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Abstract

The coexistence of discrete morphs that differ in multiple traits is common within natural 

populations of many taxa. Such morphs are often associated with chromosomal inversions, 

presumably because the recombination suppressing effects of inversions help maintain alternate 

adaptive combinations of alleles across the multiple loci affecting these traits. However, inversions 

can also harbor selected mutations at their breakpoints, leading to their rise in frequency in 

addition to (or independent from) their role in recombination suppression. In this review, we first 

describe the different ways that breakpoints can create mutations. We then critically examine the 

evidence for the breakpoint-mutation and recombination suppression hypotheses for explaining the 

existence of discrete morphs associated with chromosomal inversions. We find that the evidence 

that inversions are favored due to recombination suppression is often indirect. The evidence that 

breakpoints harbor mutations that are adaptive is also largely indirect, with the characterization of 

inversion breakpoints at the sequence level being incomplete in most systems. Direct tests of the 

role of suppressed recombination and breakpoint mutations in inversion evolution are thus needed. 

Finally, we emphasize how the two hypotheses of recombination suppression and breakpoint 

mutation can act in conjunction, with implications for understanding the emergence of supergenes 

and their evolutionary dynamics. We conclude by discussing how breakpoint characterization 

could improve our understanding of complex, discrete phenotypic forms in nature.
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Supergenes and complex phenotypes

The origin and maintenance of discrete morphs within natural populations has long 

fascinated evolutionary biologists (Darwin, 1862; Fisher, 1930; Ford, 1971). Because of the 

Correspondence to: Romain Villoutreix.

Corresponding author: Romain Villoutreix (romain.villoutreix@gmail.com). 

Europe PMC Funders Group
Author Manuscript
Mol Ecol. Author manuscript; available in PMC 2023 August 10.

Published in final edited form as:
Mol Ecol. 2021 June 01; 30(12): 2738–2755. doi:10.1111/mec.15907.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



discrete nature of the phenotypic differences observed, this variation was often assumed to 

have a genetic origin, making its study of primary interest for early geneticists (see Chapter 

6 of Ford 1971 for an overview of genetic programs of the time). Moreover, the diverse 

nature of the traits that usually differ between these morphs (color, morphology, sexual-

compatibility, etc.), led to the hypothesis that the genetic basis of this discrete variation is 

a functional unit containing multiple linked loci, termed a “Super-gene” (spelled supergene 

hereafter; see glossary) by Darlington and Mather in 1949 (Darlington & Mather, 1949; 

Fisher, 1930; Ford, 1965; Mather, 1955). Indeed, as early as 1930 Fisher had anticipated 

that genetic linkage between multiple selected loci could evolve under natural selection 

(Fisher, 1930) and Ford later suggested that linkage could be increased via translocation 

or chromosomal inversions (Ford, 1971). Chromosomal inversions can indeed strongly 

reduce recombination between the genomic segments they cover, a property leading to their 

discovery in 1921 by Sturtevant (Sturtevant, 1921). Specifically, single crossing-over events 

within the rearranged region in heterokaryotypic individuals produce non-viable or unfit 

gametes with unbalanced gene content (Hoffmann & Rieseberg, 2008; Kirkpatrick, 2010; 

Liehr et al., 2019). Recombination between chromosomal rearrangements is still possible 

when double crossing-over events occur, making recombination more likely to happen at 

the center of inversions than near breakpoints (Hoffmann & Rieseberg, 2008; Stump et al., 

2007). Nonetheless, such double crossing-over events are relatively rare, estimated to occur 

with a frequency of the order of 10−4 to 10−3 per generation in Drosophila (Stevison, Hoehn, 

& Noor, 2011).

Examples of discrete morphs associated with a region of suppressed recombination (i.e., 

candidate supergenes; see glossary) are accumulating rapidly. In the majority of cases, 

suppressed recombination is due to an inversion (Schwander, Libbrecht, & Keller, 2014). 

However, in some instances, suppressed recombination is due to other mechanisms such as 

close physical proximity of highly diverged DNA sequences (Tetsuyuki Entani et al., 2003; 

Ushijima et al., 2003), proximity to a chromosomal centromere (T. Entani et al., 1999), or 

hemizygosity (Li et al., 2016). These findings have thus piqued interest in the evolution of 

supergenes and inversions, forming the central topic of the current review. Because there are 

already several excellent general reviews of supergenes and inversions (Faria, Johannesson, 

Butlin, & Westram, 2019; Schwander et al., 2014; Wellenreuther & Bernatchez, 2018), we 

focus here specifically on distinguishing two hypotheses for their evolution, a topic that has 

received less attention.

There are currently two core hypotheses for how and why supergenes and inversions evolve. 

The first and generally most accepted hypothesis is that inversions are selected due to 

their effect on suppressing recombination between sets of epistatic or locally adapted genes 

(i.e., supergene hypothesis; see glossary) (Charlesworth & Barton, 2018; Kirkpatrick, 2010; 

Kirkpatrick & Barton, 2006). The second hypothesis is that inversions create adaptive 

mutations at their breakpoints (i.e. breakpoint-mutation hypothesis; see glossary; Fig. 1A) 

(Dobzhansky, 1947, 1970; Kirkpatrick, 2010), leading to their rise in frequency via selection 

on breakpoint variants. As we discuss in more detail below, these two hypotheses are 

not mutually exclusive and might combine to drive inversion and supergene evolution. 

Specifically, inversions could be selected due to their effect on suppressing recombination 

between an adaptive breakpoint variant and an adaptive variant within the rearrangement 
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(i.e. breakpoint-linkage hypothesis; see glossary; Fig. 1A). In a similar manner, breakpoint 

mutations could be favored because of their property to suppress recombination outside 

of the inversion (R. B. Corbett-Detig, 2016), locking together multiple variants favored in 

particular combinations, inside and/or outside the inversion.

Distinguishing among these hypotheses (Fig. 1A) is important because it provides 

insight into the relative significance of novel mutation, standing genetic variation, and 

recombination in adaption, thus addressing a major issue in evolution concerning the 

relationship between adaptation and genome rearrangement (Fig. 1B). However, empirical 

testing of these hypotheses can be a challenging task as it requires the quantification and 

localization of adaptive variants in regions of suppressed recombination (here inversions). 

When multiple traits are associated with an inversion, a role for recombination suppression 

between multiple variants controlling different traits is usually assumed. However, a 

breakpoint mutation can be pleiotropic and affect multiple traits (Fisher, 1930), making the 

identification of adaptive variants within the region of suppressed recombination necessary.

While the supergene hypothesis and the breakpoint-linkage hypothesis seem similar, they 

imply different evolutionary histories for supergenes (Fig. 1B). Under the supergene 

hypothesis, divergently selected variants evolve first and subsequently become locked 

together in favorable combinations because of an inversion (Charlesworth & Barton, 

2018; Kirkpatrick & Barton, 2006). Under the breakpoint-linkage hypothesis two main 

evolutionary scenarios for supergene emergence are possible. In the first scenario, inversions 

first establish because they generate an adaptive breakpoint mutation when they form. Only 

subsequently might inversions evolve into supergenes by the emergence of new variants 

within them (Navarro & Barton, 2003). In the second scenario, inversions establish because 

they couple an already existing adaptive variant with a new adaptive breakpoint mutation. 

This last scenario may facilitate the evolution of supergenes when many divergently selected 

variants exist by facilitating the initial rise in frequency of an inversion. Indeed, under 

the supergene hypothesis, theory implies that for new inversions to establish, they must 

capture most segregating variants at divergently selected loci in favorable combinations 

(Charlesworth & Barton, 2018; Kirkpatrick & Barton, 2006). However, an inversion with 

an adaptive breakpoint mutation may not need to lock all or a majority of the segregating 

variation in favorable combinations to initially rise in frequency due to the advantageous 

breakpoint mutation. If the inversion persists for a sufficient amount of time because of a 

selected breakpoint mutation, this may subsequently allow for the sorting out of any initially 

captured maladapted alleles (e.g., via double crossing-over events or noncrossover gene 

conversion) to create a supergene with a now higher selective value.

In this review, we critically examine the evidence for the supergene and breakpoint-mutation 

hypotheses, and their potential combination (i.e. the breakpoint-linkage hypothesis). We 

begin with a discussion of the mechanisms by which breakpoints can create adaptive 

mutations, as this is often a less appreciated facet of inversions than is recombination 

suppression. We then empirically review well-known cases of candidate supergenes (Box 2 

– Fig. 1). Our collective findings lead us to propose that characterization of breakpoints at 

the sequence level could improve our understanding of supergenes. Specifically, a common 

molecular mechanism generating inversions also generates duplications at both ends of the 
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inverted DNA segment (Ranz et al., 2007). This offers a unique opportunity to potentially 

date inversions independently from their content to test if they emerged before or after 

the divergently selected variants they lock together via suppressed recombination. Thus, 

breakpoint characterization could be important to understand the origin and maintenance of 

complex, discrete phenotypic forms in nature.

Molecular mechanisms by which inversion breakpoints can create 

mutations

The idea that inversions might be selected because of an adaptive mutation at one of their 

breakpoints is not new (Dobzhansky, 1947). However, this hypothesis is yet to receive 

highly focused study in supergene evolution, despite known molecular mechanisms that 

are likely to create breakpoint mutations when inversions form. Two main processes can 

generate chromosomal inversions, ectopic recombination and staggered breaks. Ectopic 

recombination generates inversions via a recombination event between two homologous 

sequences oriented head-to-head along a chromosome (Box 1 for further details; Box 1 

– Fig. 1A). Staggered breaks can generate inversions via the complete detachment of 

a DNA segment from a chromosome and its subsequent reattachment in the opposite 

orientation at the same position in the chromosome (Box 1; Box 1 – Fig. 1B). In the 

Drosophila melanogaster species subgroup, the group best characterized for inversion 

breakpoints at present (R. B. Corbett-Detig, 2016), the majority of inversions are generated 

by staggered breaks (Ranz et al., 2007). While ectopic recombination leaves little molecular 

trace, staggered breaks can generate duplications at both breakpoints of the newly formed 

inversion (Box 1; Box 1 – Fig. 1B). As explained in more detail below, these breakpoint 

duplications provide a possible means to accurately date inversions, independently from 

the divergently selected variants they contain and, thus, could potentially allow us to 

resolve among the competing scenarios for supergene emergence (Fig. 1B). Consequently, 

if staggered breaks are primarily responsible for generating inversions in groups in addition 

to D. melanogaster flies, this could be a helpful tool for characterizing the emergence of 

supergenes (for details see the section Future directions).

Both ectopic recombination and staggered breaks can generate important phenotypic effects, 

in principle, by changing the expression level of a gene (or set of genes) at breakpoints 

(Fig. 2A). However, while differential expression of genes at breakpoints is common, it is 

not always observed (Said et al., 2018). Furthermore, differential expression is usually not 

restricted to genes at breakpoints, but is also detected for many genes inside and outside 

inversions (Cheng, Tan, Hahn, & Besansky, 2018; Lavington & Kern, 2017; Said et al., 

2018). This suggests that the differential expression of genes at breakpoints potentially 

works in conjunction with other genetic changes to affect phenotypic variation, or is 

sometimes a by-product of genome rearrangement rather than being the actual cause for 

observed phenotypic variation. Breakpoints can also create chimeric genes (see glossary; 

Fig. 2B), which might sometimes have a beneficial effect, as documented now in a diverse 

set of taxa (Carvunis et al., 2012; Guillén & Ruiz, 2012; Jones et al., 2012; Stewart & 

Rogers, 2019). For example, in Drosophila mojavensis a chimeric gene at an inversion 

breakpoint is associated with the detoxification of toxic compounds in cacti (Guillén & 
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Ruiz, 2012). Another example is found in the threespine stickleback Gasterosteus aculeatus, 

where a gene located at an inversion breakpoint on chromosome XI harbors different exon 

sequences depending on the inversion orientation, and is associated with differences in 

muscular development between lake and oceanic phenotypes (Jones et al., 2012). While 

speculative, an inversion breakpoint could create a new pleiotropic chimeric gene that affects 

multiple traits. Moreover, staggered breaks often generates duplications at both breakpoints 

in the derived sequence (Box1 – Fig. 1), allowing for the creation of chimeric genes without 

loss of the donor genes (Fig. 2B). This property will also facilitate neo-functionalization of 

such duplicated genes.

As we will see below, direct evidence that breakpoint mutations drive supergene evolution 

is lacking, but the mechanisms by which they might do so are established. With these 

considerations in mind, we now turn to evaluating the role of suppressed recombination and 

breakpoint mutation in the evolution of candidate supergenes associated with chromosomal 

inversions.

The supergene hypothesis: what is the evidence for recombination 

suppression among loci controlling selected trait variation?

A core prediction of the supergene hypothesis (i.e., that suppressed recombination is 

advantageous) is that multiple, linked genetic variants control trait variation that differs 

between inversion forms. In contrast, if variation is controlled by a single locus with 

pleiotropic effects on several traits, suppressed recombination is not necessarily favored 

or required to explain the existence of discrete morphs that differ in these traits.

One line of indirect evidence supporting the supergene hypothesis is that inversions of 

intermediate size usually reach higher frequencies than small inversions, suggesting that they 

are selectively favored more frequently than small inversions (Cáceres, Barbadilla, & Ruiz, 

1997; R. B. Corbett-Detig, 2016; Wellenreuther & Bernatchez, 2018). This is expected if 

larger inversions are more likely to lock physically distant selected variants together via 

suppressed recombination. In contrast, if the selective nature of an inversion solely stems 

from a breakpoint mutation, shorter inversions should be favored because they have less 

chance of capturing recessive deleterious mutations when they form (Cáceres et al., 1997; R. 

B. Corbett-Detig, 2016; Kirkpatrick, 2010).

Despite these observations, direct evidence for the supergene hypothesis is still lacking in 

most systems. Indeed, our review of the literature revealed that we still know very little 

about the number, location and identity of selected variants within candidate supergenes 

associated with inversions. This is not surprising given that determining the number of 

adaptive loci within a region of suppressed recombination is difficult, because suppressed 

recombination frustrates attempts at fine-scale genetic mapping. The presence of two or 

more selected loci in a supergene was historically inferred from genetic crosses aimed at 

detecting rare recombinants (i.e., intermediate phenotypic forms) (Cain & Sheppard, 1954; 

Mather, 1950). For example, Mather described a genetic model where multiple selected loci 

locked within an inversion control heterostyly in Primula sinensis, a classic example of a 

putative supergene (Mather, 1950). However, recent work using modern genomic approaches 
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suggests that Mather’s simple genetic model is erroneous and needs modification (Li et al., 

2016). Specifically, a 178 kilo base-pair indel containing five predicted genes is associated 

with the different floral types (Li et al., 2016), with one floral type being hemizygous for 

this DNA segment and the other completely lacking it (Table 1) (Li et al., 2016).

A revision of the classic genetic model also occurred for the iconic land snail Cepaea 
nemoralis (Table 1), where cryptic shell color-pattern was long thought to be associated 

with five loci locked within an inversion (Cain & Sheppard, 1954). Recent work showed 

an absence of recombination in the putative supergene, casting doubt on the number 

and linkage relationships of loci controlling shell color-pattern (Gonzalez, Aramendia, & 

Davison, 2019). These recent developments urge for more rigorous tests on the true number 

of selected variants within supergenes and their precise genomic location(s).

To our knowledge, the existence of multiple selected loci within a supergene associated 

with an inversion has been demonstrated in only six systems, three involving plants, two 

involving animals, and one involving a fungus. Of these six, three involve segregation 

distorters (Table 1; Box 2). In addition, indirect but fairly convincing evidence exist for two 

other animal systems. Details of all the examples mentioned above are presented in Box 

2. Clearly, further work determining the number of loci within inversions and candidate 

supergenes that contribute to trait variation is warranted. In this regard, emerging techniques 

that allow functional genetic manipulation of structural variants (e.g., CRISPR-Cas9) hold 

promise for making such progress (Hopkins, Tyukmaeva, Gompert, Feder, & Nosil; Kraft et 

al., 2015).

The breakpoint-mutation hypothesis: what is the evidence that functional 

variants reside in or near inversion breakpoints?

A core assumption of the breakpoint-mutation hypothesis is that functional variants reside 

in or near inversion breakpoints. We found evidence consistent with this hypothesis in three 

systems (Papilio polytes, Solenopsis invicta and Timema cristinae), but expect this number 

to increase when breakpoint characterization is completed in more systems (Table 1).

In the mimetic butterfly Papilio polytes, an inversion breakpoint disrupts a transcriptional 

regulator and affects the expression in embryonic wings of three neighboring genes 

potentially involved in wing color-pattern development (UXT, U3X and prospero; Table 

1) (Nishikawa et al., 2015). In the fire ant Solenopsis invicta, a region of suppressed 

recombination generated via three overlapping inversions (Yan et al., 2020) is associated 

with different social structures of colonies (Wang et al., 2013). A breakpoint of the second 

inversion disrupts a gene (SI2.2.0_02248) which is a strong candidate to explain differences 

in colony social structure, and the disrupted allele is associated with increased expression 

of this particular gene (Huang, Dang, Chang, & Wang, 2018; Yan et al., 2020). In the stick 

insect Timema cristinae a large deletion occurring at one breakpoint of a putative inversion 

deleted multiple loci known to affect multiple aspects of color in another species of the 

genus (Villoutreix et al., 2020).
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Interestingly, with the exception of Timema cristinae, indications exist of putative selected 

variants within inversions at locations other than the breakpoints. Therefore, support for 

a strict version of the breakpoint-mutation hypothesis is scarce, with only one example 

potentially supporting it (T. cristinae). Even in the case of T. cristinae, genes controlling 

adaptive traits other than coloration, which combine with color alleles to determine fitness, 

could exist in locations in the inversion away from breakpoints. We discuss the implication 

of these observations in the following section.

Mixed hypotheses: The breakpoint-linkage hypothesis and its implications 

for supergene emergence

As mentioned previously, the supergene and breakpoint-mutation hypotheses are not 

mutually exclusive. The selective advantage of an inversion could come from its property 

of impeding recombination between variants within the inversion and a favorable breakpoint 

mutation. We refer to this mixed hypothesis as the breakpoint-linkage hypothesis (see 

glossary), which predicts that loci controlling trait variation will be localized both at one (or 

both) breakpoint(s) and other regions within the inversion.

In theory, the breakpoint-linkage hypothesis could involve different processes and dynamics 

than those predicted by the classic supergene hypothesis. A supergene composed of a 

selected locus within an inversion and an adaptive breakpoint mutation suggests two 

main evolutionary scenarios. In the first, an inversion could originally establish because 

of an adaptive breakpoint mutation (Guerrero, Rousset, & Kirkpatrick, 2012), and then 

subsequently evolve into a supergene by the emergence of additional genetic variants within 

it (Navarro & Barton, 2003) (Fig. 1B). This scenario could be initiated in allopatry, where 

an inversion with an adaptive breakpoint sweeps to high frequency or fixation and is 

selected for its recombination suppressing properties only later upon secondary contact (or 

introgression) and gene flow. In this case, allopatry allows for the evolution and capture 

of alternative sets of favorable alleles in alternate arrangements, bypassing the difficulties 

of supergene emergence when gene flow occurs and maladaptive alleles are segregating as 

standing variation within populations (Feder, Gejji, Powell, & Nosil, 2011).

In the second scenario, pre-existing genetic variants in the region where the inversion 

will occur could become associated with a new adaptive breakpoint mutation (Fig. 1B). 

Although formal modeling is required, it is possible that such a coupling could relax some 

of the restrictions of a model based strictly on suppressed recombination (Charlesworth & 

Barton, 2018; Kirkpatrick & Barton, 2006). For example, such coupling might mean that 

the initial inversion does not need to capture all or the majority of divergently selected 

variants in a favored combination in order to spread. Instead, variant sorting could occur 

after the establishment of the inversion, by double cross-over events (or noncrossover gene 

conversion (Korunes & Noor, 2017)) that disassociate adaptive and maladaptive alleles. In 

principle, the rise in frequency of the inversion and its equilibrium frequency could thus 

be dependent on the sum of adaptive values of the breakpoint and the variants it originally 

captures.
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The breakpoint-linkage hypothesis predicts that loci controlling trait variation will be 

localized at one or both breakpoint(s) and within the inversion. Some empirical data are 

at least consistent with this prediction. For example, the butterfly (P. polytes) and fire 

ant (S. invicta) examples mentioned in the previous section as instances where functional 

loci reside in or near inversion breakpoints could involve the breakpoint-linkage hypothesis 

(Table 1). In P. polytes, the inversion associated with the breakpoint mutation, besides 

affecting the expression of the three genes UXT, U3X and prospero potentially involved in 

mimetic wing color-pattern (UXT, U3X and prospero), also contains a locus (away from 

any breakpoint) shown to affect mimetic wing color-pattern (doublesex) (Kunte et al., 2014; 

Nishikawa et al., 2015). In the fire ant S. invicta, in addition to the strong candidate gene for 

odor reception (SI2.2.0_02248) located at an inversion breakpoint, the region of suppressed 

recombination also contains (away from any breakpoints) a strong candidate gene for odor 

generation/reception (Gp-9), a mechanism at the root of social structure differences in fire 

ants (Wang et al., 2013).

Variations on the breakpoint-linkage hypothesis are possible. For example, another type 

of mixed model is one where the selective advantage of breakpoints stems from their 

property to suppress recombination outside of the inversion (R. B. Corbett-Detig, 2016). 

Recombination suppression outside of inversions could be achieved by a breakpoint 

disrupting a ‘sensitive site’ (a locus believed to be necessary to produce normal crossing-

over frequencies in the surrounding genomic region) (R. B. Corbett-Detig, 2016). This 

could lock together multiple variants in particular combinations, inside and/or outside the 

inversion. This mechanism may be important in meiotic drive systems, where multiple 

selected loci are located within a region of suppressed recombination containing multiple, 

non-overlapping inversions. Mus musculus t-haplotypes and the Drosophila melanogaster 
SD locus could involve such a mixed model. In these two systems, individual inversions 

appear to very rarely contain more than one selected locus (Herrmann & Bauer, 2012; 

Larracuente & Presgraves, 2012) (See Box 2 for details).

While functional work is needed to better elucidate the role of different loci in controlling 

trait variation (P. polytes and S. invicta), or recombination suppression (M. musculus and D. 

melanogaster), these four systems provide some preliminary support for mixed hypotheses. 

Regardless of whether recombination suppression is most relevant for genes inside versus 

outside of an inversion or for both, these systems highlight the possibility for breakpoint 

mutations generated by a new chromosomal rearrangement to be integral members of the 

group of selected loci that form a supergene. The vast majority of candidate supergene 

systems still lack a complete characterization of inversion breakpoints (often one breakpoint 

is characterized at the DNA sequence level but not the other; Table 1). It is possible that 

more examples supporting the breakpoint-linkage hypothesis will emerge as breakpoints are 

better characterized in a greater number of systems.

Future directions

Future work could usefully focus in two directions. First, better information on the number, 

location, and identify of loci controlling trait variation within inversions is required. One 

way that this can be achieved is via genetic crosses to create recombinant forms, such as 
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for the examples discussed in Box 2. Although the number of selected loci in an inversion 

determined through genetic crosses will tend to underestimate the actual number (because 

insufficient recombination may occur in these crosses to separate variants in close physical 

proximity), the results can still indicate whether or not multiple loci or variants are involved, 

thus confirming the existence of a supergene. As an alternative to controlled crosses, 

genome wide association mapping can be applied in species that are close relatives to those 

with discrete morphs and inversions, but that lack inversion polymorphism (Villoutreix et al., 

2020). This will yield more precise estimates, but needs to be complemented with functional 

manipulation in the species with the inversion. Ultimately, functional manipulations such 

as those offered by CRISPR-Cas9 may be required to precisely and firmly establish the 

identities and numbers of variants functionally contributing to trait variation, possibly by 

‘engineering’ recombinant alleles to validate the independent effects of individual mutations 

on a phenotype (Hopkins et al., 2020; Kraft et al., 2015). Such gene editing may be 

particularly required for identification of causal genetic variation at breakpoints, as many 

variants will be in complete association in these regions due to the lack of recombination 

(Hoffmann & Rieseberg, 2008; Matzkin, Merritt, Zhu, & Eanes, 2005).

Second, once the selected variants within a region of suppressed recombination are 

identified, further work can be implemented to understand how the supergene emerged 

(Fig. 1B). More specifically, when variants are located inside the inversion boundaries, 

one can test if the variants predate or postdate the inversion itself. The usual procedure to 

compare inversion age to the age of the selected variants within them is to compare their 

times to the most recent common ancestor (TMRCA) using coalescence theory (Lee et al., 

2017). Inversion age is estimated by calculating TMRCA on the inverted haplotypes only, 

while ages for loci within the inversion are obtained comparing all haplotypes (inverted 

and non-inverted). While being the current standard, this method suffers from several 

caveats. First, it does not date the inversion totally independently from the variants it 

contains. Second, it can over-estimate inversion age relative to the selected variants within 

it and could thus result in the erroneous conclusion that the variants appeared after the 

inversion. The reason for such over-estimation is that double crossing-over at neutral loci 

within the rearranged region will reintroduce older alleles from non-inverted haplotypes 

into the inverted haplotypes, thus increasing the TMRCA for the inversion, and therefore 

the estimated age of the inversion. Duplications at breakpoints generated by staggered 

breaks, if neutral, could help circumvent these caveats. Indeed, breakpoint duplications 

would allow the inversion to be dated independently from its content, and the inversion 

age estimated using these duplications would not be as biased because double crossing-over 

events between non-inverted and inverted DNA sequences very rarely involve sequences at 

breakpoints (Hoffmann & Rieseberg, 2008). As a proof of concept, a breakpoint duplication 

was successfully used to date inversion age in H. numata butterflies (Jay et al., 2018).

Nonetheless, even this method using breakpoint duplications is not without difficulties 

for at least two reasons. First, it requires sequence-level characterization of breakpoints, 

a difficult endeavor because breakpoints often reside in highly repetitive regions of the 

genomes (Russell B. Corbett-Detig et al., 2019; da Silva et al., 2019), which are difficult 

to assemble using short-read sequencing technologies (Fig. 3A). Second, obtaining accurate 

age estimates for loci experiencing selection is difficult, and breakpoint duplications may 
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not be always neutral. Still, promise for progress exists in sequence-level characterization 

of breakpoints. Specifically, creative approaches such as those applied by Corbett-Detig 

and colleagues in Drosophila (Fig. 3B) (Russell B. Corbett-Detig, Cardeno, & Langley, 

2012; Russell B. Corbett-Detig & Hartl, 2012) may help in characterizing breakpoints at 

the sequence level in other taxa. Long-read technologies such as Nanopore (Jain, Olsen, 

Paten, & Akeson, 2016) and PacBio (Eid et al., 2009) should also be of great help for such 

characterization.

Concluding remarks

We outlined how inversions can facilitate supergene evolution by suppressed recombination, 

by inducing adaptive mutations at breakpoints or by a combination of these two 

mechanisms. Surprisingly, definitive evidence for the existence of multiple selected loci 

within candidate supergenes associated with an inversion exist in only six systems. Thus, 

direct evidence for the supergene hypothesis is still scarce, although indirect lines of 

evidence in several systems are consistent with the hypothesis. Little is known about the 

emergence of supergenes, specifically if divergently-selected variants predate inversions 

or if they accumulated within inversions after the inversion originated. Observations in 

multiple candidate supergene systems suggest a joint role for suppressed recombination and 

adaptive breakpoint mutation in supergene evolution. Thus, further tests of the breakpoint-

linkage hypothesis are warranted. Distinguishing and confirming the role of breakpoints in 

supergene evolution will require characterization of inversion breakpoints at the sequence 

level, which has yet to be completed in most systems. We propose that further study 

of inversion breakpoints could improve our understanding of the origin and maintenance 

of complex, discrete phenotypic forms in nature, and the dynamics by which supergenes 

emerge. Although we focused here on morphs, similar processes could apply to the 

evolution of other discrete units of diversity such as ecotypes, species, and sexes.
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Glossary

Breakpoint-linkage hypothesis
the selective advantage of an inversion stems from both a favorable effect of a mutation at 

one of its breakpoints and the recombination suppression between this mutation and at least 

one other selected variant within the inversion.

Breakpoint-mutation hypothesis
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(also referred as ‘position effect hypothesis’ in the literature) the selective advantage of an 

inversion stems from a favorable effect associated with a mutation at one or both of its 

breakpoints.

Candidate supergene
a case where multiple co-varying and discrete phenotypes are associated with a region of 

suppressed recombination (usually an inversion). The existence of multiple loci associated 

with these traits, within the region of suppressed recombination, must be demonstrated to 

advance the example from a candidate to a bonafide supergene.

Chimeric gene
a new gene constituted of sequences not previously associated together, for example, as parts 

of two genes or parts of genes and non-coding DNA. Here, we consider cases where the 

different DNA segments are brought together by an inversion breakpoint (see Fig. 2B).

Chromosomal inversion
a chromosomal rearrangement in which a segment of a chromosome is reversed end 

to end. This causes the inverted segment to have an opposite sequence order from the 

ancestral sequence and reduces recombination in individuals heterozygous for the inversion. 

Recombination is especially reduced near chromosomal inversion breakpoints.

Chromosomal inversion breakpoint
(shortened to ‘inversion breakpoint’ or simply ‘breakpoint’ in the main text and hereafter) 

the position(s) on a chromosome where DNA sequence orientation shifts after the 

occurrence of a chromosomal inversion (i.e., the end of an inversion where the genome 

shifts from inverted back to collinear). An inversion generally has two breakpoints.

(Chromosomal) breakpoint mutation
sequence modification(s) at breakpoints resulting from a chromosomal inversion. Mutations 

may also occur near breakpoints after an inversion has occurred, however, here, we refer to 

changes associated with the creation of the rearrangement itself.

Discrete morphs
individuals of the same species that exhibit discrete phenotypic differences (e.g., in 

morphology, color, behavior, physiology, etc.). Here, we focus on cases where morphs 

are differentiated by multiple co-varying phenotypic traits such that multiple genes may be 

involved.

Supergene
a group of genes affecting different phenotypes so seldom separated by crossing-over that in 

effect they operate as a single genetic entity (i.e., a non-recombining locus). This end may 

be achieved by close genetic proximity on a chromosome (i.e., tight physical linkage), by 

inclusion within an inversion, or by other molecular mechanisms impeding crossing-over. 

This definition is modified from that of E. B. Ford (Ford, 1965).

Supergene hypothesis
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supergenes evolve because suppressed recombination within them maintains favorable 

allelic combinations at multiple loci that control different traits, thereby favoring suppressed 

recombination.
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Box 1

Inversion breakpoints can create a diversity of types of genetic variation 
via mutation

We here discuss how inversions are formed and the associated effects of induced 

mutations on genetic variation at breakpoints. Two known molecular mechanisms can 

generate inversions: (1) ectopic recombination and, (2) staggered breaks (Box 1. – Fig1) 

(Ling & Cordaux, 2010; Ranz et al., 2007).

The first mechanism occurs from recombination between homologous sequences, usually 

transposable elements (Ling & Cordaux, 2010) or paralogous genes, that are oriented 

head-to-head in the original sequence, subsequently resulting in inversion of the sequence 

located between these elements (Box 1 – Fig. 1A). This mechanism leaves little 

molecular trace and generates cut-and-paste type breakpoints. The second mechanism 

involves staggered breaks occurring in two positions of the original sequence (Ranz et al., 

2007). Such breaks are usually staggered, meaning that they will result in fragments with 

stretches of single stranded DNA at their extremities (Box 1. – Fig. 1B). The DNA repair 

mechanism that synthesizes the reverse complement of these single stranded stretches 

then joins the DNA sequences back together in a non-homologous way, sometimes 

reinserting the DNA segment in the opposite orientation, creating an inversion. When 

the breaks are heavily staggered (i.e., with long single strand stretches), this results in 

inversions with duplicated sequences at both breakpoints in the derived sequence (Box 1. 

– Fig. 1B) (Ranz et al., 2007). In contrast, when the breaks are blunt or slightly staggered, 

cut-and-paste type breakpoints are created in the derived sequence, with no or small 

duplications, respectively.

Despite these clear mechanisms of inversion formation, we still know very little about 

genetic variation at breakpoints and the mutations that breakpoints generate (Table 1). 

This stems largely from the fact that inversion breakpoints often lie in very repetitive 

regions of the genome (Russell B. Corbett-Detig et al., 2019; da Silva et al., 2019) 

which are difficult to sequence and assemble and thus challenging to study (Fig. 3A). 

Nonetheless, some progress has been made, particularly in the Drosophila melanogaster 
species subgroup (R. B. Corbett-Detig, 2016; Russell B. Corbett-Detig & Hartl, 2012; 

McBroome, Liang, & Corbett-Detig, 2020; Ranz et al., 2007). In this system, staggered 

breaks appear to be the most common mechanism generating inversions, very often 

resulting in duplications at breakpoints (Ranz et al., 2007).

We note, however, that locating breakpoints is not sufficient to identify their phenotypic 

effects. Obtaining the derived DNA sequence at breakpoints is necessary to try and 

understand possible phenotypic effects. Understanding such effects from DNA sequence 

modification is however not always a straightforward task, as the disruption of a gene 

sequence by a breakpoint can sometimes lead to increases in expression of this gene, as 

seen in fire ants (Yan et al., 2020). Nonetheless, phenotypic effects may be expected, 

for example, because both ectopic recombination and staggered breaks can change the 

expression level of a set of genes (Fig. 2A). In addition, staggered breaks can have 

another potential effect, in which the duplication of sequences leads to the creation of a 
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new chimeric gene. This occurs via merging the initial part of a gene with another coding 

sequence, such as another gene or pseudo-gene (Fig. 2B). This phenomenon can happen 

without the loss of the originally disrupted genes (via their duplication), mitigating fitness 

costs.

Thus, there are several possibilities by which breakpoints can create genetic variation 

with likely phenotypic effects. The observation that similar genomic regions are often 

re-used repeatedly as breakpoints for different inversions, including in different taxa, 

raises the possibility for a recurrent and even somewhat predictable role for breakpoints 

in evolution (Pevzner & Tesler, 2003).

Box 1 – Figure 1. Known molecular mechanisms generating inversions
White and grey arrows represent genes, with their orientation indicated by the direction 

of the arrows. A. Ectopic recombination between similar elements (transposable elements 

or duplicated genes) in opposite orientation in a DNA segment leads to the inversion 

of the interspacing sequence. B. Fours single strand breaks (a, b, c, and d) lead to two 

staggered breaks. Through end repair and reattachment in the opposite orientation an 

inversion is generated with sequence duplication at both breakpoints (black and grey 

genes). The number above the DNA stretch are used here to illustrate the change in 

orientation of the sequence.
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Box 2

Determining the number of loci within inversions that contribute to selected 
trait variation

Despite seventy years of research on supergenes, definitive evidence for the existence 

of multiple selected variants within a region of suppressed recombination containing an 

inversion exists only for a few systems, as described below.

Evidence for multiple loci controlling trait variation within an inversion has been 

demonstrated in Boechera stricta (Box 2 – Fig. 1A), a perennial plant from the Rocky 

Mountains. Here, two subspecies adapted to different climates have come into secondary 

contact (Lee et al., 2017). The subspecies differ in multiple traits and through crosses 

between different genotypes lacking the inversion it was demonstrated that three different 

QTLs (i.e. Quantitative trait loci) are associated with these divergent traits and located 

within the inversion region (Box 2 – Fig. 2B). Interestingly, independent of the genotype 

at these three QTLs, the orientation of the DNA segment at the rearranged region 

explained a significant amount of variance for these traits, without any apparent effect 

of the inversion breakpoints. The molecular mechanism for this result is still unknown. 

The inversion is relatively young and originated after secondary contact, likely locking 

together pre-existing selected variants (Lee et al., 2017), but this interpretation is debated 

(Charlesworth & Barton, 2018).

In the Mimulus guttatus species complex, the existence of multiple selected loci within 

an inversion has also been confirmed by genetic crosses, where two life strategies 

(perennial vs annual) are maintained through divergent selection (Lowry & Willis, 2010). 

Specifically, through crosses between the Mimulus guttatus annual type and a closely 

related perennial species with a collinear gene order, Mimulus tilingii, Coughlan and 

Willis (Coughlan & Willis, 2018) identified two QTLs within the inversion associated 

with the traits experiencing divergent selection.

In the Brassicaceae self-incompatibility locus (S-locus), it was shown that two selected 

loci reside within a region of suppressed recombination containing inversions (Goubet et 

al., 2012; Takayama & Isogai, 2005). At the phenotypic level, self-incompatibility alleles 

are equivalent to mating types, where a plant stigma can recognize its own pollen via 

a specific interaction between a protein in the pollen coat and a receptor in the plant 

stigma, preventing fertilization (Durand et al., 2020; Takayama & Isogai, 2005). With 

this system, plants cannot self-fertilize and cannot be fertilized by pollen from plants 

expressing a similar mating type. Through knock-outs and gains of function experiments, 

the genes coding for the pollen protein (SCR) and the stigma receptor (SRK) have 

been identified (Schopfer, Nasrallah, & Nasrallah, 1999; Silva et al., 2001; Takasaki et 

al., 2000; Takayama & Isogai, 2005; Takayama et al., 1987; Takayama et al., 2000). 

These two genes are present in different positions and orientations in different S-locus 

haplotypes, suggesting that many inversions have occurred at the S-locus (Goubet et 

al., 2012). The S-locus region displays little sequence conservation (likely because of 

extensive degeneration), frustrating attempts at characterizing the exact breakpoints of 

these inversions or the ancestral orientation of the region (Goubet et al., 2012).
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The existence of multiple selected loci within a region of suppressed recombination 

containing inversions has also been verified in a spore killer system (Neurospora 
intermedia spore killer element Sk-2) and two meiotic drive systems (Mus musculus 
t-haplotypes and Drosophila melanogaster SD locus). In these three systems, a 

combination of ‘killer’ loci (named driver loci hereafter) and ‘protective’ loci (named 

response loci hereafter) kills spores or gametes with specific genotypes, resulting in 

increased transmission (up to 99%) of the spore or gamete killing element. Suppressed 

recombination between driver and response loci is necessary for the maintenance of drive 

systems over many generations (Hammond, Rehard, Xiao, & Shiu, 2012), qualifying 

them as supergene examples.

The existence of two selected loci (one driver locus and one response locus) was 

demonstrated in Neurospora intermedia (element Sk-2) through gene knock-outs and 

complementation (Hammond, Rehard, Xiao, & Shiu, 2012; Rhoades et al., 2019). In this 

system, a succession of non-overlapping inversions interspaced with repeats tightly link 

the driver locus with the response locus (Svedberg et al., 2018). The existence of five 

selected loci (four driver loci and one response locus) (Herrmann & Bauer, 2012) was 

also demonstrated in Mus musculus t-haplotypes meiotic drive through the generation 

of rare recombinants via genetic crosses and mutagenesis (Herrmann & Bauer, 2012; 

Lyon, 1984; Lyon & Meredith, 1964). Multiple interspaced non-overlapping inversions 

are present in the t-haplotype locus but none contain both a driver and the response 

locus, suggesting that recombination suppression is achieved via additional factors in this 

system (Kelemen & Vicoso, 2018).

A similar technique to the one employed in the t-haplotype was used to decipher 

the genetic basis of SD meiotic drive in Drosophila melanogaster and confirmed 

the existence of five loci involved in this drive system (four driver loci and one 

response locus) (Hartl, 1974; Larracuente & Presgraves, 2012). Deletion of chromosomal 

segments via mutagenesis confirmed these results and allowed for fine mapping of the 

different loci (Ganetzky, 1977; Larracuente & Presgraves, 2012). As is the case for the 

t-haplotype locus, multiple interspaced non-overlapping inversions are present in the SD 

locus (different driver alleles are associated with different inversions), and inversions 

rarely contain a driver locus together with the response locus, suggesting that additional 

factors also prevent recombination in this system (Larracuente & Presgraves, 2012).

Less direct, but reasonably strong, evidence for multiple selected loci within an inversion 

has also been reported in two insect systems (Table 1). Here, the approach was to 

compare the genetic basis of traits in closely related taxa that exhibit versus lack 

inversion polymorphism. In the polymorphic butterfly Heliconius numata a region of 

suppressed recombination generated via multiple adjacent inversions controls variation 

in mimetic color morphs. The same genomic region is known to contain at least three 

recombining loci associated with color variation in other species of the genus (Box 2 – 

Fig. 1D) (Huber et al., 2015; Mathieu Joron et al., 2011; Van Belleghem et al., 2017). 

It is therefore likely that the adjacent inversions in H. numata harbor multiple variants 

at these three loci that recombine in other Heliconius species. A similar example stems 

from Timema, a genus of stick insect that is endemic to the western USA and Mexico and 

that shows within-population variation for cryptic coloration (i.e., green versus melanistic 
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morphs). In several species, morphs are highly discrete and controlled by a region of 

suppressed recombination on linkage group eight (named ‘Mel-Stripe’) (Nosil et al., 

2018; Villoutreix et al., 2020). However, a recent study in a species displaying more 

quantitative color variation (Timema chumash) and a lack of suppressed recombination 

revealed that multiple genetic variants, and likely multiple genes within Mel-Stripe, 

control color variation (Villoutreix et al., 2020).

Box 2 – Figure 1. Flagship examples of supergenes
A. Boechera stricta subspecies types. The East subspecies has smaller leaves with 

more trichomes. Photo credit: Cheng-Ruei Lee. B. Multiple QTLs were detected in 

the Bs1 inversion. The red, blue dashed and grey-dashed lines correspond to different 

composite traits obtained through discriminant function analysis. See Lee et al., 2017 

for more details. The two black-dashed lines correspond to the position of the inversion 

breakpoints. Breakpoints are of the cut-and-paste type for the Bs1 inversion. Figure 

redrawn and modified with the permission of the authors. C. Heliconius numata 
aposematic morphs, involved in Müllerian mimicry rings with other butterflies. D. 

Aposematic morphs in H. numata are associated with adjacent inversions (spanning the 

genomic region indicated by P) on linkage group 15 (LG15), encompassing at least three 

loci (Yb, Sb and N) associated with mimetic color morphs in H. melpomene.
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Figure 1. Hypotheses underlying selective advantages to inversions and scenarios for supergene 
emergence
A. Hypotheses explaining a selective advantage to inversions. B. Scenarios for supergene 

emergence. Grey squares represent a chromosome; red dots are adaptive variants affecting a 

selected trait; black bars are inversion breakpoints.
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Figure 2. Possible mechanisms creating mutations at inversion breakpoints
A. An inversion generated through ectopic recombination affects the transcription level of 

two genes by changing their positions in the genome relative to a promoter. B. An inversion 

generated through staggered breaks generates a new chimeric gene, while avoiding the loss 

of the donor genes because of duplication. Grey and black arrows represent genes, with 

orientation indicated via arrow direction; a, b, c, d represent single strand breaks, resulting in 

two staggered breaks.
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Figure 3. Characterizing breakpoints at the DNA sequence level
A. Using short-read sequencing technologies can lead to misassembly of inversion 

breakpoints, for example due to duplications generated through staggered breaks (Ranz 

et al., 2007). Grey and black arrows represent genes, with orientation indicated by the 

direction of arrows. B. A method to characterize breakpoint sequences using a single 

reference genome and short read data, as developed by Corbett-Detig and colleagues 

(Russell B. Corbett-Detig et al., 2012). Black arrows symbolize aligned reads on the 

reference genome, while grey arrows symbolize their unaligned paired reads. Breakpoint 

sequence characterization is possible by using the black and grey read pairs to generate 

de novo assembly of the breakpoint region. Figure redrawn and modified from (Russell B. 

Corbett-Detig et al., 2012) with the permission of the authors.
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