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Abstract

Objective—Super-resolution ultrasound (SRUS) imaging through localising and tracking sparse 

microbubbles has been shown to reveal microvascular structure and flow beyond the wave 

diffraction limit. Most SRUS studies use standard delay and sum (DAS) beamforming, where high 

side lobes and broad main lobes make isolation and localisation of densely distributed bubbles 

challenging, particularly in 3D due to the typically small aperture of matrix array probes.

Method—This study aimed to improve 3D SRUS by implementing a new fast 3D coherence 

beamformer based on channel signal variance. Two additional fast coherence beamformers, that 

have been implemented in 2D were implemented in 3D for the first time as comparison: a 

nonlinear beamformer with p-th root compression and a coherence factor beamformer. The 

3D coherence beamformers, together with DAS, were compared in computer simulation, on a 

microflow phantom and in vivo.

Results—Simulation results demonstrated that all three adaptive weight-based beamformers can 

narrow the main lobe, suppress the side lobes, while maintaining the weaker scatter signals. 

Improved 3D SRUS images of microflow phantom and a rabbit kidney within a 3-second 

acquisition were obtained using the adaptive weight-based beamformers, when compared with 

DAS.

Conclusion—The adaptive weight-based 3D beamformers can improve the SRUS and the 

proposed variance-based beamformer performs best in simulations and experiments.

Significance—Fast 3D SRUS would significantly enhance the potential utility of this emerging 

imaging modality in a broad range of biomedical applications.

Index Terms

Ultrasound localisation microscopy (ULM); super-resolution; contrast-enhanced ultrasound; 3D 
beamforming

I Introduction

Super-resolution (SR) ultrasound (US) also known as ultrasound localisation microscopy 

(ULM) can, through localisation and tracking of microbubbles [1], [2], reconstruct images 

of the microvasculature with resolution beyond the diffraction limit in 2D [3]–[11] and 3D 

[12]–[15]. Compared to 2D, 3D imaging can offer volumetric coverage with super-resolution 

in all three dimensions, and does not have the out-of-plane motion that 2D imaging suffers 

from. However, the image quality of 3D US is generally not as good as 2D. Matrix array 

probes used for generating 3D images require significantly more elements than comparable 

1D array probes. Matrix array probes often are manufactured with a smaller footprint to 

reduce channel count whilst maintaining sufficient pitch. Consequently, the main lobe of the 

point spread function (PSF) in 3D US is usually wider than in 2D US. Smaller apertures 

also limit the improvement of coherent compounding as effective steering angle range is 

reduced as overlapping region of isonification is reduced. Row-Column Array (RCA) probes 

have been designed for 3D US with larger apertures and fewer channels than matrix array 

probes [16]–[19], but the long element causes strong side lobes and distort the PSF in the 

nearfield/close to the probes.
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The acquisition time of SRUS based on localising sparse microbubbles heavily depends 

on the number of separable bubbles within each image frame and desired completeness of 

reconstruction [20]–[22]. Imaging with wide main lobes makes it difficult to isolate close 

bubbles, while strong side lobes can increase the possibility of mistaking the side lobes as 

distinct bubbles. Using a lower concentration of bubbles and higher detection thresholds can 

mitigate these complications. This approach, however, significantly reduce the number of 

bubbles that can be localised from one frame, which will in turn increase the acquisition 

duration. Exploring methods to reduce the size of the PSF main lobe and the amplitude of 

the side lobes is thus valuable.

The sizes of the PSF main lobe and side lobes are affected by the transducer aperture size 

and by the beamforming algorithm used. Delay and Sum (DAS) is the most commonly 

used beamformer for high-frame-rate US, especially for 3D US [14], [15], [23], [24]. 

Apodisation can reduce PSF side lobes at the expense of an enlarged main lobe. In 2D 

US, coherence-based beamformers have been demonstrated to be able to reduce PSF main 

lobe widths and side lobe heights and improve image quality generally when compared to 

DAS beamforming [25]. There are several types of coherence-based beamformers. Some use 

different ways of estimating the coherence among channels. For example, the delay multiply 

and sum (DMAS) beamformer [26] calculates the sum of multiplications between coupled 

signals and short-lag spatial coherence beamformers [27] calculates the spatial covariance 

across the receive aperture. Some adaptively changes the weights for each channel signals 

before summing them, such as the minimum variance (MV) [28], [29] and the nonlinear 

beamforming with p-th root compression (p-DAS) beamformers [30]. Some, such as the 

coherence factor (CF) beamformer [31], applys adaptive weights to pixels. These advanced 

beamformers present significant opportunities to improve SRUS imaging in 3D, but also 

pose challenges due to the number of channels acquired and quantity of pixels that need to 

be reconstructed for one 3D US frame.

Adaptive weight-based beamformers have only incremental computational costs compared 

to the standard DAS beamformer. They are promising for 3D SRUS as their superiority 

over the DAS beamformer has already been demonstrated on 2D US. The CF beamformer 

is widely used and the p-DAS beamformer has been proven to outperform other kinds of 

adaptive weight-based beamformer [25], such as phase coherence and sign coherence [32]. 

Therefore, p-DAS, CF and a computationally efficient 3D beamformer based on variance in 

the channel data are investigated in this study. They are evaluated through simulations and 

experiments.

II Methods

In this section the different beamformers and their implementation are introduced, and this 

is followed by the description of the simulation and in vitro and in vivo experiments. All 

the coherence beamformers investigated in this study are based on the spatial coherence of 

channel signals from individual transducer elements. The beamfomers are implemented in 

CUDA (v10.0, Nvidia, CA, USA) and other data processing is done in MATLAB (2021a, 

MathWorks, MA, USA) on a desktop (CPU: AMD Ryzen 9 5900 Processor, GPU: Nvidia 

Geforce RTX3080, RAM: 128 Gb).
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A Delay and Sum

Delay and Sum beamforming (DAS) [33] reconstructs a pixel (y) by

y(t) = ∑
n = 1

N
sn(t) (1)

where sn(t) is delayed signal for the n-th channel and N is the number of channels. To 

demonstrate the issues with 3D DAS, a matrix array probe (Vermon, Tours, France) with 

32×32 elements, 7.8 MHz centre frequency and a 9.6 mm×10.2 mm aperture imaging one 

point scatter is simulated in Field II [34]. For envelope detection, a Hilbert transform is 

applied to each channel prior to reconstruction.

The brightness-mode (B-mode) 3D image of a point scatter reconstructed by DAS is shown 

in Fig. 1 (a). Four pixels are picked from the main lobe and side lobes, labelled by the 

red crosses, and denoted as main lobe 1-2, and side lobe 1-2 in order. Two-dimensional 

histograms of delay-cancelled signals corresponding to the four voxels are presented in Fig. 

1 (b). Channel signals on the main lobe have similar amplitudes and phases, while channel 

signals on the side lobes have more dispersed amplitudes and phase angles. Therefore, 

summing up the channel signals would generate a main lobe brighter than the side lobes.

Element sensitivity apodisation an(t), derived from the element directivity [35], is used for 

the DAS beamformer in the following comparison to reduce the intensity of side lobes. The 

DAS algorithm then becomes:

y(t) = ∑
n = 1

N
an(t)sn(t)an(n) = sinc

sinc(Lu
λ ) × sinc(Lv

λ ) × cos(θ)

u = sin(θ)cos(ϕ), v = sin(θ)sin(ϕ)

(2)

where L is the width of the square element; λ is the wavelength; θ is the angle between 

the axial direction and the line connecting the element centre and pixel; φ is the angle 

between lateral direction and the projection of the line on the probe surface. Any channel 

with element sensitivity less than 0.5 for one voxel is not used for reconstructing the voxel in 

this paper.

B Nonlinear Beamforming with p-th Root Compression

A nonlinear beamformer based on p-th root compression (p-DAS) [30] was designed by 

applying adaptive weights

wn(t) = 1

|sn(t)|
p − 1

p
(3)

to channel signals followed by summation:
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ypDAS(t) = ∑
n = 1

N
wn(t)sn(t)

= ∑
n = 1

N
sign

(sn(t))
sn(t) 1/p

(4)

where the sign function is used to maintain the phase of signals. Then, ŷpDAS(t) is raised to 

the p-th power to recover the amplitude of the signal

ypDAS(t) = sign(ypDAS(t)) ypDAS(t) p (5)

As the p-th root and p-th power can distort the frequency components, spatial band-pass 

filtering around the fundamental spatial frequency is applied to the depth of ypDAS(t) to 

remove the distorted components. The sampling frequency along depth needs to be sufficient 

to avoid aliasing of artificial harmonics. In this study, p is set to 4, with which p-DAS 

generated the best lateral resolution among all the adaptive weight-based beamformers in 

[25].

C Coherence Factor

The Coherence factor (CF) is defined by the ratio of the coherent energy to the incoherent 

energy

W CF(t) = ∑n = 1
N sn(t) 2

∑n = 1
N sn(t) 2 (6)

WCF is calculated for each pixel and then used as an adaptive weight to the DAS image, i.e.,

yCF(t) = W CF(t)y(t) (7)

WCF approaches one when channel signals are phase coherent and it approaches zero if 

channel signals are completely incoherent. For example, the histograms of the main lobe 1 

and side lobe 1 in Fig. 1(b) have a similar range of signal amplitude but a very different 

range of phase distribution. Applying CF weighting to the beamformer would therefore 

enhance the main lobe and reduce the side lobe.

D Coherence Energy to Variance

Distributions of channel signals, particularly the signal phase, become dispersed for pixels 

away from the scatter, as shown in Fig. 1. In this study, we explore using the variance, 

another measure of the coherence of the channel data, for beamforming. Variances in 
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channel signals for each pixel of the image are shown as a variance map in Fig. 2. An 

adaptive weight using this variance map is

W V N(t) =

∑
n = 1

N
sn(t)

2

∑
n = 1

N
sn(t) − 1

N ∑
n = 1

N
sn(t)

2
(8)

where the numerator is the coherent energy and the denominator is the variance. To 

remove element sensitivity from sn(t) and recover the real variance in delayed signals, 

the denominator additionally incorporates inverse apodisation, where sn(t) is divided by the 

element sensitivity an(t). The above weight is rewritten as

W V(t) =
∑

n = 1

N
sn(t)

2

∑
n = 1

N sn(t)
an(t) − 1

N ∑
n = 1

N sn(t)
an(t)

2 (9)

The proposed weight is dimensionless. WV (t) can then be applied to the DAS beamformed 

voxel intensity y(t)

yCV(t) = W V(t)y(t) (10)

A key difference between this Coherence to Variance (CV) beamformer and the CF 

beamformer is the subtraction of the mean channel signal in the denominator. As shown in 

Fig. 1(b), distributions of channel signals in the centre and boundary of the main lobe (main 

lobe 1 and 2) are similar in amplitudes but different in phase angles. While the coherence 

factor reduces gradually when the pixel moves from the centre to the boundary of the PSF, 

variance can be close to zero at the centre of the PSF and hence creates a more well-defined 

main lobe peak and reduces the side lobes in the CV weighting as shown in Fig. 2.

E Simulations

Three simulations were done to compare the image quality of the four beamformers 

and one simulation was done to analyse the effect of beamformers on localisation. The 

aforementioned 32×32 matrix array probe is simulated to image scatters, using Field II. 

Gaussian windowed two-cycle sinusoidal waves are set as the transmission and reception 

response of each element of the probe. The matrix probe was set to transmit a single plane 

wave. The reconstructed voxel size was 0.05×0.05×0.05 mm3 cube. The first simulation 

was imaging a scatter with a reflection coefficient of 1. The second simulation involved 

imaging a scatter with a reflection coefficient of 0.1. In the third simulation, five scatters 

were placed on the central axis of the probe and spaced equally between 15 and 25 

mm from the probe surface. The five scatters were given different scattering coefficients, 

decreasing from 1 to 0.1 with equally spaced steps. In above three simulations, the WVN 
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weight is additionally investigated to analyse the effectiveness of inverse apodisation; the 

corresponding beamformer is denoted as CVN.

Quantitative evaluations were done for the third simulation. Additive white Gaussian noise 

with an SNR of 0 dB and 10 dB were added to the radio frequency (RF) channel signals 

prior to image reconstruction respectively, to evaluate the Signal to Noise Ratio (SNR) of 

the four beamformers. After reconstruction, SNR is calculated by taking regions of noise 

only and comparing them to the averaged intensity of the centre PSF of the five targets. To 

quantitively compare the PSFs obtained by the beamformers, Peak Side-to-Main Lobe Ratio 

(PSMR) and Full Width Half Maximum (FWHM) were calculated. Two kinds of PSMR are 

investigated. The conventional PSMR is defined by the peak ratio of the side lobe to the 

corresponding main lobe, and we named it self-PSMR (SPSMR) for convenience. PSMR 

can also be calculated by the peak ratio of each side lobe to each different main lobe and 

is named cross-PSMR (CPSMR). The maximum of CPSMR is denoted as max-PSMR. In 

super-resolution imaging, a higher PSMR and a lower SNR give a higher possibility of 

mistaking side lobes and noise as single bubbles whereas a larger FWHM makes it more 

difficult to isolate close bubble images. The time taken to process a single frame, consisting 

of 1.32×107 voxels, acquired with each beamformer is also listed for comparison.

In the fourth simulation, scatters were randomly placed with a uniform distribution in an 

imaging volume of 10×8×8 mm3 and a uniform distribution in reflection coefficient from 

0.1 to 1. 100 scatters are generated per volume and 100 different volumes are generated. 0 

dB white Gaussian noise was added to the channel signals. 3D images were reconstructed 

by DAS, p-DAS, CF and CV beamformers. The total number of localisations was kept the 

same for all beamformed sequences by detecting a same number of lobe peaks from each 

frame. Between 20 and 150 peaks with the highest intensities were taken from each frame. 

A localisation is counted as true positive localisation if it is within half of a wavelength of 

a ground truth scatter location. True Positive Rate (TPR), the ratio of true positive number 

to scatter numbers, and False Positive Rate (FPR), the ratio of false positive number to 

localisation number, are calculated to quantify the localisation performance with different 

beamformers.

F Experiment

1) In vitro phantom—An in-house prepared perfluorobutane microbubble solution [37] 

was diluted to a concentration of 6×106 bubbles/ml and pumped into two Hemophan 

cellulose tubes (Membrana, 3M, Wuppertal, Germany) with 200±15 μm inner diameter and 

8±1 μm thickness wall using a syringe pump (Harvard Apparatus, Holliston, MA, USA). 

The two tubes were placed almost in parallel on the probe elevationlateral projection plane 

and crossed with an angle of 3 degrees on the depth-lateral projection plane.

2) In vivo rabbit kidney—A specific-pathogen-free New Zealand White rabbit (male, 

HSDIF strain, age 13 weeks, weight 2.4 kg, Envigo, UK) was sedated with acepromazine 

(0.5 mg/kg, i.m.) and anaesthetized with medetomidine (Domitor, 0.25 mL/kg, i.m.) plus 

ketamine (Narketan, 0.15 mL/kg, i.m.). Anaesthesia was maintained for approximately 4 
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hours by administration of 1/3 of the initial medetomidine and ketamine dose every 30 

minutes. Bubbles were injected with a first bolus of 0.1 ml and following boluses of 0.05 ml.

To access the renal vasculature, the rabbits were shaved and positioned supine. Following 

tracheotomy, mechanical ventilation was given at 40 breaths/minute. Body temperature was 

maintained with a heated mat. Oxygenation and heart rate were continuously monitored. 

The experiment complied with the Animals (Scientific Procedures) Act 1986 and was 

approved by the Animal Welfare and Ethical Review Body of Imperial College London 

(No.P15180DF2; Date: March 17th, 2017).

3) Imaging sequence—Data of the phantom and rabbit kidney were acquired with the 

Vantage 256 ultrasound research system (Verasonics Inc., Kirkland, WA, USA) and with the 

matrix array probe. As there are 1024 elements in the probe and only 256 channels in the 

research system, a multiplexing technique is used, in which 1024 elements are excited at 

the same time to transmit plane waves and four sub-apertures of a 32×32 matrix, each of 

which contains 32 (lateral)×8 (elevation) elements, receive signals in sequence to generate 

one frame. Images were acquired at a frame rate of 500 Hz without angle compounding. 

2 s (1000 frames) of in vitro data and 3 s (1500 frames) of in vivo data were acquired 

respectively.

4) SR Processing Pipeline—Data processing was conducted according to the pipeline 

shown in Fig. 3. Tube and tissue background signals were removed by applying singular 

value decomposition (SVD) to channel signals and reconstructed channel signals were then 

beamformed by the four techniques to obtain the contrast-enhanced ultrasound (CEUS) 

sequence. The in vitro voxel size was 0.05×0.05×0.05 mm3 and the in vivo voxel size was 

0.1×0.1×0.1 mm3 to fit the data to the available memory. Image intensities are normalised 

by the maximum of each beamformed sequence. Considering beamformers can alter the 

dynamic range of images, [38]—[40], thresholds for background noise and side lobe 

removal are adjusted for DAS, p-DAS, CF, and CV images to achieve similar numbers 

of localised events for SR images. Then, comparison was done on the SR density map, based 

on the assumption that with the same amount of localisation events, a better beamformer is 

expected to provide more correct localisations and fewer wrong/false localisations.

The PSFs for each beamformer were estimated by simulations. 3D normalised cross-

correlation (3DNCC) was then implemented by convolving the background-removed images 

with flipped PSFs [41]. Noise was further removed by thresholding the 3DNCC coefficient 

maps at 0.3. Peaks on the 3DNCC coefficient maps were detected by the MATLAB ‘im-

regionalmax’ function and the coefficient maps were cropped by a 5×5×5 window around 

the peaks into small patches. Super-resolution localisation was performed by detection of 

the maximum in each small patch after interpolating each patch using a cubic spline and 

voxels 1/10 of the original size. All localised bubbles were accumulated to generate the SR 

bubble density map. For in vivo data processing, a two-stage image registration algorithm 

[42] was used to correct motions, which was induced mainly by animal breathing. Motion 

is estimated on B-mode images reconstructed by the DAS beamformer and the resulting 

motion fields were applied to the CEUS images reconstructed by the four beamformers.
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III Results

A Simulation

Maximum intensity projections (MIPs) of the 3D images reconstructed with channels with 

SNR of 0 dB by the four beamformers are shown in Fig. 4. The top two rows show that 

the image intensity is linear to the reflection coefficient when strong- and weak-reflection 

scatters are in two frames respectively. When strong- and weak-reflection scatters are in the 

same frame, the intensity of the weak-reflection scatters can be also be compressed by the 

adaptive weight-based beamformers, as shown in the third row. While there are obvious side 

lobes in the DAS image, all the side lobes are almost invisible in the images beamformed 

by the adaptive weight-based beamformers. The image obtained by the CV beamformer 

is visually the best with the narrowest main lobes. The lateral and elevational profiles are 

shown in Fig. 5.

Quantitative metrics for the four beamformers are given in Table I and II, where the mean 

and standard deviations of SPSMRs and FWHMs are listed for the five scatters. Note 

that the max-PSMR for DAS is larger than 0 dB and is much higher than the SPSMR 

which means side lobes of strong-reflection scatters can be mistaken as bubbles when 

strong- and weak-scatters appear in the same frame. While the max-PSMR is around 3.5 

dB for conventional DAS, adaptive weight-based beamformers can achieve negative values 

in max-PSMR at both noise levels, which means the adaptive weight-based beamformers 

compress the side lobes of the brighter scatter more than main lobe of the weaker scatters. 

Additionally, compared to lateral and elevational FWHMs obtained by DAS, CF’s have an 

approximately 40% reduction in the FWHMs; p-DAS’s achieve around a 50% reduction 

and CV’s reach an 80% reduction with channel SNR of 10 dB. SNRs in images are 

improved by the coherence-based beamformers due to the large number of channels and 

SNRs of the adaptive weight-based beamformers can obtain at least a 45 dB improvement 

over conventional DAS. In terms of computational cost, pDAS, CF and the variance-based 

beamformers require 6.9, 1.2 and 2.2 times of the DAS beamformer respectively.

A curve plotted by the TPR and FPR in the fourth simulation is shown in Fig. 6. When 

the curve closer to the left-top corner presents a better performance, CV gives the best 

performance; pDAS and CF are constantly better than DAS when the FPR is lower than 

0.015. The area under the curve is 0.0605, 0.0623, 0.0616 and 0.0649 for DAS, p-DAS, CF, 

and CV respectively.

B In vitro experiment

It takes 0.047, 0.396, 0.057, and 0.096 seconds to reconstruct 9.93×105 voxels per frame in 

the in vitro data by the DAS, p-DAS, CF, and CV beamformers respectively. 6439, 6413, 

6829 and 6469 bubbles can be localised by using thresholds of -10 dB, -35 dB, -27.5 

dB, and -40 dB for the DAS, p-DAS, CF, and CV images respectively. Bubble images 

reconstructed from clutter-filtered signals by the four beamformers are shown in Fig. 7 with 

the background removal threshold as the dynamic range for display. SRUS images obtained 

by accumulating these bubbles are shown in Fig. 8. As no microbubbles should be outside 

the tubes, the fewer localisations between the two apparent tube structures for the adaptive 
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weight-based beamformers suggest an improved performance over the DAS beamformer, 

although this is not conclusive as the ground truth tube location is not known. The SRUS 

image obtained with the CV beamformer gives the highest signal at around 0 mm in the 

lateral direction where the two tubes are the closest.

Microbubble density line profiles of the two tube cross-sections within two chosen 2D 

slices, each of which was labelled by a white line in the DAS image and averaged across a 

thickness of 1 wavelength to be smoothed, are shown in Fig. 9. For the slice from 0.4 mm to 

0.6 mm in lateral, the two tubes cannot be clearly separated in profiles of the SRUS image 

using the DAS beamformer. In contrast, the two peaks are distinguishable in the SRUS 

image profiles obtained using the adaptive weight-based beamformers. For the slice from 

-4.4 to -4.2 mm in the x direction, the DAS SRUS image completely loses the tube signal, 

and the profile of the CV SRUS presents the highest two peaks.

C In vivo experiment

It takes 0.067, 0.893, 0.080, and 0.140 seconds per frame to reconstruct 1.36×106 voxels in 

the in vivo data by the DAS, p-DAS, CF, and CV beamformers respectively. 74842, 67495, 

69292 and 63660 bubbles are localised by using thresholds of -14 dB, -42.5 dB, -32.5 dB, 

and -35 dB for DAS, p-DAS, CF, and CV images respectively. MIPs of 3D in vivo SRUS 

images are shown in Fig. 10. More dense vessels in the top region and less noise in the 

bottom region can be detected with the adaptive weight-based beamformers, compared to 

those with the conventional DAS. In the magnified images in the third and fourth rows, all 

the adaptive weight-based beamformers provides more SRUS vascular signals than the DAS 

beamformer. Also, the CV beamformer generates localisations that resemble the appearance 

of micro vessels which are absent by the other methods.

Results of Fourier shell correlation (FSC) analysis [43] between SRUS images obtained by 

localisation events appearing in odd and even frames are shown in Fig. 11. According to the 

½ bit threshold, resolutions are measured as 83.3, 78.1, 75.2 and 74.1 μm for DAS, p-DAS, 

CF, and CV respectively, demonstrating the resolution improvement of adaptive weightbased 

beamformers.

IV Discussion

In this study, advanced beamformers for 3D SRUS imaging were investigated. The results 

show that the adaptive weightbased beamformers can suppress the side lobes and narrow 

the main lobe, and are able to improve 3D SRUS images in vitro and in vivo with modest 

computational cost. They also show that the proposed variance-based beamformer performs 

best both in simulations and experiments. Compared to CVN [44], CV generates side lobe 

intensity and main lobe width reduction in simulation by considering channel element 

sensitivity.

Improved isolation and localisation of individual bubbles in a single frame can reduce 

acquisition time and hence the impact of motion on SRUS imaging. While most existing 

SRUS studies tried to isolate bubbles in high concentration by algorithms, such as 

deconvolution [13], [36], [45]–[47] and normalised cross-correlation [7], [14], [15], side 
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lobes of bright bubbles are still difficult to be distinguished from the main lobe of less 

bright bubbles. Using high enough thresholds or picking a few highest peaks can reduce 

the possibility of mistaking side lobes for SR images in practice, but discarding weak 

bubble signals can increase the acquisition time to achieve the same level of reconstruction. 

Classical DAS beamforming has limited image resolution and contrast. While the side lobes 

can be compressed by coherent compounding and apodisation, the improvement is at the 

expense of frame rate or resolution. Additionally, the steering of a matrix array transducer 

is limited by the appearance of grating lobes in the image, which is governed by the pitch 

size of the transducer, and also by the size of overlapped volume among angles, which is 

governed by the aperture size of the transducer.

Adaptive weight-based beamformers were investigated for improving SRUS imaging, 

because of their relatively low computation cost which is valuable for dealing with the large 

data size from matrix array probes. For example, p-DAS beamformer calculates the adaptive 

weight for each channel by using the single channel signal; the CF beamformer calculates 

the adaptive weight for each pixel across a single combination of the channels. It is worth 

noting that images in the p-DAS beamformer had to be reconstructed with a voxel of 0.01 

mm depth to mitigate aliasing of the band-pass filtering and then down sampled to the 

same voxel size with the other beamformers. Denser voxels make the p-DAS beamformer 

take much more time than the other two adaptive weight-based beamformers. DMAS [26] 

and short-lag spatial coherence beamformers [27] also have the potential to improve 3D 

image reconstruction for SRUS but are not investigated in this study, as both methods need 

significantly higher computational cost, given the large number of channels in case of a 

matrix array.

We have also shown that the improvement of the adaptive weight-based beamformers do not 

depend on the change in data dynamic range. While the dynamic range of the image data 

can change when using the adaptive weight-based beamformers, we have shown that the side 

lobes are compressed more than the main lobe of the weak bubble signals by the adaptive 

weighted-based method, as shown in Fig. 4 and reflected by the max-PSMR metric. So the 

benefit is not from a dynamic range alternation reported previously [40].

Normalised cross-correlation is a powerful tool to detect bubbles using its spatial features 

rather than its signal amplitude. However, some kind of background removal thresholding 

as a processing step has been used in existing SR processing pipelines, which can improve 

the precision of localisation [7], [24]. Lower PSMR is preferred in the background removal 

thresholding. For the normalised data, the background removal threshold should be higher 

than the PSMR to avoid mistaking the side lobes as separate bubbles. Lower PSMR gives 

more chance to include weaker signals. With higher PSMRS, more main lobe-like signals 

can be seen in the adaptive weight-based images, as shown in Fig. 7.

It should be noted that SRUS processing in this study used the 3D normalised cross-

correlation with the corresponding simulation PSF to localise 3D bubbles. Simulated PSFs 

do not consider some of the physics, such as the nonlinearity of bubbles and phase 

aberrations, which may explain difference between simulation and experiment. As a result, 

the cross-correlation between the estimated PSF and the experimental data is low and thus 
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0.3 is selected as the cross-correlation coefficient threshold to include enough signals for the 

SRUS reconstruction.

For the SRUS image of the cross-tube phantom, there should be no bubbles outside of the 

two tubes but the area between the tubes is not totally black due to false separations and 

localisations (Fig. 8). SRUS images derived from the adaptive weight-based beamformers 

have fewer wrong localisations than the baseline. The intensity profiles also demonstrate the 

benefit of using adaptive weight-based beamformers for 3D SRUS imaging to obtain more 

distinguishable structures and the superior performance of the CV beamformer, which gives 

the longest presented tube images. While we aimed to conduct the comparison between 

the different beamforming methods using the same number of localisations, in practice the 

exactly same number is challenging to achieve and, in this case, the chosen threshold of 

DAS allowed it to have more localisations from the in vivo data than the other methods. The 

adaptive weighted-based beamformers give more localisations than the DAS beamformer 

and the CV beamformer gives the most localisations in vessels close to the probe.

The appropriate imaging volume rate for tracking bubbles depends on the bubble 

concentration and blood flow speed. A higher volume rate would generally make the bubble 

tracking less challenging, but with increased amount of data and computation requirement. 

A previous study used 750 Hz volume rate with 5 compounding angles when studying a 

similar volume [24]. In this study a volume rate of 500 Hz is empirically high enough for the 

tracking of bubbles in the rabbit kidney with our developed feature-motion-model tracking 

algorithm [36].

V Conclusion

This study compares four coherence-based beamformers for 2D US matrix array probes 

to improve 3D SRUS imaging. Simulations and experiments verify the superiority of 

the adaptive weight-based beamformers over the DAS beamformer for single-plane-wave 

transmission. The proposed CV beamformer produces the lowest side lobes and narrowest 

main lobe in simulations and generates the best in vitro and in vivo SRUS images with a 

3-second acquisition.
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Fig. 1. (a) B-mode image reconstructed by DAS. (b) Amplitude-angle histogram of delayed 
channel signals, where each pixel in the histogram is the number of channels with the same 
signal amplitude and phase angle. Four plots in (b) correspond to the four pixels labelled by red 
cross in (a). Note the colour bars have different ranges.
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Fig. 2. Demonstration of the principal difference between CF and CV beamformers. Images 
are plotted at the same lateral-elevation slice with the Fig. 1 (a). Each image is self-normalised 
and presented in the log-compressed scale. First row demonstrates the difference between the 
denominators of the WV and WCF weights. Second row demonstrates the difference between the 
two weights.
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Fig. 3. Data processing diagram. In vitro data go through the blue blocks and in vivo data 
additionally go through the orange blocks to correct tissue motions among frames. Only the 
used beamformer (black box) is different among the comparison. Comparison was done without 
tracking to avoid the filtering effect of the tracking. An SR blood flow video of the rabbit kidney 
generated with the state-of-art bubble tracking algorithm [36] is supplemented.
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Fig. 4. Maximum intensity projection (MIP) of 3D images reconstructed by different 
beamformers with channel SNR of 0 dB. The top two rows show the results of simulations 
imaging single scatters. The image intensities of these two rows are normalised by the intensity of 
the strong scatter and displayed with same dynamic range. The bottom rows show the result of 
simulation imaging five scatters with dynamic range set as 10% of the weakest scatter.

Yan et al. Page 19

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 5. Lateral and elevation profiles of PSF reconstructed by different beamformers for one 
scatter.
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Fig. 6. Curve plotted by TPR and FPR, with FPR lower than 0.05 presented.
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Fig. 7. Lateral-elevation MIPs of in vitro bubble images beamformed by DAS, p-DAS, CF, and 
CV. The dynamic ranges used for displaying images are set by the background thresholds with 
which similar number of bubbles are localised from the sequences respectively.
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Fig. 8. MIPs of SRUS density images obtained accumulating about 6500 bubbles detected on 
images reconstructed by the four beamformers.

Yan et al. Page 23

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 9. Microbubble (MB) density profiles on line across two tubes within two chosen 2D slices 
in Fig.8. Top: Profiles within the slice labelled by the dash line. Bottom: Profiles within the slice 
labelled by the solid line.
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Fig. 10. MIPs of SRUS images of rabbit kidney. The four columns correspond to the DAS, 
p-DAS, CF, and CV beamformers, from left to right. First row: lateral-depth-plane MIPs; 
Second row: elevation-depth-plane MIPs; Third and fourth rows: Zoomed-in images of the area 
in the boxes shown in the first and second rows respectively.
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Fig. 11. FSC curve estimated on SRUS images obtained from four beamformed sequences.

Yan et al. Page 26

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Yan et al. Page 27

Table I
Quantified Metrics For Four Beamformers At 0 dB SNR In Channels.

DAS p-DAS CF CVN CV

SPSMR(dB) -15.6±1.8 -52.7±1.2 -41.7±3.1 -58.8±12.6 -59.9±13.8

Max-PSMR(dB) 3.8 -9.4 -10.1 -12.3 -15.0

Lateral FWHM(mm) 0.552±0.079 0.278± 0.049 0.325±0.052 0.188±0.111 0.179±0.116

Elevation FWHM(mm) 0.503±0.071 0.251±0.047 0.296±0.048 0.170±0.102 0.163±0.106

SNR(dB) 27.4 100.7 74.1 84.9 86.8

Processing Time(s) 0.68 4.83 0.82 1.49 1.49
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Table II
Quantified Metrics For Four Beamformers At 10 dB SNR In Channels.

DAS p-DAS CF CVN CV

SPSMR(dB) -16.1±1.2 -52.7±1.1 -42.8±1.5 -67.9±8.5 -70.9±10.6

Max-PSMR(dB) 3.4 -26.6 -20.4 -32.4 -34.9

Lateral FWHM(mm) 0.557±0.086 0.279± 0.051 0.328±0.056 0.126±0.084 0.115±0.087

Elevation FWHM(mm) 0.506±0.075 0.250±0.046 0.296±0.049 0.114±0.075 0.105±0.077

SNR(dB) 37.0 113.3 85.3 98.3 101.0

Processing Time(s) 0.69 4.86 0.81 1.50 1.51
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