-MLMM-LN and JM-SMC allow a 

random covariance matrix and hence are denoted as JM-MLMM-LN-het and JM-SMC-het. 

Similar efforts have been made to extend both the FCS-LMM and FCS-LMM-het methods 

to impute categorical data using either generalized LMM (GLMM)-based MI methods 

(Resche-Rigon and White, 2016; Zhao and Yucel, 2009) or LN variables (FCS-LMM-LN 

and FCS-LMM-LN-het) (Enders et al., 2017).

In the special case of longitudinal data collected at equal intervals, standard cross-sectional 

implementations of MVNI and FCS can be employed to impute missing values by treating 

the time-dependent longitudinal measurements as distinct variables (Schafer, 1997; Van 

Buuren et al., 2006); we denote these as JM-MVN and FCS-Standard, respectively. These 

single-level MI methods can also be used for cluster-correlated data by including cluster-

specific indicator variables to capture the within-cluster correlation – known as ‘fixed cluster 

imputation’ (Reiter et al., 2006).

Although similar MI methods can be used to impute missing values in both longitudinal 

and clustered data settings, the performance of these methods may differ according to 

the intra-subject/intra-cluster association between outcome and incomplete variables in the 

analysis model particularly in the situation when both the outcome and covariates associated 

with random effects contain missing values. In the longitudinal setting, random slopes (i.e., 

random coefficients for covariates) are usually associated with the time variable only, which 
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is generally fully observed, but covariates with random slopes in the context of clustered 

data may be incomplete. Furthermore, it is unclear how important these differences are in 

practice as currently available comparisons of the various MI methods in the literature are 

limited to either clustered or longitudinal data settings with little theoretical consideration.

In the context of cluster-correlated data, Grund et al. compared two different modeling 

strategies with JM-MLMM: (i) a multivariate LMM with a so-called reverse random 

coefficients model assuming that the outcome is fully observed (this model regresses 

covariates on the outcome with the outcome having random effects if the covariate has 

them in the analysis model) for imputing missing data in covariates and (ii) a multivariate 

LMM with random intercepts only (thus ignoring random slopes in the outcome model) 

for imputing missing data in both covariates and outcome (Grund et al., 2016). They 

noted that the reverse random coefficients model provided unbiased estimates of the 

regression and variance components, but the second model performed poorly for the 

estimation of the random slope variance. Similar findings were also observed by Enders 

and colleagues (Enders et al., 2016) who compared JM-MLMM, FCS-LMM-het and fixed 

cluster imputation when both the outcome and covariates contain missing data. They 

reported that the FCS-LMM-het approach exhibited better performance than the other 

methods especially when both the outcome and covariate were incomplete in a random 

intercept and slope analysis model. Audigier and colleagues (Audigier et al., 2018) recently 

compared a number of methods including fixed cluster imputation, JM-MLMM, FCS-LMM-

het, and JM-MLMM-LN-het in the context of cluster-correlated data and reported that all 

of these methods provided reliable estimation of the regression parameters but JM-MLMM 

and fixed cluster imputation approaches severely under-estimated the variance components. 

No such comparison in the context of longitudinal data, where the analysis model of 

interest is a random intercept and time-slope model, is available in the literature. Recently, 

we compared 12 different MI approaches for imputation of incomplete longitudinal data 

where the analysis model of interest is a LMM with subject-specific random intercept 

only (Huque et al., 2018). We showed that both standard MI methods (JM-MVN and 

FCS-Standard) and LMM-based approaches (JM-MLMM, JM-MLMM-LN, FCS-LMM and 

FCS-LMM-LN), provided consistent estimates of the regression and variance component 

parameters. However, these results may not be generalizable to a random intercept and 

slope analysis model. Moreover, all the above comparisons are empirical and no theoretical 

justification for the observed sub-optimal results is available.

The motivation for this study was an analysis of the Longitudinal Study of Australian 

Children (LSAC) that explored (a) the association between body mass index (BMI) and 

health related quality of life (QoL) for children over time and (b) whether the association 

between early BMI and QoL in later life varied across geographical location. Attrition 

and non-response make these data a natural candidate for analysis using MI, but no clear 

guideline was available on the selection of the appropriate MI method. In the current paper, 

we study the properties of available MI methods, both theoretically and via simulations 

based on these examples, and we also perform an analysis of the LSAC data. As both 

BMI and QoL are continuous measures, we restrict our comparisons to the approaches 

where all variables in the MI model are continuous. This simplifies the study of theoretical 

compatibility between specific imputation models fitted under each of these MI approaches 
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and the analysis model and reduces the number of competitive MI methods, as under this 

restriction the MI methods with latent normal variables (JM-MLMM-LN, FCS-LMM-LN 

and FCS-LMM-LN-het) are identical with those that treat all the variables as continuous 

(JM-MLMM, FCS-LMM, and FCS-LMM-het, respectively). Our study of compatibility 

confirms that MI approaches result in consistent estimates of regression parameters when the 

imputation model is compatible with the analysis model. The results from the LSAC data 

analysis are also in agreement with those seen in the simulation study.

The structure of the article is as follows: Section 2 describes LSAC and the analysis models 

of interest. Sections 3 and 4 present a theoretical exploration of the compatibility of different 

MI methods and a linear mixed model with random intercept and slopes as analysis model in 

the context of longitudinal and cluster-correlated data, respectively. Section 5 describes and 

presents the results of our simulation study. The application to the LSAC data is presented 

in Section 6. We conclude with a general discussion in Section 7. The Web Appendices give 

detailed proofs, as needed.

2 Methods

2.1 Analysis models of interest

Let yi = (yi1, yi2, …, yini)
T be the ni-repeated measures of a continuous outcome for 

individual i ∈ (1,2, …, n), and xi = (xi1, xi2, …, xini)
T and ti = (ti1, ti2, …, tini)

T represent 

repeated measures of a continuous covariate and the measurement times, respectively. 

Suppose the association between the repeated measured outcome and covariates can be 

expressed using the following LMM

yi ∣ xi, ti = β0 + β1xi + β2ti + b0i + b1iti + εi, i = 1, 2, …n (1)

where β = (β0, β1, β2) is the vector of fixed-effects, bi = (b0i, b1i) ~ N(0, G) denotes 

the random effects vector and εi = εi1, εi2, …, εini ∼ N 0, Φi = σεi
2 I , where I is the ni × ni 

identity matrix. The LMM in (1) typically assumes that the residual error, εi and random 

effects bi are independent of each other. Thus the marginal distribution of yi is MVN
μyi = β0 + β1xi + β2ti, Σyi = ZiGZi

T + Φi , where Zi = (1, ti)T is a ni × 2 matrix with the first 

column having all elements equal to 1. This LMM models the longitudinal trajectory for 

each subject over time.

A similar model can also be applied to clustered data where the effect of some covariates 

on the outcome are allowed to vary from cluster to cluster. In the clustered data setting, the 

LMM with a random intercept and slope might take the following form

yi ∣ x1i, x2i = α0 + α1x1i + α2x2i + a0i + a2ix2i + ξi, i = 1, 2, …m; (2)

where x1i and x2i are vectors of measurements of covariates x1 and x2, respectively within 

cluster i ∈ (1, 2, …m), assumed to be associated with the outcome, yi.

The estimation of parameters for the above LMMs can be carried out in similar fashion if 

all the variables in the model are complete. However, in the presence of incomplete data in 

the covariates the above two classes of models could differ: in the longitudinal setting, the 

Huque et al. Page 5

Biom J. Author manuscript; available in PMC 2023 July 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



covariate associated with the random slope, the measurement times t is generally observed, 

while in the clustered data settings, the covariate (x2) associated with a random slope may 

be incomplete. To assess the performance of the MI approaches in these distinct situations 

where an LMM with random intercepts and slopes is the analysis model of interest, we 

evaluated their performance under the following four scenarios: in the case of a longitudinal 

study where (i) only the covariate x is incomplete and (ii) both the covariate x and outcome 

y are incomplete;and in the context of clustered data where (iii) only the covariate x2 is 

incomplete and (iv) both covariate x2 and outcome y are incomplete.

In the next two sections we study the theoretical properties of various MI methods available 

for imputing longitudinal and clustered data, in particular, we examine the potential for 

compatibility of each imputation model with the analysis model of interest.

3 MI methods for missing data in longitudinal settings

In longitudinal studies, data from the same individuals are collected repeatedly over time. 

Longitudinal data can be arranged in the wide format (new variable for each repeated 

measurement) if measurements occur at the same time-points for all individuals (i.e., the 

dataset is balanced) or in the long format (where repeated measurements are stacked). 

The wide format data can be imputed using standard cross-sectional imputation models 

(JM-MVN and FCS-Standard) by assuming the repeated assessments of the same variable 

are distinct variables, while imputation with the long format data requires use of multilevel 

imputation models.

3.1 JM-MVN

JM-MVN can be applied if we have balanced longitudinal data by treating all the repeated 

measurements of time-dependent variables as distinct. This method assumes a multivariate 

normal distribution for all of the incomplete variables. More specifically, assume that both 

the time-dependent covariates and outcome for individual i ∈ (1, 2, …, n) measured on T 
occasions, where t = (1,2, ….T) represents the vector of time-points when the measurements 

took place. If both covariate x and outcome y are incomplete, then JM-MVN assumes that 

(y1, y2, …, yT, x1, x2, …, xT) ~ N(μ, Σ) where μ and Σ are the mean and an unstructured 

variance-covariance matrix, respectively.

We study the congeniality between JM-MVN and the analysis model (1) in the setting where 

the covariate xi also follows a LMM defined as

xi ∣ ti = γ0 + γ1ti + u0i + u1iti + ϵi, (1)

where ϵi ~ N(0, ϒ) and ui = (u0i, u1i) ~ N(0, D), where ϒ and D are the covariance matrices 

currently left unspecified. As both the conditional distributions of (yi|xi,ti) and (xi|ti) are 

Gaussian, the joint distribution of (yi, xi|ti) is also Gaussian. Since we are assuming that the 

data are collected for an equal number of visits at fixed time intervals for all individuals, the 

joint distribution of (y, x|t)T = (y1, y2, …yT, x1, x2, …xT|1, 2, …T) is normal and given by
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y
x t = N μ =

β0 + β1 γ0 + γ1t + β2t
γ0 + γ1t

, Σ =
β1Σxβ1

T + Σy β1Σx

Σxβ1 Σx
. (4)

[see the Appendix A.1 for proof]. Therefore, the joint distribution assumed by JM-MVN in 

scenario (ii) is compatible with the joint distribution implied by analysis model (1).

Scenario (i), where there is missing data only for x, is a special case of scenario (ii), hence 

JM-MVN will be compatible with analysis model (1) for this scenario too.

3.2 JM-MLMM

Instead of treating repeated measurements as distinct variables, Schafer and Yucel suggested 

using a multivariate LMM for imputing several incomplete longitudinal variables (Schafer 

and Yucel, 2002). Under scenario (ii) this method imputes missing data from the following 

multivariate LMM:

xi

yi
∣ ti = β0 x + β1 x ti + b0 x i + b1 x iti + ε x i

β0 y + β1 y ti + b0 y i + b1 y iti + ε y i
(5)

where 
b0 x i b1 x i

b0 y i b1 y i
∼ N 0, Ψ  and 

ε x i

ε y i
∼ N[0, Σ ⊗ I ] . The covariance matrix Ψ has dimension 

4 × 4 and the Kronecker product notation indicates that the ε(x)i and ε(y)i are independently 

distributed as N(0, Σ). With some algebra we can show that analysis model (1) can be 

obtained as a special case of the conditional model for the outcome given the covariate, x, 

under the bivariate joint distribution defined in (5) [see Appendix A.2 for proof]. Hence the 

JM-MLMM model would be compatible with the analysis model of interest under scenario 

(ii).

Under scenario (i) i.e., when only covariate x contains missing data, the imputation model 

under JM-MLMM is given by

xi ∣ yi, ti = β0 x + β1 x yi + β2 x ti + b0 x i + b1 x iti + ε x i (6)

where ε(x)i ~ N(0, Σ(x)) and b(x)i = (b0(x)i, b1(x)i) ~ N(0, Ψ(x)) with Σx ∣ y = ZiΨ x Zi
T + Σ .

Thus, under scenario (i), JM-MLMM would be compatible with the substantive model if 

both of the conditional models xi|yi, ti and yi|xi, ti lie in the subspace determined by the joint 

model 
xi

yi
∣ ti . It can be shown that imputation model (6) is compatible with analysis model 

(1) if β1 x
T Σx ∣ y

−1 = β1Σy
−1 [see the Appendix A.2 for proof]. Similar conditions for two linear 

regressions to be compatible when the target joint distribution is bivariate normal have also 

been noted (Zhu and Raghunathan, 2015) and (Liu et al., 2014). The current paper extends 

those results to the context of LMM.

3.3 JM-FJ

Asparouhov and Muthén suggested an alternative to the JM-MLMM-LN (Goldstein et al., 

2009) where the data are imputed using an unrestricted model, where all variables in 
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the imputation models are treated as outcome, regardless of missing data pattern, hereby 

denoted as full joint (JM-FJ) model (Asparouhov and Mutheén, 2010). The JM-FJ method 

under both scenario (i) and (ii) is given by

yi

xi

ti

=
β0 y + b y 0i + ε y i

β0 x + b x 0i + ε x i

β0 t + b t 0i + ε t i

, (7)

where 
b y 0i

b x 0i

b t 0i

∼ N 0, Ωu  and 
ε y i

ε x i

ε t i

∼ N 0, Ωε . This model imposes the same random-effect 

structure for all variables, decomposing the variance into within and between-individual 

components. In longitudinal studies, data are often collected at fixed time intervals for all 

individuals, and therefore, it may not be sensible to assume between-individual variability 

for the time variable (or corresponding latent variable). The JM-FJ approach has a large 

number of parameters and convergence is often difficult to achieve. Moreover, it can be 

shown that the joint distribution implied by JM-FJ (7) is not compatible with the substantive 

model (1) [see Appendix A.3 for proof]. This uncongeniality is due to the fact that the JM-

FJ does not accommodate the variability in the slope across individuals. Because of this non-

congeniality, in our simulation studies we also examine whether assuming heteroscedastic 

covariance matrices in the imputation model may improve the estimation of the variance 

components by allowing for subject-specific correlations (JM-FJ-het).

3.4 JM-SMC

Goldstein, Carpenter and Browne (2014) extended JM-MLMM-LN to handle missing data 

in both covariates and outcomes in multilevel models while ensuring that the imputation 

model is compatible with the substantive model (Goldstein et al., 2014). We refer to this as 

the substantive-model-compatible joint modeling approach (JM-SMC). In this formulation, 

the joint imputation model is defined as a product of the joint distribution of covariates 

and the analysis model (i.e., conditional model for the outcome given the covariates). 

Specifically, the JM-SMC approach defines the joint distribution of 
xi

yi
∣ ti  as

xi

yi
∣ ti = yi ∣ xi, ti × xi ∣ ti , (8)

where (xi|ti = β0(x) + β(x)t + b0(x)i + b1(x)iti + ε(x)i) with b(x) - N(0, θu) and ε(x)i - N(0, 

Θε). The JM-SMC thus ensures compatibility under both scenarios (i) and (ii). Similarly 

to JM-FJ, in our simulation we also assume heteroscedastic covariance matices for the 

imputation using JM-SMC, and we labeled this JM-SMC-het.

3.5 FCS-Standard

Similarly to JM-MVN, FCS-Standard can be applied only in the setting with regular 

measurement time-points, by treating all the repeated measurements of time-dependent 

variables as distinct variables. Specifically, this approach involves a conditional imputation 

model for each time-and-variable-specific measurement given the remaining measurements 
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and variables. When considering only continuous outcome and covariates, as in 

this manuscript, FCS-Standard is implemented using linear regression models without 

interactions between covariates for the univariate imputation models. In this situation, FCS-

Standard and JM-MVN are equivalent (see proposition 1 of (Hughes et al., 2014)). Given 

we have shown that JM-MVN is compatible with analysis model (1) under model (3) for the 

incomplete covariate, FCS-Standard will also be compatible with the analysis model (1) in 

both scenarios under these conditions.

3.6 FCS-LMM

Instead of treating repeated measurements as distinct variables, the FCS-LMM method uses 

a LMM for imputing missing values in each incomplete time-dependent variable given all 

the others, cycling iteratively through the univariate imputation models. Specifically, the 

Gibbs sampler cycles through the univariate LMMs assuming homogeneous within-subject 

variance, which is a special case of a multivariate LMM (5). That is, it uses the same 

imputation models as JM-MLMM with only one variable considered incomplete at a given 

iteration. Under scenarios (i) and (ii), this method will be compatible with the analysis 

model if the compatibility condition (derived in 3.2) is satisfied.

3.7 FCS-LMM-het

Similarly to FCS-LMM, FCS-LMM-het imputes each time dependent incomplete variable 

using a LMM. However, this method allows a subject-specific residual error variance. Under 

this approach, the imputation model for covariate x associated with the i′th subject of 

interest is given by

xi ∣ yi, ti, bi = N β0i x + β1i x yi + β2i x ti, Σix ∣ y = σix
2 Ini , (9)

where β0i(x) = β0(x) + b0(x)i, β1i(x) = β1(x) + b1(x)i and β2i(x) = β2(x) + b2(x)i. Note the 

FCS-LMM-het approach assumes random slopes for each variable in the imputation model. 

Analysis model (1) can be re-written as

yi xi, ti, bi = N β0 + b0i + β1xi + β2 + b1i ti, Σy ∣ x = σy
2Ini

Using similar arguments as with FCS-LMM, it can be shown that under scenario (i) FCS-

LMM-het would be compatible with the analysis model if both the conditional model xi|yi, ti 

and yi|xi, ti lie in the subspace determined by the joint model 
xi

yi
ti . It can thus be shown that 

the imputation model (9) is compatible with the analysis model (1) if β1i x
T Σix ∣ y

−1 = β1Σy
−1, which 

is very similar to the condition derived in (3.2). Hence, this method will be compatible with 

the analysis model (1) under both scenarios (i) and (ii), if the above compatibility condition 

is satisfied.

In summary, for longitudinal studies, we anticipate that all of the above methods, except the 

JM-FJ, will provide consistent estimates of regression and variance components.
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4 MI models for missing data in cluster-correlated data

In the cluster-correlated settings data are arranged in a long format by stacking data from 

each cluster. The MI methods that can be carried out are i) standard JM and FCS approaches 

using a total of m-1 indicator variables representing allocation of m clusters as a fixed factor 

in the model (fixed cluster imputation) (Reiter et al., 2006; Enders et al., 2016), or ii) a 

multilevel imputation method.

The use of indicator variables in fixed cluster imputation preserves the difference in 

intercept between clusters. However, an interaction between the indicator variables and the 

incomplete variables will also be needed to accommodate the random slope variation if the 

covariate(s) associated with random slopes are incomplete. However, such analysis requires 

estimation of a large number of parameters and hence is computationally demanding and 

often infeasible particularly with large number of clusters of small sizes (Enders et al., 

2016). In contrast, the multilevel imputation approach is more appealing as it can be easily 

implemented for random intercept and slope models and is computationally faster than the 

fixed cluster imputation approach. Therefore, in this paper we will only study the theoretical 

and empirical properties of the multilevel imputation approach, although we return to fixed 

cluster imputation in the discussion section.

4.1 JM-MLMM

Similarly to the approach for longitudinal data, JM-MLMM uses a joint LMM for all 

incomplete variables. However, the formulation of the LMM will differ with respect to 

whether the incomplete variables are associated with random slopes or fixed effects. For 

example, when covariate x1 and outcome y are incomplete the following JM-MLMM model 

is assumed for the incomplete variables:

x1i

yi
∣ x2i =

α0 x1 + α1 x1 x2i + a0 x1 i + a2 x1 ix2i + ε1i

α0 y + α1 y x2i + a0 y i + a1 y ix2i + ε2i

Thus, similarly to the longitudinal settings [Appendix A.2], there is compatibility with the 

analysis model. As the above imputation model is similar to the longitudinal case (with t 
replaced by x2), we do not consider it further. However, when covariate x2 and outcome y 
are incomplete (scenario (iv)) the joint model for the incomplete variables using JM-MLMM 

is

x2i

yi
∣ x1i =

α0 x2 + α1 x2 x1i + a0 x2 i + ε3i

α0 y + α1 y x1i + a0 y i + ε4i

This JM-MLMM imputation model does not accommodate the random slope for the 

incomplete variable and is therefore incompatible with the analysis model [the proof is 

omitted as it is similar to the proof provided for the incompatibility of the JM-FJ model]. 

Similarly to the longitudinal setting, it can be shown that when either x1 or x2 contains 

missing values but the outcome is fully observed (scenario (iii)) JM-MLMM would be 

compatible with the analysis model (2).
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4.2 JM-FJ

The JM-FJ model for cluster-correlated data assumes the following joint model for (y, x1, 

x2) irrespective of missing data in y, x1 or x2

yi

x1i

x2i

=
β0 y + b y 0i + ε y i

β0 x1 + b x1 0i + ε x1 i

β0 x2 + b x2 0i + ε x2 i

(10)

Similarly to JM-FJ for longitudinal data (see section 3.3) it can be shown that the joint 

distribution implied by JM-FJ (10) is not compatible with the analysis model (2) in either 

scenario (iii) or (iv).

4.3 JM-SMC

As for the analysis model (1), by construction the JM-SMC approach will also be 

compatible with analysis model (2) irrespective of whether missing data is in the outcome or 

covariates.

4.4 FCS-LMM

This method uses identical imputation models to those under JM-MLMM (see section 4.1) 

with only one variable considered missing at a given iteration, and is compatible with the 

analysis model (2) irrespective of whether covariate(s) and/or the outcome are incomplete 

(i.e., for scenario (iii) and (iv)) if the compatibility condition (derived in 3.2) is satisfied.

4.5 FCS-LMM-het

The imputation model followed by FCS-LMM-het in the clustered data setting will be 

compatible with the substantive model of interest under both scenarios (iii) and (iv). The 

proof is similar to that provided in section 3.7 and is given in Appendix A.4.

In summary, considering all of the above methods for cluster-correlated data, we anticipated 

that the JM-FJ and both JM-MLMM and JM-FJ would provide biased estimates of the 

variance components under scenario (iii) and (iv), respectively.

5 Simulation study

In this section we describe the simulation studies that were used to assess the relative 

performance of the MI methods described in Sections 3 and 4 in the settings of longitudinal 

and clustered data. Our simulation studies are based on data from the kindergarten (K) 

cohort of children in LSAC (n=4983), who were aged 4-5 years when recruited in 2004. 

LSAC is a nationally representative study that examines the development and wellbeing 

of Australian children. Following recruitment, data have been collected every two years 

(referred to as waves of data collection) using face-to-face interviews, questionnaires and 

direct anthropometric measurements. The study is ongoing with six waves of data currently 

available. The detailed study procedure has been described elsewhere (LSAC). Here we 

consider two target analyses: (a) a longitudinal example: association between BMI-z score 
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and QoL in children over time and (b) a cluster example: whether BMI-z score at wave 5 

predicts the QoL at wave 6 after accounting for clustering by neighbourhood. Specifically, 

for analysis (a) we fitted a model similar to model (1) with QoL as a time-varying outcome, 

BMI-z score a time-varying covariate and age (in years) of the child as the time variable, 

with child-specific random intercepts and time-slopes. For analysis (b) we fitted a model 

similar to (2) with child QoL at wave 6 as the outcome (y), child BMI-z score at wave 5 as 

the exposure of interest (x2) and socio-economic index for areas (SEIFA) as a covariate, with 

both fixed and random effects for area (x1). The missingness patterns among these variables 

in the LSAC dataset have been described elsewhere (Huque et al., 2018).

5.1 Longitudinal data

For the longitudinal example, we generated 1000 datasets of 5000 children assessed at 

6 waves of follow-up. Three covariates at baseline: mother’s education, language spoken 

at home and family socio-economic position; as well as three time-dependent variables: 

age, BMI z-score and the outcome, QoL for each child were generated. The details of the 

simulation setup are given below:

1. Whether English is the main language spoken at home (hlang) and maternal 

education (medu: whether or not completed year 12) for each child were 

generated using binomial distributions with probabilities 0.9 and 0.6 respectively.

2. The household socio-economic position (hsep) at baseline was generated using 

the following regression model:

hsepi = − 0.8 + 1.0 × medui + 0.2 ×  hlang i + νi, i = 1, 2, …, 5000.

where νi ~ N(0, 0.92).

3. Child age in years (cage) for the ith child in the jth wave (cageij) was generated 

according to the following model

cageij = 1
12 48 + waveij − 1 × 24 + ϑi + vij, j = 1, 2, …, 6.

where ϑi = N(11,1.52), is the distribution of age (in months) of the participant at 

the recruitment and vij = N(0, 22) is the random variation in age at the time of 

assessment.

4. The time-varying exposure, cbmij was then generated using the LMM

cbmiij = γ0 + γ1 cageij + u0i + u1i cageij + ϒij,

where γ = (γ0, γ1) is the vector of fixed-effects, ui = (u0i, u1i) ~ N(0, D) denotes 

the random effects vector with the following specification for the parameters: γ 

= (-0.60, 0.10)T, D = D00 D01

D10 D11
= 0.49 −0.015

−0.015 0.005 , where D00 = var(u0i), D01 = 

cov(u0i, u1i), D11 = var(u1i), and ϒi = (ϒi1, ϒi2, …, ϒini) ~ N(0,0.52).
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5. Finally, the continuous outcome variable, child QoL, cqolij was generated 

according to

cqolij = β0 + β1cbmiij + β2 cageij + b0i + b1icageij + εij,

where β = (β0, β1, β2) is the vector of fixed-effects, bi = (b0i, b1i) ~ N(0, 

G) denotes the random effects vector. We set β = (1.00, –0.20, –0.10)T, 

G = 0.36 −0.012
−0.012 0.004  and residual error variance, εi = (εi1, εi2, …,εini) ~ 

N(0,0.662).

All of the above parameter values were based on the LSAC data.

For each simulated dataset we considered two scenarios where (i) only the exposure of 

interest (cbmi) and (ii) both the exposure of interest (cbmi) and the outcome (cqol) were 

subject to missingness at each wave under an MAR mechanism. Specifically we used the 

following models to create missing data in cbmi and cqol, respectively

logit Pr R1ij = 1 = θ1 + θ2cqolij + θ3cageij

logit Pr R2ij = 1 = θ4 + θ5cageij + θ6hsepij

where R1ij = 1(R2ij = 1) if cbmiij (cqolij) is observed and 0 if missing. The coefficients θ = 

(θ1, …, θ6)T were chosen to ensure approximately 30% of the exposure (cbmi) and outcome 

(cqol) were missing.

5.2 Clustered data

In order to evaluate the performance of the above MI methods in clustered settings, 

we generated 1000 datasets, each with eight variables: area identification number, socio-

economic status for areas (SEIFA), mother’s education (medu), language spoken at home 

(hlang), family socio-economic position (hsep), child sex (csex), BMI z-score (cbmi) and 

QoL (cqol). We considered 300 areas (clusters), where the number of children in each area 

varied between 2 to 25. Our simulated dataset mimicked the LSAC dataset not only in terms 

of cluster size and the number of clusters, but also with regards to the relationship between 

the covariates. The analysis of interest was whether the relationship between child BMI 

z-score at wave 5 and QoL at wave 6 varied across all areas. In all of the simulated datasets 

variables were simulated in a sequential manner as follows:

1. Sex (csex), English language background (hlang) and mother’s education (medu: 

whether or not completed year 12) for each child were generated using binomial 

distributions with probabilities 0.5, 0.9 and 0.6 respectively.

2. Child age in years at wave 5 was generated using the following model

cageij = 1
12 168 + ϑij j = 2, 3, …, 25.i = 1, 2, …300
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where ϑij = N(11, 1.52) is the distribution of age (in months) of the jth child at 

recruitment from area i.

3. The main exposure variable of interest, cbmi was generated based on child’s age 

and sex using the following linear regression model

cbmiij = − 1.0 + d0i + 0.11 ∗ cageij + 0.05 ∗ csexij + ψij,

where ψij ~ N(0,1) and d0i ~ N(0, 0.152)

4. SEIFA at each area was generated as a standard normal variable.

5. Family socio-economic position (hsep) was generated based on SEIFA, mother’s 

education and language using the following linear regression model

hsepij = − 4.7 + 0.8 ∗ meduij + 0.01 ∗  SEIFAi + 0.01 ∗  hlangij + ϕij

where φij ~ N(0, 0.92).

6. Finally the outcome, cqol score, was generated using the LMM

cqolij = 0.05 + b0i + − 0.2 + b1i ∗ cbmiij + 0.25 ∗ SEIFAi + eij

with eij ~ N(0, 0.92), 
b0i

b1i
∼ N 0, G  and G = 0.16 0.00

0.00 0.04 .

All of the above parameter values were based on LSAC data. The exception was that we 

slightly inflated the magnitude of the regression and variance-component parameters in the 

outcome model in order to accentuate the differences in the estimated parameters from the 

MI methods.

For each simulated dataset we considered two scenarios: (iii) only the exposure of interest 

cbmi and (iv) both the exposure cbmi and outcome cqol were missing under an MAR 

mechanism. Specifically, we fitted the following models to create missing data in cbmi and 

cqol, respectively

logit{Pr R3ij = 1 } = − 2.2 + 1.0 ∗  cqollij + 0.2 ∗ SEIFAi − 0.2 ∗  hsepij

logit{Pr R4ij = 1 } = − 2.5 + 0.2 ∗ SEIFAi − 0.3 ∗  hsepij

where R3ij = 1(R4ij = 1) if cbmi(cqol) is observed and 0 if missing.

6 Performance of the MI method

We applied all the imputation methods described in section 3 and 4 to the simulated 

and LSAC datasets. In light of the seven main choices for the specification of multiple 

imputation method namely i) the MAR assumption, ii) form of the imputation model, (iii) 

set of variables included in the imputation model, iv) passive imputation v) order of the 

variables vi) number of iterations and vii) number of multiply imputed datasets (Van Buuren 
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and Groothuis-Oudshoorn, 2011), we generated data under MAR and included the same set 

of predictors across all the imputationmethods. Specifically, we included socio-economic 

position as an auxiliary variable, in addition to all analysis variables, and considered the 

same order of imputation variables for all the methods (if applicable). Thirty imputations 

were generated for each approach to limit Monte Carlo (imputation-related) error for 

the regression coefficient of interest to approximately 5 percent of its standard error. 

However, for each method, we set the number of burn-in iterations and number of between 

imputations to the default values of current software implementations and finally the form 

of the imputation models varies according to the specific imputation method. We compared 

estimated regression coefficients, standard errors (both average of the model-based and the 

empirical standard error) and variance-component estimates from the various imputation 

approaches and an available data analysis, which excluded records with missing data in any 

analysis variable. Bias and coverage probability of the estimated regression coefficients from 

each of the approaches and from an available data analysis compared to the values used to 

generate the data are also presented. In each case, the sampling properties of the estimators 

were estimated from the 1000 simulated datasets.

6.1 Simulation results

The simulation results for the longitudinal example with missing values under scenarios (i) 

and (ii) across the 1000 simulated datasets are displayed in Table 1 and 2, respectively. It 

is clear from Table 1 and 2 that the available data analysis resulted in biased estimation 

of the regression coefficients and variance components along with inadequate coverage 

probabilities.

All of the MI approaches except JM-FJ provided similar estimation of regression 

parameters and coverage probabilities in both scenarios. Slight under-coverage of the 

regression parameters was obtained from JM-FJ and JM-SMC, which assume homoscedastic 

variances. However, somewhat contrasting results were obtained when imputed assuming 

heteroscedastic covariance matrices for both of these methods. The JM-FJ was more biased 

and led to underestimation of coverage probabilities while JM-SMC performed better 

compared with its homoscedastic counterpart.

All of the MI methods except JM-FJ-het provided unbiased estimates of the variance 

components in the longitudinal setting when only the covariate contained missing values 

(scenario (i)). However, greater differences were observed across the imputation methods 

for the estimation of the variance components when both covariate and outcome contained 

missing values (scenario (ii)). In this scenario (ii) (Table 2), large biases in the variance 

associated with random slopes were obtained for the JM-MLMM, JM-FJ, JM-FJ-het and 

FCS-LMM approaches. The large bias in the variance associated with random slopes with 

the JM-MLMM and FCS-LMM approaches is likely an artefact of dividing by a population 

value that is close to zero, hence we are hesitant to emphasize this finding.

Following a reviewer’s suggestions, we also evaluated the performance of these methods in 

the case of smaller samples with 1000 individuals followed for 5 consecutive period under 

both scenarios (i) and (ii). The results, displayed in Tables B1 and B2 in the Appendix 

B, are qualitatively similar to those with the larger sample size under scenario (i). But 
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under scenario (ii) large biases associated with random slopes variance estimates were 

obtained for all the methods except JM-MVN, FCS-standard and JM-SMC approaches. 

Among the MI methods, JM-MVN and FCS-Standard provided the least biased estimates 

for the fixed effects and variance components. The estimated coverage probabilities for both 

of these methods were very close to the nominal value of 0.95, in both scenarios. Among 

the LMM-based imputation approaches, FCS-LMM-het and JM-SMC-het provided the best 

performance for estimating regression parameters and variance components.

The simulation results for clustered data with missing values under scenarios (iii) and 

(iv) across the 1000 simulated datasets are displayed in Tables 3 and 4, respectively. 

Similarly to the longitudinal setting, in the clustered data setting, the available data analysis 

resulted in biased estimation of the regression coefficients and variance components, and 

inadequate coverage probabilities. All of the MI approaches provided similar estimates of 

the regression coefficients and their estimated coverage probabilities were very close to the 

nominal value of 0.95 for both scenarios. Slight under-coverage of the confidence interval 

for the regression coefficient of cbmi was obtained from JM-FJ, JM-FJ-het and JM-MLMM 

especially under scenario (iv). Somewhat greater differences were observed across the 

imputation methods for the estimation of variance components both in scenario (iii) and 

(iv). In scenario (iii), i.e. when only the covariate with the random effect contained missing 

values, JM-FJ and JM-FJ-het resulted in biased estimation of the random slope variances. 

On the other hand, in scenario (iv) JM-FJ, JM-FJ-het and JM-MLMM all produced biased 

estimation of the random slope variances. In both scenarios, JM-SMC, FCS-LMM and 

FCS-LMM-het produced unbiased estimates of the regression and variance component 

parameters.

As with the longitudinal data we also evaluated the performance of these methods under 

scenario (iii) and (iv) using a relatively small number of clusters (n=100) with smaller 

cluster sizes (each cluster contained between 2 and 10 observations randomly). The results 

are displayed in Table B3 and B4, respectively. All of the MI methods except JM-FJ in both 

scenarios and JM-MLMM in scenario (iV) provided slight under-coverage of the confidence 

interval. Large biases in the estimation of the random slope parameters were observed for 

both FCS-LMM and FCS-LMM-het, especially in scenario (iv), leaving JM-SMC as the best 

methods when the number of cluster in the sample is small.

6.2 Application to the LSAC data

The results for the analysis models (a) and (b) applied to the LSAC data are given in 

Tables 5 and 6 respectively. Available data analysis provides slightly lower estimates of the 

regression coefficients in the case for analysis model (b) compared with the estimates from 

MI methods. However, for analysis model (a) the estimated regression coefficients from the 

available data analysis are very similar to those from the MI approaches. These results are 

in line with those seen in the simulation study. However, JM-FJ in analysis model (a) and 

both JM-FJ and JM-MLMM in analysis model (b) produced lower estimates of the variance 

components than the other MI approaches.
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7 Discussion

LMMs are frequently used in the analysis of longitudinal and clustered data in order to 

account for within-individual and within-cluster correlation, respectively. Although several 

MI methods are available for imputing missing values in longitudinal and cluster-correlated 

data in the current software, little guidance is available on which is the most appropriate 

method. The comparison of MI methods for the analysis of correlated data using LMM with 

random intercepts and slopes in the context of compatibility, a pre-requisite of valid MI, is 

very limited in the literature. In the current paper, we compared seven different MI methods 

(JM-MVN, JM-MLMM, JM-FJ, JM-SMC, FCS-Standard, FCS-LMM, FCS-LMM-het) for 

handling missing values in longitudinal and clustered data in the context of fitting LMM 

with both random intercepts and slopes. We derived expressions for each of the MI methods 

to examine the compatibility of these MI methods with a LMM that include both random 

intercepts and slopes. We showed that compatible imputation and analysis models resulted in 

consistent estimation of both regression parameters and variance components via simulation. 

We have summarized our results in Table 7.

The results from our theoretical exploration revealed that the relative performance of the MI 

methods may be expected to vary according to whether the incomplete covariate has fixed 

or random effects and to the missingnesss in the outcome variable. Specifically, we showed 

that JM-MVN and FCS-Standard approaches are compatible with the LMM in the context 

of longitudinal data if measurements occur at the same time-points for all individuals. We 

also showed that JM-MLMM is compatible with, but that JM-FJ is incompatible with the 

analysis model of a LMM with random intercepts and slopes. Both the FCS-LMM and 

FCS-LMM-het methods are compatible with a LMM with random intercepts and slopes. 

Our comparison also revealed that the newly available substantive model compatible joint 

modeling (JM-SMC) approach holds great promise for the imputation of longitudinal 

data. Our simulation study supported our theoretical results. We observed, however, 

that JM-FJ-het provided sub-optimal performance, especially in the case of longitudinal 

data, which might be due to a small number of individuals per cluster (observation per 

individual) in our example, as shown in Audigier et al. (2018). We also observed that 

JM-SMC-het provided better estimates for the regression parameters and coverage than 

JM-SMC, apparently because subject-specific associations were better estimated under the 

heteroscedastic covariance matrices.

Our results regarding clustered data were similar to those for longitudinal data with a couple 

of exceptions. We found JM-MLMM was compatible with a LMM with a random intercepts 

and slopes analysis model if only the covariate contains missing data. The JM-MLMM, 

however, became non-compatible with a LMM with random intercepts and slopes if both 

the outcome and random-slope covariate contained missing data. Along with others (Enders 

et al., 2016), we noted that fixed effect imputation methods are computationally expensive 

particularly with a large number of clusters, hence may not be very useful in practice. 

In general, our findings are consistent with those of (Enders et al., 2016) who showed 

that JM-FJ and JM-MLMM produce biased estimation of the variance components while 

the FCS-LMM-het approach provided consistent estimates in the context of clustered data. 
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Some of our theoretical results extend the results obtained by Resche-Rigon and White 

(Resche-Rigon and White, 2016) who considered a LMM with only a random intercept.

It is always difficult to draw general conclusions from a single simulation study, but we 

believe this study provided a good setting for a comparison of MI methods with both 

theoretical and empirical evaluation. The simulations were designed to represent real world 

data with a moderate amount of missingness under MAR. Undoubtedly, future simulation 

studies and further exploration of methods will be useful in a number of ways. In this 

study, we restricted our attention to data that are MAR. Often longitudinal data does not 

satisfy the MAR assumption. In general, the MAR assumption cannot be tested but various 

sensitivity analysis methods (e.g., selection models, pattern-mixture model and NARFCS) 

are proposed in very specialized context and no such analysis methods is currently available 

for the context when both longitudinal covariates and outcomes are missing. Forexample, 

pattern-mixture models are available in the context of longitudinal outcomes but not for 

the context when both longitudinal covariates and outcomes are missing. The NARFCS 

approach, arising from the pattern-mixture paradigm, has been developed recently to 

handle multivariable missingness in cross-sectional settings(Tompsett et al., 2018; Moreno-

Betancur et al., 2017; Leacy, 2016) and these could in principle be applied for longitudinal 

data in the wide format or with the cluster-indicator method in the scenarios we explored. 

However, these methods have not yet been extended to the context of multilevel imputation 

models for general multivariable missingness in longitudinal unbalanced data or clustered 

data (linear mixed models). Hence there were no obvious methods to add to our evaluation. 

In order to simplify the theoretical calculations and avoid mis-specification of the imputation 

models we restricted our comparisons to models and methods that assume normality. 

Although there has been some discussion of compatibility for non-normal data in the context 

of general location models, such models are only available for single level data (Seaman 

and Hughes, 2018). The study of compatibility of multilevel models that include non-normal 

data is beyond the scope of the present paper as Gaussian random effects are usually 

assumed in the proposed models and in the available software implementation. However, 

our results for MI involving normal variables might also hold for non-normal data. We 

had previously shown that both JM-MVN and FCS-standard showed good performance in 

the context of imputing binary variables (Huque et al., 2018). Quartagno et al. recently 

showed that the JM-SMC and FCS-standard methods performed equally well in the context 

of imputing non-normal data (Quartagno and Carpenter, 2019).

In summary, we found that if measurements occur at the same time-points for all individuals 

in longitudinal studies, the JM-MVN and FCS-Standard approaches may be the best 

approaches for imputing longitudinal data. We also found that LMM-based approaches 

(JM-MLMM, JM-SMC-het, FCS-LMM-het, FCS-LMM) can be used if measurement 

doesn’t occur at the same time points or the imputation model struggles to converge 

due to many repeated measurements. In the clustered data setting, we recommend using 

the LMM-based approaches JM-SMC, FCS-LMM or FCS-LMM-het to handling missing 

data as they performed well in the estimation of regression parameters and variance 

components. Although multilevel imputation models are slightly more complex compared 

with standard cross-sectional imputation methods and require specialized software, our 

comparison revealed that they are a reasonable choice for imputing missing covariate and 
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outcome data where the analysis of interest is a linear mixed effect model with random 

intercepts and slopes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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